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ON INEQUALITIES GENERALIZING THE PYTHAGO-
REAN FUNCTIONAL EQUATION AND

JENSEN'S FUNCTIONAL EQUATION

HIROSHI HARUKI

Several authors have solved the Pythagorean functional
equation

( 1 ) \Λχ \-iy)\2=\f(χ)\2

where / is an entire function and x and y are real variables.
A simple computation shows that, if / is a solution of (1),

then / is also a solution of

(2 ) \ftZί + zz)\* + l / ( z i - z 2 ) l 2 = I/(

where zγ and z% are complex variables. (If an entire function
vanishes at the origin and is a solution of (2), then it is a
solution of (1), and conversely.) If an entire function / is a
solution of Jensen's functional equation

( 3 ) fiz, + z2) + fix, - z2) = 2M) ,

where Zι and z% are complex variables, then it is also a solu-
tion of

( 4 ) l / f o + z2) 4 f ( z , - z 2 ) \ = \f(zι + z2) 4 / ( * ! - z 2 ) \ .

In this paper we shall prove that a solution of (4) is always
a solution of (2). Then we shall solve certain functional in-
equalities derived from (2) and use the solutions to solve (1),
(2), (3), and (4).

See [2], [3], [1] concerning (1). We shall use the following two
lemmas to prove that (4) implies (2).

LEMMA 1. / / / is an entire function of z, then A\f(z)\2 =

4 I f'{z) |2 where A stands for the Laplacian d2jdxz + d2/dy2 (z — x 4- iy,

i =z V — I, x,y real). (See [4].)

Proof. Since this lemma is familiar, we omit the proof.

LEMMA 2. Suppose that /, g are entire functions of z. If

l/'(£)l = \9'(z)\ holds in \ z | < + oo and /(0) = g(0) = 0 holds, then

I f(z) I = I 9(z) I holds in \ z \ < + oo.

Proof. Since /, g are entire functions of z and | f'(z) \ = | g'(z) \

holds in | z \ < + oo, we have f'(z) = eiθg'(z) in | z \ < + oo where θ is

a real constant. So, by the assumption /(0) = g(0) = 0 we have f(z) =
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eiθg(z) in | z \ < + oo. So we have | f(z) \ = \ g(z) | in | z j < + oo.

We shall prove that (4) implies (2) if / is an entire function of z.
By (4) we have

/ K \ I -P ί/y I sy \ _!_ /Ύo' „ \ 12 I -f (/y I ΛΓ \ I -f (/y ly \ 12

Taking the Laplacian d2/ds2 + d2/δt2 of both sides of (5) with
respect to zfa = s + iί, i = l / —1, s, ί real), by Lemma 1 we have

4

Hence

- 4 \f'(Zl
'& - z2)

'fo - z2)
When ^ is arbitrarily fixed, f(z1 + «2) — / ( ^ — «;2) and / ( ^ + z2) —

f(z1 — z2) are entire functions of z2 with (/(^ + z2) — f(z1 — z2))Z2=0 —
(fKTY2) - ί\zγ - z2))ti=0 - 0 and by (6)

Hence, by Lemma 2

So, we have

z, - z2) |2 = I f(zt - f(zx - z2)

Adding (5), (7) and using the parallelogram identity | a + b [2 +
[ a — b |2 = 2 I α |2 + 2 | 6 |2 (α, 6 complex), we have

2 I f(z, + «2) |2 + 2 I / fe - z2) |2 = 2 I f(Zι + 22) |2 + 2 | / fe - ί2) |2 .

Hence (4) implies (2) if / is an entire function.
So, if (1) or (3) holds, then (2) holds. But the converse is not

true as the example f(z) — cos z shows.
Now, we consider the following two functional inequalities where

zu z2 are complex variables:

^ ϊ i 2

2) I
( 8 ) I f{zγ + z2) |2 + I f(zλ - z2) ί2 ^ I f{zγ + z2) |2 + I f(Zl - z

with I zγ I < + 00 and Im (zξ) ̂  0,

( 9 ) I f(z± + z2) |2 + I f(zι - z2) |2 ^ I f(zL + z2) |2 + I f(zλ - z2) |2

with I zx I < + 00 and Im (z\) ̂  0.
In this paper we shall solve the two functional inequalities (8),

(9) which are extensions of (2), and then by the results obtained we
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shall solve the functional equations (1), (2), (3), (4). Our results are
extensions of the result of E. Hille (see [2]).

2* Solutions of (8) and (9). We shall use the following lemma:

LEMMA 3. Suppose that H is an entire function. If A(t) =
I H(teiφ) |2 where t, φ are real and φ is fixed, then we have

A"(0) = 2 Re (e2ίφH"(0)H(0)) + 2 | ίf'(O)

Proof. Since it is easy, we omit it.

THEOREM 1. An entire function f is a solution of the functional
inequality (8) if and only if

f(z) = a sin h((β + ii)z) + b cos h((/3 + ίy)z)

or f(z) = az + b where a, b are arbitrary complex constants and β, Ύ
are nonnegative real constants.

Proof. Putting z2 = teiφ in (8) where t, φ are real and φ is fixed
with 0 < φ < π/2, we have

I f(Zl + te*) |2 + I f(zλ - te*) |2 ̂  | f{zx + te~*) |2 ) j

Then, for each fixed z (complex),

p(t) = \ f ( z + t e - ' η j 2 + \ f ( z - t e - * ) |2 - \ f ( z + t e * ) j 2 - \ f ( z - t e * ) |2

is a twice differentiate function of the real variable t which has a
minimum at t = 0 (p(0) = 0). Hence, p"(0) ̂  0. It follows from
Lemma 3 that 8 sin 2φ Im {ffr(z)fjz)) :> 0 for each complex number z,
and since sin 2φ > 0, this implies that

(10) Im (f"(z)f(z)) ^ 0 .

We may assume that f(z) -φ. 0. Then it follows from (10) that
Im (f"(z)lf(z)) ^ 0 in the domain where f(z) Φ 0. Since f"{z)\f(z)
is a meromorphic function and the set of zeros of f(z) is countable,
it follows from Picard's little theorem that f"(z)lf(z) = A for all z
where A is a complex constant such that Im (A) ;> 0. The solutions
of this differential equation are precisely those functions listed in
Theorem 1.

Conversely, we shall prove that these two functions satisfy (8).
First, let us prove that f(z) = a sin h((β + ij)z) + b cos h((β + ij)z)

satisfies (8).
By the parallelogram identity we have
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f(zt

(11) «! - ίβ-") |2

) |2

) |2

(12)

+

- te*) |2

+

- ίβ*) |2

where 0 <Ξ 9? <g π/2.
On the other hand

) ,

z, - te*) |2

(13) = 4 I α sin h((β b cos

x (I cos h((β + iΊ)te~iφ) |2 - | cos h((β

Since | cos h(c + id) |2 = cos2

numbers, we have
— sin2 d where c, c? are arbitrary real

(14)

cos h((β + iy)te~iφ) |2 - I cos h((β + iy)teiφ) |2

= cos2 h(βt cos φ + it sin φ) — sin2 (— βt sin 9? + 7έ cos φ)

— cos2 &(/3£ cos φ — it sin 9?) + sin2 (βt sin 9? + yt cos 9?)

= 4 sin h(βt cos 9?) cos h(βt cos 9?) sin /&(7£ sin φ) cos Λ(7ί sin φ)

+ 4 sin (/3ί sin φ) cos (/3ί sin φ) sin (7ί cos 9?) cos (yt cos 9)

= sin h(2βt cos 9?) sin h(2yt sin 9?) + sin (2βt sin 9?) sin (27ί cos φ) .

Here we may assume that t ^ 0. Since sin &# ^ x in α? ̂  0, by
β ^ 0, 7 Ξ> 0, έ ^ 0, cos 9? ^ 0, sin φ ^ 0 we have

(15)

(16)

sin h(2βt cos φ) ^ 2/Sί cos <p ̂  0 ,

sin h(2yt sin 9?) ^ 27ί sin φ ^ 0 .

By (15), (16)

(17) sin h(2βt cos 9?) sin h(2yt sin 9?) ^ 4/S7έ2 cos φsinφ .

Since a? ̂  | sin x | in x ^ 0, by /3 ^ 0, 7 ^ 0, ί ^ 0, cos φ ^ 0,
sin φ ^ 0 we have

(18) 2£ί sin 9? ^ I sin (2βt sin 9) | ,

(19) 27ί cos φ ^ I sin (27ί cos φ) I .

By (18), (19) we have

(20) Aβyt2 sin φ cos φ ^ | sin (2/Sί sin 9?) sin (2τί cos 9



(21)

(22)
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Further we have

I sin (2βt sin φ) sin (2yt cos φ) \

^ — sin {2βt sin φ) sin (2τί cos φ) .

By (17), (20), (21)

sin h(2βt cos <£>) sin h(2yt sin 9?)

+ sin (2βt sin 9) sin (2yt cos 9?) ^ 0 .

By (13), (14), (22) we have

89

(23)
^ I f(zί

Next we have

+ te-'η - f(z, - te-*) |2 - I f(zx + te*) - f(zx - te*) |2

= 4 I a cos Λ((/3 + ίy)z1) + δ sin A((/3 + iy)z1) |2

x (I sin h (OS + ίτ)ίe-ίςo) |2 - | sin A((/3 + iy)teiφ) |2) .

(24)

Since | sin h(c + id) |2 = cos2 he + sin2 d — 1, by the same way as
in (14)

(25)
I sin h((β + iy)te-iφ) |2 - | sin h((β + iy)teiφ) |2

= sin h(2βt cos φ) sin h(2yt sin φ) — sin (2βt sin φ) sin (27£ cos 9) .

By replacing (21) by

I sin (2βt sin φ) sin (2yt cos φ) | ^ sin (2βt sin 9) sin (27ί cos φ)

in the above calculation from (15) to (22) we have

sin h(2βt cos φ) sin hi^yt sin φ)

— sin (2/3ί sin φ) sin (27ί cos φ) ^ 0 .

By (24), (25), (26) we have

(26)

(27)
^ I / & + ίβ^) - f(zx - ft

By (11), (12), (23), (27), we can conclude that

f(z) = a sin /ι((/9 + Ϊ7)«) + b cos fe((/S + ί

satisfies (8).
Next, when f(z) = az + b, we have

I /(Si + «2) I2 + I / f e - z2) I2 - I / ( ^ + z2) |2 + I f(Zl - ί2) |2

in I z1 \ < +00 and in | 2;21 < + co. Thus the theorem is proved.
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THEOREM 2. An entire function f is a solution of (9) if and
only if f(z) = a sin h((β — iy)z) + b cos h((β — ίy)z) or f(z) = az + b
where α, b are arbitrary complex constants and β, 7 are nonnegative
real constants.

Proof. Putting f*(z) = f(z), f*(z) is an entire function of z. By
(9) f*(z) satisfies the following functional inequality:

I / * ( * ! + O I2 + | / * ( * i - Z

where zu z2 are complex variables with \z1\ < + ©o and Im (zl) Ξ> 0.
Hence, by (9') and by Theorem 1 the theorem is proved.

By Theorem 1 we can solve (1), (2), (3), (4). An entire function / is
a solution of (1) if and only if f(z) = a sin az or f(z) = a sin haz or
f(z) = az where a is an arbitrary complex constant and a is an arbitrary
real constant.

An entire function / is a solution of (2) or (4) if and only if
f(z) = a sin az + b cos az or f(z) — a sin haz + b cos haz or f(z) —
az + b where α, b are arbitrary complex constants and a is an arbi-
trary real constant.

I wish to thank the referee for his many helpful suggestion.
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