
PACIFIC JOURNAL OF MATHEMATICS
Vol. 26, No. 2, 1968

BOUNDED SERIES AND HAUSDORFF MATRICES FOR
ABSOLUTELY CONVERGENT SEQUENCES

PHILIP C. TONNE

If / is a function from [0,1] to the complex plane and c
is a complex sequence, then the Hausdorff matrix H(c) for
c and a sequence L(f,c) are defined:

'P+Q

This paper consists of the following theorem and two converses
to it.

THEOREM 1. If A is a complex sequence and Σ7=oAP is
bounded (there is a number B such that if n is a nonnegative
integer then \Σ%oAp\ < B), / i s a function from [0,1] to the
complex plane such that if 0 S x < 1 then f(x) = Σ7=o Apx

p,
and c is an absolutely convergent sequence (Σ7=o I €P+I ~~ CP I
converges), then L{f,c) converges. Furthermore, if c has
limit d, L(f, c) has limit E?=o Ap(cp - d) + f(ϊ) d.

Let ^ be the collection of all functions / satisfying the hypo-
thesis of Theorem 1. S? be the set of all absolutely convergent
sequences. Theorem 1 and its converses show that ^ and £f are
related in the same way that certain sets of continuous functions are
related to certain sets of sequences in [3]. There, for example, the
set of functions analytic on the unit disc with power-series absolutely
convergent at 1 is shown to be related to the set of bounded sequences.

In Theorem 3 we use the following result due to J. S. MacNerney
[2, p. 56] and A. Jakimovski [1], which, incidentally, was used in [3]
the relate the set of polynomials to the set of all sequences.

THEOREM A. If f is a polynomial and c is a complex sequence
then L(f, c) converges. Furthermore, if f(z) = ΣJ%OAPZ

P for each
complex number z, then L(f,c) has limit ^p=0Apcp.

The following lemma is useful in the proofs of Theorems 1 and 2.

LEMMA 1. If M is an infinite, complex, lower-triangular matrix,
these are equivalent:

(1) There is a positive number B such that if each of q, n, and
m is a nonnegative integer then \ X£L? Mnp | < B and there is a
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sequence A such that, for each nonnegative integer p, the sequence
M[ , p] has limit Ap.

(2) If x is an absolutely convergent sequence with limit 0, then
M x converges ([ikf #]% = ^l=oMnpxp).
Furthermore, if (1) holds and x is an absolutely convergent sequence
with limit 0 then M-x has limit ^p=QApxp.

Proof. First, suppose that (1) holds and that x is an absolutely
convergent sequence. If each of q and m is a nonnegative integer,
then I Σι7=*Ap | ^ B and

Σp = q
%p+l)

P

ΣΛ
j=q

Ij + Xrί

m

n + 1 2^k

from which we see that Σ?=o^A converges.
If each of m and n is a positive integer, then (M x)H —

from this, we see that M x has limit Σ7=oApxp.
Second, suppose that (2) holds. Sequences having the value 1 at

one nonnegative integer and 0 at the others show us that there is a
sequence A such that, for each nonnegative integer p, the sequence
M[ , p] has limit Ap.

Let S be the set of all absolutely convergent sequences with limit
0 and let N be a function from S to the numbers such that if x is
in S then N(x) = Σ~=o I %P — %p+i |. {S, N} is a complete, normed, linear
space.

For each nonnegative integer n, let Tn be a function from S to
the complex numbers such that if x is in S then Tn(x) = (Λf a?)Λ, and
note that 7\ is a continuous linear transformation.

For each x in S the sequence T(x) converges, so that by the
"principle of uniform boundedness " there is a number B such that
if n is a nonnegative integer and x is in S and N(x) ^ 1 then
1 Tn(x) I ̂  J5.

If each of q and m is a nonnegative integer, let z(q, m) be the
sequence such that if p is a nonnegative integer, then z(q, m) = 1/2 if
q ^ p ^ m and ^(g, m)p = 0 otherwise, and notice that z(q, m) is in S
and N(z(q, m)) <J 1.

If each of m and g is a nonnegative integer,

1M
2 m

= | Γ . W f f , 9 ) )

5 a nonnegative integer,

1
n

1
n,m+l 2
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and Lemma 1 is proved.

LEMMA 2. Suppose that B > 0 and v is a nondecreasing non-
negative-number-sequence and b is a complex sequence such that if
each of n and q is a nonnegative integer then | Σp = g bp \ ̂  B. Then,
if m is a nonnegative integer, | ΣϊU&Λ I ̂  vmB.

Proof. The lemma is true if m is 0. Suppose that m is a
positive integer such that, for each sequence b as described above,

Let a be a complex sequence such that if each of n and q is a
nonnegative integer, then | Σ j = Λ | <̂  B. Let 6 be the sequence such
that if p is a nonnegative integer, then bp = ap if p < m — 1,
δ*-i = α*-i + α«, and 6P = 0 if p ^ m. Then

ΣM, +

and Lemma 2 is proved.

Let us define a matrix Y such that if each of p and
nonnegative integer, then

is a

where we interpret 0° as 1. Without proof we state

LEMMA 3. If each of p and k is a nonnegative integer, then
= (P + + Yp+Uk) - pipi; ^0 for p>k, and,

if n is a positive integer Y7lfk+1n~'k~1 ^ Ynkn~k; lim .̂̂ ^ Ynkn~k — 1;
and, therefore, Ynkn~k ^ 1.

If n is a positive integer, / is a function from [0,1] to the
complex plane and c is a complex sequence then

L(f, c)n -

and we let Mf be a matrix such that if p is a nonnegative integer,
then

Proof of Theorem 1. Suppose that A,f,B and c are as in the
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theorem.
Let n be a positive

ML =

integer.

= /(i) +

- /(I) +

n—1

<? = 0

TO — 1

V f
2-ι v~

If each of m and g is a nonnegative integer | Σ ? = Ϊ -^ I = 21?, so
that by Lemma 2 and Lemma 3,

and

I ML I ̂  I /(I) \ + B + 2B = |/(1) I + 35 .

Suppose, now, that m is a nonnegative integer less than n.

Σ
p=-0

V

p=0 \P/ k = ρ

°° m

— V Δ V
— 2 Άk 2

p k

p-=0 \V

For each nonnegative integer k let Gk be Y^=An)n~kYpk and

note that

n
P

n

P *• p

so that G is a nonincreasing sequence. Go = 1. The sequence 1 — G
is nondecreasing and nonnegative valued, so that, for each nonnegative
integer r,

r

Σ Άfc(l — (τfc) 5j 21? ,

AkGk I ̂  4B ,
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and

and Mf satisfies condition (1) of Lemma 1.
Let c have limit d. M (c — d) converges, L(f, c) = M (c — d)

+ L(f, d), so that L(f, c) converges with limit ^p=,QAp(cp — d) + d-f(l).

THEOREM 2. Suppose that f is a function from [0,1] to the
complex plane and f is continuous on [0,1). Suppose that, for each
absolutely convergent sequence c, L(f, c) converges. Then there is a
complex sequence A such that Σ?=o Ap is bounded and, if x is in
[0,1),

Proof. Since each sequence dominated by a geometric sequence
with ratio less than 1 is absolutely convergent, we know from [3,
Th. 3] that there is a complex sequence A such that if x is in [0,1)
then f(x) = Σ7=oApx

p, and Ap is the limit of the sequence Mf[ , p].
By Lemma 1 there is a positive number B such that if each of n

and m is a positive integer then | Σ™=0 Mζp \ ̂  B, and, consequently,

THEOREM 3. Suppose that c is an infinite complex sequence such
that, for each function f, analytic on the unit disc and defined at
1, such that Σ?=o/(ί?)(O)/p/ is bounded, L(f,c) converges. Then c is
absolutely convergent.

Proof. Suppose that Σ^U I £2p+1 — c2p | is not bounded.
Let ^l be the set of all functions / as described in the theorem

such that /(I) = 0. For each member / of ^l let N(f) be the least
number L such that if n is a nonnegative integer then

< L
p=0

o, N} is a complete, normed linear space.
For each positive integer n let Tn be the continuous linear trans-

formation from j^l to the plane such that if / is in j^l then Tn(f)
= L(f,c)n. By the "principle of uniform boundedness '' there is a
number B such that if / is in ^ and N(f) ̂  1 then | Tn(f) \ ̂  B
for each positive integer n.

Let m be a positive integer such that ΣϊU I c2̂ +i — c2p \ > 2B.
Let A be a sequence such that AQ = Aλ = 0 and if p is a positive
integer then A2p+1 = — A2p = 0 if c2p+1 = c2p or p > m and
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otherwise.

Let / be the polynomial such that if z is a complex number then

f(z) = Σ {ΛP+
0

/ is in &l and N(f) <£ 1. By Theorem A there is a positive integer
n such that

— V A o < Σ I c p ϊ + 1 -

so that

\L(ffc)n\> Σ - Σ - c2
= 2B > B ,

which is a contradiction. So Σ?=o I c2p+1 — c2p \ is bounded.
Similarly ΣΓ»i IC2P — ^23)_11 is bounded. Hence Σ?=o I cp - c

converges and c is absolutely convergent.
p+ί \
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