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WEAKLY CLOSED DIRECT FACTORS OF
SYLOW SUBGROUPS

G. GLAUBERMAN AND J. G. THOMPSON

In many finite classical linear groups and permutation
groups, certain Sylow subgroups have weakly closed direct
factors. In this paper we establish a sufficient condition for
this to occur in arbitrary finite groups.

The purpose of this paper is to prove the following result:

THEOREM A. Let p be an odd prime, and let P be a Sylow p-
subgroup of a finite group G. Suppose Q and R are subgroups of
G such that P = Q x R. Assume that no indecomposable factor of
R is isomorphic to a subgroup of Q. Then P contains a weakly
closed direct factor that is isomorphic to R.

Our notation is taken from [3]. In addition, for every finite p-
group P, we let

d(P) — max. {\A\\ A is an Abelian subgroup of P)

and

J(P) = <4 I A an Abelian subgroup of P and | A | =

The following lemma is a special case of a result of Wielandt
(Satz 6 of [9]).

LEMMA 1. Let A and B be subgroups of a finite group G such
that G = AB. Suppose p is a prime, Ap is a normal p-subgroup of
A, and Bp is a normal p-subgroup of B. Then (Ap, Bpy is a p-group.

Proof. By Sylow's Theorem, ζ(Ap)
β, Bpy is a p-group for some

geG. Take a e A and b e B such that ab = g. Then (Ap)
g = ((Ap)

a)b =
(Ap)

b. Also, (B.γ-1 = Bp. Thus

<A,, Bpy - <(Λ,)β, w 1 ) = <(Apy, Bpγ-λ,

which is a p-group.
An automorphism a of a group G is said to be central if gag~1 e Z(G)

for all geG. We say that an element (or a subgroup) of Aut G
fixes a subgroup H of G if it (or its elements) map H onto H.

THEOREM 1. Let π be a set of primes and G be a finite π-group.
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Suppose G — H x K and no indecomposable factor of H is isomorphic
to an indecomposable factor of K. Let A = Aut G and let C be the
group of central automorphisms of G. Then G has the following
properties:

(a) IfH* = H,K* = K, and G = H* x K*, then G = H* x K =
Hx K*.

(b) The groups H x Z(K), Z(H) x K, Hr, and Kr are character-
istic subgroups of G.

(c) There exists a normal, nilpotent πsubgroup D of A that is
contained in C and permutes transitively the pairs (H*, K*) such
that

H* ^H,K* = K, and G = H* x K* .

(d) If B is a π1-subgroup of A then there exists a pair (JBΓ*, K*)
such that

i ϊ* = H, K* ~ K,G = H* x K* ,

and B fixes H* and iϊΓ*. Moreover, if B fixes H, we may take
H* = H.

Proof, (a) Represent H and K as products of indecomposable
factors, say, H = Hx x x Hr and K= Kxx x Ks. Then G =
H x K = H, x x Hr x K, x . x Ks. Since H* = H and if* ~ K,
we have a similar representation

G = H* x K* = H* x . . . x Hϊ x K* x . . . x i£s* .

Obviously, there exists a one-to-one correspondence φ between the
factors F of the first representation and those of the second represent-
ation. By the Krull-Schmidt Theorem [7, p. 81], φ may be chosen to
have the properties that φ(F) ~ F for each F and

G = ΦiHJ x . . . x φ(Hr) x Kx x . . . x Ks .

Clearly, for every Hu φ(H{) is some Hf. Hence G = H* x K. By
symmetry, G = H x K*.

(b) Let aeA. Then G = Ha x K\ By (a), G = Ha x K. Thus

{C(K)Y = (H x Z{K)Y s HaZ{G) S

Hence if x Z(ϋΓ) is a characteristic subgroup of G. Since Hf =
(H x Z(K)Y, Hf is also a characteristic subgroup of G. By symmetry,
Z(H) x K and i£' are characteristic in G.

(c) For each aeC, define α - 1 by ga~ι = g~lga for all g e G.
Since α:e C, a — 1 is an endomorphism of G and Gα-1 g ^(G). Thus
^α-l = gag-l f o r a U ^ e Qm
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Let DH be the group of all aeC for which ga — g for all geH
and ga~ι e Z(H) for all geG. Then

(1) H°~ι = 1 and G*-1 e Z(H), for α e DH .

Define Dκ similarly.
Suppose a e DH. Let η •= a — 1. Take g e G, and let λ = #ry. By

(1), it is clear by induction that

ga% = ghι for i = 1, 2, 3, .

Thus
(2) the order of a, the exponent of Ga~\ and the exponent of
G/Ker (a — 1) are equal.
We also observe from (1) that if a, β e DH, then aβ = βa. Thus
(3) DH is an Abelian π-group.

Suppose a e DH, βeDκ, and a and β have relatively prime orders.
Let g e G, and let h = g^1 and k = gβ~\ Then h e Z(H) and k e Z(K).
By (2), the order of h divides the order of a. Since an analogue of
(2) also holds for elements of DK9he Ker OS — 1). Similarly, k e Ker (a—I).
Hence

g«β = (̂ «)'5 = (flrfe)̂  = gW = gβh - gkh =

and

= gaβ

Thus aβ — βa. In particular, if p and q are distinct primes,
(4) the Sylow p-subgroup of DH centralizes the Sylow g-subgroup of
Dκ.

Suppose if* ~ H,K* ~ K, and G = H* x K*. By (a),

Define a mapping η:G-+G as follows: For each ke K, take h' e H
and k* e K* such that k = h'k*. Let & - K. Fox he H and fc e K, let

Then >7 is an endomorphism of G. Since K and JSΓ* centralize ίί,
Gη = Kr s ^(ίf) C ^(G). Hence the mapping a:G~>G given by ^α =
{grj)~ιg is an endomorphism of G. Since Ha = H and if" = if*, α is
an automorphism of G. Clearly, aeDH. Thus D^ permutes trans-
itively all the direct factors of G that are isomorphic to K. Similarly
Dκ permutes transitively all the direct factors of G that are isomorphic
to H.

Let AH be the set of all aeA such that Ha — H. Define Aκ

similarly. Then
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( 5) DH <\ AH and Dκ < Aκ .

Let aeA. Then Ha ~H,Ka^ K, and G = Ha x ϋΓ*. Hence there
exists β e DH such that K? = Ka. Therefore K^'1 = K, and aβ~ι e Aκ.
Thus aeAκAH. So

( b ) A = AXA# = AHAK

Let / = AH Π -A*, and take a e AH. As in the previous paragraph,
there exists βεDH such that Ka = K?. Thus aβ~ι eAHΓ)Aκ = I. So
AH - Π) H - D^I. Similarly, Aκ = ID* = Z^J.

Let p be a prime. By (5), OV{DH) is a normal subgroup of AH

and OP(DK) is a normal subgroup of Aκ. Let Z^ = ζOp{DH), Op(Dκ)y.
By (5), (6), and Lemma 1, Dp is a p-group. By (3) and (4), every
p'-element in DH or Dκ centralizes Dp. Since Dp normalizes itself,
DH and Dκ normalize Dp. Since / normalizes DH and Dκ, I normalizes
Dn. Hence

'p

N(DP) 3 <DH, Dκ, 1} = <DHI, DKI} - AHAK - A .

Let D be the subgroup of C generated by the groups Dp for all
primes p. Then DH S Z> and i)^ S ί>, by (3). Suppose fl"* ^ H,
K* ^ if, and G = H* x K*. Then there exists aeDκ and /3eJ9^
such that H*a = ί ί and ((ϋΓ*)α)^ = K. Now α/3eD, fΓ*^ = H, and
i£*αi3 = K. This completes the proof of (c).

(d) Retain the notation of (c). Then I = AHf]Aκ and A = ID.
Since D Q BD Q A = ID, BD = (BDΠl)D. Note that D is nilpotent
and | B | and \D\ are relatively prime. By Schur's Theorem [10, p.
162], BDΠI splits over D Π /. Let £* be a complement of D Π / in
.BD n I. Thus J3* is a complement of D in £Zλ By the Schur-
Zassenhaus Theorem [10, p. 162], J5* is conjugate to B in BD. Take
α e BD such that £ = a^B*a. Since J5* £ AH n A*, £ fixes ifα and
if*.

If 5 fixes H, then 5 g i ^ = Jί?^. An argument similar to the
previous one shows that aBarγ £ / for some a e .BZ) .̂ Then B fixes
Ha and iία, and H β = H. This completes the proof of Theorem 1.

LEMMA 2. Let p be a prime and P be a p-subgroup of a finite
group G. Suppose H is a pfsubgroup of G that normalizes P. Then:

(a) P=[P,H]CP(H);
(b) [[P, H], H] = [P, H]; and
(c) if P is Abelian, then P = [P, H] x CP{H).

Proof. This result is well known. Parts (a) and (b) appear as
Corollary 3 of Theorem 1 of [4]. Part (c) follows directly from part
(a) and from the lemma on page 172 of [10].
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LEMMA 3. Let p be a prime and P be a psubgroup of a finite
group G. Suppose H is a pfsubgroup that normalizes P. Assume
that

(a) P is Abelian and H centralizes Ωt(P)
or that

(b) P has no Abelian direct factors and H centralizes P/Z(P).
Then H centralizes P.

Proof, (a) By Lemma 2, P = [P, H] x CP(H). Hence A([P, H]) = 1.
Therefore, [P, H] = 1, i.e., H centralizes P.

(b) Let Q = [P, H]. Then Q c Z(P), so Q is Abelian. By
Lemma 2, P = QCP(H),Q = [Q,H], and QΓ)CP(H) = [Q,JΪ] nCQ(ff) = l.
Since Q g Z(P), CP(£Γ) < P. Hence P = Q x CP(H). By (b), Q = 1.

LEMMA 4. Lei P and Q be normal Abelian p-subgroups of a
finite group G. Suppose that Q g P α̂ c? ίAαί some Sylow psubgroup
of G normalizes some complement of Q in P. Then G normalizes
some complement R of Q in P.

Proof. By constructing a semi-direct product if necessary, we
may assume that G is a splitting extension of P by a group E that
is isomorphic to G/C(P). Let S be a Sylow p-subgroup of E. Then
S normalizes some complement R* of 0 in P. Now, SP is a Sylow
p-subgroup of G and Si?* is a complement of Q in SP. Thus SP
splits over ζ). By a theorem of Gaschiitz [6, p. 246], G splits over
Q. Let C be a complement of Q in G, and let R = C Π P.

The following result is a special case of a theorem of Wielandt
(Satz 12, page 193, of [8]).

LEMMA 5. Suppose p is a prime and P is a Sylow psubgroup
of a finite group G. Let n = | N(P)/P\. Let V be the transfer of G
into P/P'.

(a) If aePΠ Z(N(P)) and ap = 1, then V(a) = anPf.
Furthermore, suppose P ' g Q g P and suppose W is the transfer

of G into PIQ. Then:
(b) IfA^Pf]Z(N(P))and AnQ = l, then Af)G'= Af)Ker W=l.
(c) IfQ<\ N(P), then ΩX(Q n Z(P)) g Ker W.

Proof, (a) Let r = G:P | , and let P ^ , i = 1, 2, ••-, r, be the
distinct cosets of P in G. We may assume that

xly , αw G iV(P); Px,α - PXi(l ^ i ^ s);

Px{a Φ Pxi(s + 1 g i ^ r) ,
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where s ^ n. Since ap = 1, Lemma 14.4.1, page 206, of [6] yields

V(a) = P' Π Xiaxi1

Since aeZ(N(P)),

( 7 ) V(a) = P'an Π

Suppose x G P and w < i ^ s. Then (Px^x = P# y for some jj.
Since

and since a?f ί N(P), n < j <L s. Thus P permutes the cosets Pxi9

n < i ^ s, by right multiplication. We may assume that Pxn+ί, , Pα^
are representatives of the distinct orbits of P. For i = n + 1, , t,
let P^ be the subgroup of P fixing Px{, and let ^ x , *—,yimi be re-
presentatives of the distinct left cosets of Pt in P. Then the orbit
of Pxi is PXiVij, 1 ^ i ^ m ί β

Suppose w + 1 ^ i ^ ί. Since ^ g N(P), PXiP Φ Pxi Thus P^P
and

( 8 ) m< = I P: P< | = 0, modulo p .

We may assume that, for k = n + 1, , s, every xA has the form
ίBil/ίj for some (unique) i and i . By (7) and (8),

V(a) = P'an Π Π XiVΦV^xt

= P'an Π (XidxiYί = P'an ,

as desired.
(b) Suppose aeA and ap = 1. Now, TF is simply the composi-

tion of V with the natural mapping of P\Pf into PJQ. Hence W(a) =
αwQ, by (a). Since p does not divide n and since a£Q, W(a) Φ Q.
Thus A Π Ker IF has no elements of order #>, so A Π Ker FT = 1. Since
G' S Ker TF, A Π G; - 1.

(c) Let B = Ωλ(Q f] Z(P)) and N = N(P). Since N/CN(B) is a p'-
group,

5 = [S, N] x Ĉ JNΓ) ,

by Lemma 2. Obviously, [£, iV] C G' S Ker TΓ. Let α G C£(iV).
From (a),

W(a) = {anP')Q = a

nQ = Q ,

so a e Ker W. Thus B £ Ker TF. This completes the proof of Lemma 5.
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We now require the following proposition, which is the main
result of [5]:

THEOREM 2. Let p be an odd prime, and let P be a Sylow p-
subgroup of a finite group G. Suppose xe P f] Z(N(J(P))). Then
g-^xg — x whenever g eG and g~γxg e P.

THEOREM 3. Let p be a prime, and let P be a Sylow p-subgroup
of a finite group G. Suppose Q and R are normal subgroups of
N(P) and P — Q x R. Assume that R gΞ OP(G) and that no indecom-
posable direct factor of R is isomorphic to a subgroup of Q. Then
Rr is a normal subgroup of G, and there exists a normal subgroup
j?* of G such that P = Q x R*. Moreover, if p is odd and R/R' is
a normal subgroup of NG!Rf{J{PIRf)), we may take i?* = R.

Proof. Let Q1 = OP(G)ΠQ. Since RSOP(G) ^P = RxQ, OP(G) =
R x Qlm Now, no indecomposable factor of R is isomorphic to an
indecomposable factor of Qlβ By Theorem 1, RZ{Q^) and R' are
characteristic subgroups of OP(G) and are therefore normal subgroups
of G.

Let T — RZ{Qλ) = Z(Qj) x R. Represent R as a direct product
of an Abelian subgroup Ra and a subgroup Rb having no Abelian
direct factors. By Theorem 1, we may assume that Ra and Rb are
normalized by a complement of P in N(P) and are therefore normal
in N(P). If Ra Φ 1, let pe be the minimum of the exponents of the
indecomposable factors of Ra. If Ra = 1, let pe = p\ T\. Then let

To = < ^ e " ' I x e T> .

Now Γo < G and

( 9 ) Ωx(Ra) QTQ^R .

Since Q centralizes R,Q centralizes To and T/Z(T). Let

C = CG(T/Z(T))ΠCG(T0) and H - CT .

Then C and H are normal in G and P = QR s CT = H.
Let K be a complement of P in JV^P). Since HJC ~ T/(C Π T),

K^C. Thus [T, K]^ Z(T) and i ί centralizes Γo. Therefore
[i?δ, jfiΓ] c Z(JB6) and, by (9), K centralizes Ω^RJ. By Lemma 3, K
centralizes Ra and Rb. So K centralizes R.

Let H - Jff/JB', 5 = R/Rf, K = ifi2/βf, and so forth. Then Λ s

and JYH(P) = P ^ , so

(10) - ^ ( P ) centralizes R .
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Let W be the transfer of H into P/Q. By Lemma 5(b),

(11) Rf)B' QR

By the Frattini argument,

(12) G = HN(P) .

Suppose p is odd and R < Nβ(J(P)). Then by (11)

[R, Nn(J(P))] g ί Π F ^ l .

Thus by Theorem 2 no element of R is conjugate to any other ele-
ment of P. Since R £ OP(G) £ P, we must have R £ Z(ίf). There-
fore, R <l H. By (12) i2 is normal in (?, as claimed.

Let us return to the general case. Now, P = Q x R. By (11),
R n Ker W = 1. Since

β is a complement to Ker TΓ in H. Hence R is a complement to
T n Ker W in Γ. Since W depends only on H and Q and since JV(P)
normalizes H and Q, iV(P) normalizes Ker W. By (12), G normalizes
Ker W. Hence T Π Ker T^ < G. Now Γ' = β ' = 1 and P normalizes
R. By Lemma 4, there exists a complement 5 * of T Π Ker TF in T
such that 5 * < G. Let i2* be the subgroup of T that contains R'
and satisfies J?*/i2' = 5*^.

By Lemma 5, Ω^ZiQ)) £ Ker TF. Since Ωλ(Z{Q))R'IR' £
(11) yields

Hence Q Π i?* is normal in Q but intersects Z(Q) in 1, so Q (Ί JB* = 1.
Consequently, | QR* \ = \ Q \ \R* \ = | Q \ \R\ = \ P\. Since Q, iί* <I P,
P = Q x R*. This completes the proof of Theorem 3.

We now require the following concepts and results of Alperin and
Gorenstein (§ 2 of [2] and § 5 of [1]):

DEFINITION. Let G be a finite group and p be a prime. Let
be the set of all nonidentity ^-subgroups of G. A conjugacy functor
W on ^f is a mapping from £{f into ^ that satisfies the following
two conditions for each H in £ίf\

(a) W(H)^H;
(b) TF(ίP) = W(HY for all α; e G.

THEOREM 4. Le£ p be a prime and P be a nonidentity Sylow
p-subgroup of a finite group G. Let W be a conjugacy functor on
the set of nonidentity p-subgroups of G. Then there exists a class
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of nonidentity subgroups of P, called well-placed subgroups, having
the following properties:

(1) // H is a well-placed subgroup then N(H) Π P is a Sylow
p-subgroup of N(H), and W(N(H) Π P) is a well-placed subgroup.

(2) Suppose R S P, g eG, and R9 S P. Then there exists a
sequence of well-placed subgroups Hu , Hn and elements xl9 , xn

of G such that
( a ) 0 = 0 ? ! - . - xn,

(b) xi e N(Hi), l ^ ί ^ n , and
(c) R^H, and R*r~χi Q Hi+1,1 ^ i ^ n - 1.

Theorem 4 easily yields the following result:

COROLLARY. Let p be a prime and P be a Sylow p-subgroup of
a finite group G. Suppose Q S P and Q is not weakly closed in P
with respect to G. Then there exists H <Ξ P and g e N(H) such that
H is well-placed, Q S H, and Qg Φ Q.

THEOREM 5. Let p be a prime, and let P be a Sylow p-subgroup
of a finite group G. Suppose P = Q x R and no indecomposable
direct factor of R is isomorphic to a subgroup of Q. Let J be the
subgroup of P that contains Rf and satisfies J/Rf = J(P/R'). Then

(a) There exists i2* < N(J) such that P = Q x R*.
(b) // p is odd and R* satisfies (a), iϋ* is weakly closed in P

with respect to G.

Proof, (a) Let K be a complement of P in N(P). By Theorem
1, we may assume that K normalizes Q and R. Hence Q, R < N(P).
Since RjR g Z(P/R'),

RQJQ OP(N(J)) .

Thus, (a) follows from Theorem 3.
(b) Assume p is odd and R* satisfies (a) but is not weakly closed

in P. We may assume that R = R*. By a theorem of Burnside [6,
p. 46], there exists a subgroup Po of P such that Po =2 R and
R iH N(P0). Since

R^P0S;P=RxQ, Po = R x (PoΠQ) .

By Theorem 1 and our hypothesis on Q and on R, Rr <\ N(P0). There-
fore, R is not weakly closed in P with respect to N(Rf). Since
P S N(J) C JV(JB'), we may assume that R! < G.

We define a conjugacy functor TF on the set of nonidentity sub-
groups H of G as follows:
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W(H) = if, if R' £H;

and

R' S W(H) and W(H)/R' = J(H/R'), if Rf ^ H .

By the Corollary of Theorem 4, there exists a well-placed sub-
group H of G having the properties that H^R and J? <$ N(H).
Choose If such that P Π N(H) has maximal order subject to these
conditions. Let Pι = P Π N(H). Since if is well-placed, Px is a Sylow
p-subgroup of N(H). By Theorem 3, R/R' <f\ NGIR,(J(PJR')). Hence
P.czP by (a). But J(PJR') = WiPJ/R'. Thus R^F^ndR^} NiWiPJ).
Since if is well placed and Px c P, TF(Pi) is well placed and

Px c P Π N{PX) S P ΠΛΓ( TΓίPO) .

But this contradicts the choice of H. Thus we have proved Theorem
5. Theorem A obviously follows from Theorem 5.

REMARK. Let An and Sn be the alternating and symmetric groups
of degree n, for n = 4, 6. Since Theorem 2 holds for p = 2 when
S4 is not involved in G [5], Theorem A holds for p = 2 when S4 is
not involved in N(R')/R'.

Let JH" = A\ and let i2 be an indecomposable 2-group of order
greater than eight. Take a transposition τ in S6 and a subgroup Ro

of index two in R. Consider R as an operator group on i ϊ by defin-
ing hr = h when r eR0 and hr = τ~ιhτ when r eR and r&R0. Let G
be the semi-direct product of H by R, and embed H and J? in G in
the natural manner. Then CΠ(R) contains a Sylow 2-subgroup Q of
iϊ. Let P = Q x R. Then P is a Sylow 2-subgroup of G and iί is
not isomorphic to any subgroup of Q, but P has no weakly closed
direct factor isomorphic to R.
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