BOUNDED SERIES AND HAUSDORFF MATRICES FOR ABSOLUTELY CONVERGENT SEQUENCES

Philip C. Tonne

If f is a function from $[0,1]$ to the complex plane and c is a complex sequence, then the Hausdorff matrix $H(c)$ for c and a sequence $L(f, c)$ are defined :

$$
\begin{aligned}
H(c)_{n p} & =\binom{n}{p} \sum_{q=0}^{n-p}(-1)^{q}\binom{n-p}{q} c_{p+q} \\
L(f, c)_{n} & =\sum_{p=0}^{n} H(c)_{n p} f(p / n) .
\end{aligned}
$$

This paper consists of the following theorem and two converses to it.

Theorem 1. If A is a complex sequence and $\sum_{p=0}^{\infty} A_{p}$ is bounded (there is a number B such that if n is a nonnegative integer then $\left.\left|\sum_{p=0}^{n} A_{p}\right|<B\right), f$ is a function from [0, 1] to the complex plane such that if $0 \leqq x<1$ then $f(x)=\sum_{p=0}^{\infty} A_{p} x^{p}$, and c is an absolutely convergent sequence ($\sum_{p=0}^{\infty}\left|c_{p+1}-c_{p}\right|$ converges), then $L(f, c)$ converges. Furthermore, if c has limit $d, L(f, c)$ has limit $\sum_{p=0}^{\infty} A_{p}\left(c_{p}-d\right)+f(1) \cdot d$.

Let \mathscr{F} be the collection of all functions f satisfying the hypothesis of Theorem 1. \mathscr{S} be the set of all absolutely convergent sequences. Theorem 1 and its converses show that \mathscr{F} and \mathscr{S} are related in the same way that certain sets of continuous functions are related to certain sets of sequences in [3]. There, for example, the set of functions analytic on the unit disc with power-series absolutely convergent at 1 is shown to be related to the set of bounded sequences.

In Theorem 3 we use the following result due to J. S. MacNerney [2, p. 56] and A. Jakimovski [1], which, incidentally, was used in [3] the relate the set of polynomials to the set of all sequences.

Theorem A. If f is a polynomial and c is a complex sequence then $L(f, c)$ converges. Furthermore, if $f(z)=\sum_{p=0}^{n} A_{p} z^{p}$ for each complex number z, then $L(f, c)$ has limit $\sum_{p=0}^{n} A_{p} c_{p}$.

The following lemma is useful in the proofs of Theorems 1 and 2.

Lemma 1. If M is an infinite, complex, lower-triangular matrix, these are equivalent:
(1) There is a positive number B such that if each of q, n, and m is a nonnegative integer then $\left|\sum_{p=q}^{m} M_{n_{p}}\right|<B$ and there is a
sequence A such that, for each nonnegative integer p, the sequence $M[, p]$ has limit A_{p}.
(2) If x is an absolutely convergent sequence with limit 0 , then $M \cdot x$ converges $\left([M \cdot x]_{n}=\sum_{p=0}^{n} M_{n p} x_{p}\right)$.
Furthermore, if (1) holds and x is an absolutely convergent sequence with limit 0 then $M \cdot x$ has limit $\sum_{p=0}^{\infty} A_{p} x_{p}$.

Proof. First, suppose that (1) holds and that x is an absolutely convergent sequence. If each of q and m is a nonnegative integer, then $\left|\sum_{p=q}^{m} A_{p}\right| \leqq B$ and

$$
\sum_{p=q}^{m} A_{p} x_{p}=\sum_{p=q}^{m}\left(x_{p}-x_{p+1}\right) \sum_{j=q}^{p} A_{j}+x_{m+1} \sum_{j=q}^{m} A_{j},
$$

from which we see that $\sum_{p=0}^{\infty} A_{p} x_{p}$ converges.
If each of m and n is a positive integer, then $(M \cdot x)_{n}-\sum_{p=0}^{m-1} A_{p} x_{p}$ $=\sum_{p=0}^{m=1}\left(M_{n p}-A_{p}\right) x_{p}+\sum_{p=m}^{n}\left(x_{p}-x_{p+1}\right) \sum_{j=m}^{p} M_{n j}+x_{n+1} \sum_{j=m}^{n} M_{n j}$ and, from this, we see that $M \cdot x$ has limit $\sum_{p=0}^{\infty} A_{p} x_{p}$.

Second, suppose that (2) holds. Sequences having the value 1 at one nonnegative integer and 0 at the others show us that there is a sequence A such that, for each nonnegative integer p, the sequence $M[\quad, p]$ has limit A_{p}.

Let S be the set of all absolutely convergent sequences with limit 0 and let N be a function from S to the numbers such that if x is in S then $N(x)=\sum_{p=0}^{\infty}\left|x_{p}-x_{p+1}\right| .\{S, N\}$ is a complete, normed, linear space.

For each nonnegative integer n, let T_{n} be a function from S to the complex numbers such that if x is in S then $T_{n}(x)=(M \cdot x)_{n}$, and note that T_{n} is a continuous linear transformation.

For each x in S the sequence $T(x)$ converges, so that by the "principle of uniform boundedness" there is a number B such that if n is a nonnegative integer and x is in S and $N(x) \leqq 1$ then $\left|T_{n}(x)\right| \leqq B$.

If each of q and m is a nonnegative integer, let $z(q, m)$ be the sequence such that if p is a nonnegative integer, then $z(q, m)=1 / 2$ if $q \leqq p \leqq m$ and $z(q, m)_{p}=0$ otherwise, and notice that $z(q, m)$ is in S and $N(z(q, m)) \leqq 1$.

If each of m and q is a nonnegative integer,

$$
\left|\frac{1}{2} M_{m q}\right|=\left|T_{m}(z(q, q))\right| \leqq B,
$$

and if n is a nonnegative integer,

$$
\left|\frac{1}{2} \sum_{j=q}^{m} M_{n j}\right|=\left|T_{n}(z(q, m+1))-M_{n, m+1} \cdot \frac{1}{2}\right| \leqq 2 B,
$$

and Lemma 1 is proved.
Lemma 2. Suppose that $B>0$ and v is a nondecreasing non-negative-number-sequence and b is a complex sequence such that if each of n and q is a nonnegative integer then $\left|\sum_{p=q}^{n} b_{p}\right| \leqq B$. Then, if m is a nonnegative integer, $\left|\sum_{p=0}^{m} b_{p} v_{p}\right| \leqq v_{m} B$.

Proof. The lemma is true if m is 0 . Suppose that m is a positive integer such that, for each sequence b as described above, $\left|\sum_{p=0}^{m-1} b_{p} v_{p}\right| \leqq v_{m-1} B$.

Let a be a complex sequence such that if each of n and q is a nonnegative integer, then $\left|\sum_{p=q}^{n} a_{p}\right| \leqq B$. Let b be the sequence such that if p is a nonnegative integer, then $b_{p}=a_{p}$ if $p<m-1$, $b_{m-1}=a_{m-1}+a_{m}$, and $b_{p}=0$ if $p \geqq m$. Then

$$
\begin{aligned}
\left|\sum_{p=0}^{m} a_{p} v_{p}\right| & =\left|\sum_{p=0}^{m-1} a_{p} v_{p}+a_{m} v_{m-1}+a_{m}\left(v_{m}-v_{m-1}\right)\right| \\
& \leqq\left|\sum_{p=0}^{m-1} b_{p} v_{p}\right|+\left|a_{n}\right|\left(v_{m}-v_{m-1}\right) \\
& \leqq B v_{m-1}+B\left(v_{m}-v_{m-1}\right)=B v_{m}
\end{aligned}
$$

and Lemma 2 is proved.
Let us define a matrix Y such that if each of p and k is a nonnegative integer, then

$$
Y_{p k}=\sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} q^{k}
$$

where we interpret 0° as 1 . Without proof we state
Lemma 3. If each of p and k is a nonnegative integer, then $Y_{p+1, k+1}=(p+1)\left(Y_{p k}+Y_{p+1, k}\right) ; Y_{p p}=p!; Y_{p k} \geqq 0$ for $p>k$, and, if n is a positive integer $Y_{n, k+1} n^{-k-1} \geqq Y_{n k} n^{-k} ; \lim _{k \rightarrow \infty} Y_{n k} n^{-k}=1$; and, therefore, $Y_{n k} n^{-k} \leqq 1$.

If n is a positive integer, f is a function from $[0,1]$ to the complex plane and c is a complex sequence then

$$
L(f, c)_{n}=\sum_{p=0}^{n} c_{p}\binom{n}{p} \sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} f(q / n),
$$

and we let M^{f} be a matrix such that if p is a nonnegative integer, then

$$
M_{n p}^{f}=\binom{n}{p} \sum_{q=0}^{p}(-1)^{p+q}\binom{p}{q} f(q / n)
$$

Proof of Theorem 1. Suppose that A, f, B and c are as in the
theorem.
Let n be a positive integer.

$$
\begin{aligned}
M_{n n}^{f} & =f(1)+\sum_{q=0}^{n-1}(-1)^{n+q}\binom{n}{q} f(q / n) \\
& =f(1)+\sum_{q=0}^{n-1}(-1)^{n+q}\binom{n}{q} \sum_{k=0}^{\infty} A_{k} q^{k} n^{-k} \\
& =f(1)-\sum_{k=0}^{\infty} A_{k}\left(1-n^{-k} Y_{n k}\right) .
\end{aligned}
$$

If each of m and q is a nonnegative integer $\left|\sum_{p=q}^{m} A_{p}\right| \leqq 2 B$, so that by Lemma 2 and Lemma 3,

$$
\left|\sum_{k=0}^{m} A_{k} n^{-k} Y_{n k}\right| \leqq n^{-m} Y_{n m}(2 B) \leqq 2 B
$$

and

$$
\left|M_{n_{n}}^{f}\right| \leqq|f(1)|+B+2 B=|f(1)|+3 B
$$

Suppose, now, that m is a nonnegative integer less than n.

$$
\begin{aligned}
\sum_{p=0}^{m} M_{n p}^{f} & =\sum_{p=0}^{m}\binom{n}{p} \sum_{k=p}^{\infty} A_{k} n^{-k} Y_{p k} \\
& =\sum_{k=0}^{\infty} A_{k} \sum_{p=0}^{m}\binom{n}{p} n^{-k} Y_{p k k}
\end{aligned}
$$

For each nonnegative integer k let G_{k} be $\sum_{p=0}^{m}\binom{n}{p} n^{-k} Y_{p k}$ and note that

$$
\begin{aligned}
n^{k+1}\left[G_{k}-G_{k+1}\right]= & \sum_{p=0}^{m} n\binom{n}{p} Y_{p k}-\sum_{p=0}^{m}\binom{n}{p} Y_{p, k+1} \\
= & \sum_{p=0}^{m} n\binom{n}{p} Y_{p k}-\sum_{p=1}^{m}\binom{n}{p} p Y_{p k}-\sum_{p=1}^{m}\binom{n}{p} p Y_{p-1, k} \\
= & \sum_{p=0}^{m}\left[\begin{array}{l}
\left.(n-p)\binom{n}{p}-\binom{n}{p+1}(p+1)\right] Y_{p k} \\
\\
\\
\\
\quad+(n-m)\binom{n}{m} Y_{m k} \\
= \\
(n-m)\binom{n}{m} Y_{m k} \geqq 0
\end{array}\right.
\end{aligned}
$$

so that G is a nonincreasing sequence. $G_{0}=1$. The sequence $1-G$ is nondecreasing and nonnegative valued, so that, for each nonnegative integer r,

$$
\begin{gathered}
\left|\sum_{k=0}^{r} A_{k}\left(1-G_{k}\right)\right| \leqq 2 B \\
\left|\sum_{k=0}^{r} A_{k} G_{k}\right| \leqq 4 B
\end{gathered}
$$

and

$$
\left|\sum_{p=0}^{m} M_{n_{p}}^{f}\right| \leqq 4 B
$$

and M^{f} satisfies condition (1) of Lemma 1.
Let c have limit $d . M \cdot(c-d)$ converges, $L(f, c)=M \cdot(c-d)$ $+L(f, d)$, so that $L(f, c)$ converges with limit $\sum_{p=0}^{\infty} A_{p}\left(c_{p}-d\right)+d \cdot f(1)$.

Theorem 2. Suppose that f is a function from $[0,1]$ to the complex plane and f is continuous on $[0,1)$. Suppose that, for each absolutely convergent sequence $c, L(f, c)$ converges. Then there is a complex sequence A such that $\sum_{p=0}^{\infty} A_{p}$ is boundtd and, if x is in $[0,1), f(x)=\sum_{p=0}^{\infty} A_{p} x^{p}$.

Proof. Since each sequence dominated by a geometric sequence with ratio less than 1 is absolutely convergent, we know from [3, Th. 3] that there is a complex sequence A such that if x is in $[0,1)$ then $f(x)=\sum_{p=0}^{\infty} A_{p} x^{p}$, and A_{p} is the limit of the sequence $M^{f}[, p]$.

By Lemma 1 there is a positive number B such that if each of n and m is a positive integer then $\left|\sum_{p=0}^{m} M_{n p}^{f}\right| \leqq B$, and, consequently, $\left|\sum_{p=0}^{m} A_{p}\right| \leqq B$.

Theorem 3. Suppose that c is an infinite complex sequence such that, for each function f, analytic on the unit disc and defined at 1 , such that $\sum_{p=0}^{\infty} f^{(p)}(0) / p!$ is bounded, $L(f, c)$ converges. Then c is absolutely convergent.

Proof. Suppose that $\sum_{p=0}^{\infty}\left|c_{2 p+1}-c_{2 p}\right|$ is not bounded.
Let \mathscr{F}_{0} be the set of all functions f as described in the theorem such that $f(1)=0$. For each member f of \mathscr{F}_{0} let $N(f)$ be the least number L such that if n is a nonnegative integer then

$$
\left|\sum_{p=0}^{n} f^{p p}(0) / p!\right| \leqq L .
$$

$\left\{\mathscr{F}_{0}, N\right\}$ is a complete, normed linear space.
For each positive integer n let T_{n} be the continuous linear transformation from \mathscr{F}_{0} to the plane such that if f is in \mathscr{F}_{0} then $T_{n}(f)$ $=L(f, c)_{n}$. By the "principle of uniform boundedness" there is a number B such that if f is in \mathscr{F}_{0} and $N(f) \leqq 1$ then $\left|T_{n}(f)\right| \leqq B$ for each positive integer n.

Let m be a positive integer such that $\sum_{p=1}^{m}\left|c_{2 p+1}-c_{2 p}\right|>2 B$. Let A be a sequence such that $A_{0}=A_{1}=0$ and if p is a positive integer then $A_{2 p+1}=-A_{2 p}=0$ if $c_{2 p+1}=c_{2 p}$ or $p>m$ and

$$
A_{2 p+1}=-A_{2 p}=\left|c_{2 p+1}-c_{2 p}\right| /\left(c_{2 p+1}-c_{2 p}\right)
$$

otherwise.
Let f be the polynomial such that if z is a complex number then

$$
f(z)=\sum_{p=0}^{m}\left\{A_{2 p+1} z^{2 p+1}+A_{2 p} z^{2 p}\right\} .
$$

f is in \mathscr{F}_{0} and $N(f) \leqq 1$. By Theorem A there is a positive integer n such that

$$
\left|L(f, c)_{n}-\sum_{p=0}^{2 m+1} A_{p} c_{p}\right|<\sum_{p=1}^{m}\left|c_{p 2+1}-c_{2 p}\right|-2 B
$$

so that

$$
\left|L(f, c)_{n}\right|>\left|\sum_{p=0}^{2 m+1} A_{p} c_{p}\right|-\sum_{p=1}^{m}\left|c_{2 p+1}-c_{2 p}\right|+2 B=2 B>B,
$$

which is a contradiction. So $\sum_{p=0}^{\infty}\left|c_{2 p+1}-c_{2 p}\right|$ is bounded.
Similarly $\sum_{p=1}^{\infty}\left|c_{2 p}-c_{2 p-1}\right|$ is bounded. Hence $\sum_{p=0}^{\infty}\left|c_{p}-c_{p+1}\right|$ converges and c is absolutely convergent.

Bibliography

1. A. Jakimovski, Some Remarks on the moment-problem of Hausdorff, J. London Math. Soc. 33 (1958), 1-13.
2. J. S. MacNerney, Hermitian moment sequences, Trans. Amer. Math. Soc. 103 (1962), 45-81.
3. P. C. Tonne, Power-series and Hausdorff matrices, Pacific J. Math. 21 (1967), 189-198.

Received January 9, 1968.
Emory University

