BOUNDED SERIES AND HAUSDORFF MATRICES FOR ABSOLUTELY CONVERGENT SEQUENCES

PHILIP C. TONNE

If f is a function from [0,1] to the complex plane and c is a complex sequence, then the Hausdorff matrix H(c) for c and a sequence L(f,c) are defined:

$$egin{aligned} H(c)_{np} &= inom{n}{p} \sum_{q=0}^{n-p} (-1)^q inom{n-p}{q} c_{p+q} \ L(f,c)_n &= \sum_{p=0}^n H(c)_{np} f(p/n) \ . \end{aligned}$$

This paper consists of the following theorem and two converses to it.

THEOREM 1. If A is a complex sequence and $\sum_{p=0}^{\infty} A_p$ is bounded (there is a number B such that if n is a nonnegative integer then $|\sum_{p=0}^{n} A_p| < B$), f is a function from [0, 1] to the complex plane such that if $0 \le x < 1$ then $f(x) = \sum_{p=0}^{\infty} A_p x^p$, and c is an absolutely convergent sequence $(\sum_{p=0}^{\infty} |c_{p+1} - c_p|$ converges), then L(f,c) converges. Furthermore, if c has limit d, L(f,c) has limit $\sum_{p=0}^{\infty} A_p(c_p - d) + f(1) \cdot d$.

Let \mathscr{F} be the collection of all functions f satisfying the hypothesis of Theorem 1. \mathscr{S} be the set of all absolutely convergent sequences. Theorem 1 and its converses show that \mathscr{F} and \mathscr{S} are related in the same way that certain sets of continuous functions are related to certain sets of sequences in [3]. There, for example, the set of functions analytic on the unit disc with power-series absolutely convergent at 1 is shown to be related to the set of bounded sequences.

In Theorem 3 we use the following result due to J. S. MacNerney [2, p. 56] and A. Jakimovski [1], which, incidentally, was used in [3] the relate the set of polynomials to the set of all sequences.

THEOREM A. If f is a polynomial and c is a complex sequence then L(f,c) converges. Furthermore, if $f(z) = \sum_{p=0}^{n} A_p z^p$ for each complex number z, then L(f,c) has limit $\sum_{p=0}^{n} A_p c_p$.

The following lemma is useful in the proofs of Theorems 1 and 2.

LEMMA 1. If M is an infinite, complex, lower-triangular matrix, these are equivalent:

(1) There is a positive number B such that if each of q, n, and m is a nonnegative integer then $|\sum_{p=q}^{m} M_{np}| < B$ and there is a

sequence A such that, for each nonnegative integer p, the sequence M[, p] has limit A_p .

(2) If x is an absolutely convergent sequence with limit 0, then $M \cdot x$ converges $([M \cdot x]_n = \sum_{p=0}^n M_{np} x_p)$.

Furthermore, if (1) holds and x is an absolutely convergent sequence with limit 0 then $M \cdot x$ has limit $\sum_{p=0}^{\infty} A_p x_p$.

Proof. First, suppose that (1) holds and that x is an absolutely convergent sequence. If each of q and m is a nonnegative integer, then $|\sum_{p=q}^{m} A_p| \leq B$ and

$$\sum\limits_{p=q}^m A_p x_p = \sum\limits_{p=q}^m \left(x_p - x_{p+1}
ight) \sum\limits_{j=q}^p A_j + x_{m+1} \sum\limits_{j=q}^m A_j$$
 ,

from which we see that $\sum_{p=0}^{\infty} A_p x_p$ converges.

If each of *m* and *n* is a positive integer, then $(M \cdot x)_n - \sum_{p=0}^{m-1} A_p x_p$ = $\sum_{p=0}^{m-1} (M_{np} - A_p) x_p + \sum_{p=m}^n (x_p - x_{p+1}) \sum_{j=m}^p M_{nj} + x_{n+1} \sum_{j=m}^n M_{nj}$ and, from this, we see that $M \cdot x$ has limit $\sum_{p=0}^{\infty} A_p x_p$.

Second, suppose that (2) holds. Sequences having the value 1 at one nonnegative integer and 0 at the others show us that there is a sequence A such that, for each nonnegative integer p, the sequence M[, p] has limit A_p .

Let S be the set of all absolutely convergent sequences with limit 0 and let N be a function from S to the numbers such that if x is in S then $N(x) = \sum_{p=0}^{\infty} |x_p - x_{p+1}|$. $\{S, N\}$ is a complete, normed, linear space.

For each nonnegative integer n, let T_n be a function from S to the complex numbers such that if x is in S then $T_n(x) = (M \cdot x)_n$, and note that T_n is a continuous linear transformation.

For each x in S the sequence T(x) converges, so that by the "principle of uniform boundedness" there is a number B such that if n is a nonnegative integer and x is in S and $N(x) \leq 1$ then $|T_n(x)| \leq B$.

If each of q and m is a nonnegative integer, let z(q, m) be the sequence such that if p is a nonnegative integer, then z(q, m) = 1/2 if $q \leq p \leq m$ and $z(q, m)_p = 0$ otherwise, and notice that z(q, m) is in S and $N(z(q, m)) \leq 1$.

If each of m and q is a nonnegative integer,

$$\left|rac{1}{2}M_{{}_{mq}}
ight|=\mid T_{{}_{m}}(z(q,q))\mid \leq B$$
 ,

and if n is a nonnegative integer,

$$\left| rac{1}{2} \sum_{j=q}^m M_{nj}
ight| = \left| \ T_n(z(q, m+1)) - M_{n, m+1} \cdot rac{1}{2}
ight| \leq 2B$$
 ,

416

and Lemma 1 is proved.

LEMMA 2. Suppose that B > 0 and v is a nondecreasing nonnegative-number-sequence and b is a complex sequence such that if each of n and q is a nonnegative integer then $|\sum_{p=q}^{n} b_p| \leq B$. Then, if m is a nonnegative integer, $|\sum_{p=0}^{m} b_p v_p| \leq v_m B$.

Proof. The lemma is true if m is 0. Suppose that m is a positive integer such that, for each sequence b as described above, $|\sum_{p=0}^{m-1}b_p v_p| \leq v_{m-1}B$.

Let a be a complex sequence such that if each of n and q is a nonnegative integer, then $|\sum_{p=q}^{n} a_p| \leq B$. Let b be the sequence such that if p is a nonnegative integer, then $b_p = a_p$ if p < m - 1, $b_{m-1} = a_{m-1} + a_m$, and $b_p = 0$ if $p \geq m$. Then

$$\begin{split} \left|\sum_{p=0}^{m} a_{p} v_{p}\right| &= \left|\sum_{p=0}^{m-1} a_{p} v_{p} + a_{m} v_{m-1} + a_{m} (v_{m} - v_{m-1})\right| \\ &\leq \left|\sum_{p=0}^{m-1} b_{p} v_{p}\right| + |a_{n}| (v_{m} - v_{m-1}) \\ &\leq B v_{m-1} + B(v_{m} - v_{m-1}) = B v_{m} , \end{split}$$

and Lemma 2 is proved.

Let us define a matrix Y such that if each of p and k is a nonnegative integer, then

$${Y}_{pk} = \sum\limits_{q=0}^{p} {(-1)^{p+q}} {p \choose q} q^k$$
 ,

where we interpret 0° as 1. Without proof we state

LEMMA 3. If each of p and k is a nonnegative integer, then $Y_{p+1,k+1} = (p+1)(Y_{pk} + Y_{p+1,k})$; $Y_{pp} = p!$; $Y_{pk} \ge 0$ for p > k, and, if n is a positive integer $Y_{n,k+1}n^{-k-1} \ge Y_{nk}n^{-k}$; $\lim_{k\to\infty} Y_{nk}n^{-k} = 1$; and, therefore, $Y_{n,k}n^{-k} \le 1$.

If n is a positive integer, f is a function from [0, 1] to the complex plane and c is a complex sequence then

$$L(f, c)_n = \sum_{p=0}^n c_p {n \choose p} \sum_{q=0}^p (-1)^{p+q} {p \choose q} f(q/n)$$
,

and we let M^{f} be a matrix such that if p is a nonnegative integer, then

$$M^{\,{\scriptscriptstyle f}}_{\scriptscriptstyle n\,p} = {n \choose p}\sum_{\scriptstyle q=0}^{\scriptstyle p} (-1)^{\scriptstyle p+q} {p \choose q} f(q/n) \; .$$

Proof of Theorem 1. Suppose that A, f, B and c are as in the

theorem.

Let n be a positive integer.

$$egin{aligned} M^{\,_f}_{n\,n} &= f(1) \,+\, \sum\limits_{q\,=\,0}^{n-1}\,(-1)^{n+q} {n \choose q} f(q/n) \ &= f(1) \,+\, \sum\limits_{q\,=\,0}^{n-1}\,(-1)^{n+q} {n \choose q} \sum\limits_{k\,=\,0}^{\infty} A_k q^k n^{-k} \ &= f(1) \,-\, \sum\limits_{k\,=\,0}^{\infty} A_k (1 \,-\, n^{-k} \,Y_{nk}) \,\,. \end{aligned}$$

If each of m and q is a nonnegative integer $|\sum_{p=q}^{m} A_p| \leq 2B$, so that by Lemma 2 and Lemma 3,

$$\left|\sum_{k=0}^m A_k n^{-k} Y_{nk}
ight| \leq n^{-m} Y_{nm}(2B) \leq 2B$$
 ,

and

$$|M_{nn}^{f}| \leq |f(1)| + B + 2B = |f(1)| + 3B$$

Suppose, now, that m is a nonnegative integer less than n.

$$egin{aligned} &\sum_{p=0}^m M_{np}^f \,=\, \sum_{p=0}^m \binom{n}{p} \sum_{k=p}^\infty \,A_k n^{-k} {Y}_{pk} \ &=\, \sum_{k=0}^\infty \,A_k \sum_{p=0}^m \binom{n}{p} n^{-k} {Y}_{pk} \,\,. \end{aligned}$$

For each nonnegative integer k let G_k be $\sum_{p=0}^m \binom{n}{p} n^{-k} Y_{pk}$ and note that

$$egin{aligned} n^{k+1}[G_k - G_{k+1}] &= \sum\limits_{p=0}^m n \binom{n}{p} Y_{pk} - \sum\limits_{p=0}^m \binom{n}{p} Y_{p,k+1} \ &= \sum\limits_{p=0}^m n \binom{n}{p} Y_{pk} - \sum\limits_{p=1}^m \binom{n}{p} p \, Y_{pk} - \sum\limits_{p=1}^m \binom{n}{p} p \, Y_{p-1,k} \ &= \sum\limits_{p=0}^m iggl[(n-p) \binom{n}{p} - \binom{n}{p+1} (p+1) iggr] Y_{pk} \ &+ (n-m) \binom{n}{m} Y_{mk} \ &= (n-m) \binom{n}{m} Y_{mk} \geqq 0 \;, \end{aligned}$$

so that G is a nonincreasing sequence. $G_0 = 1$. The sequence 1 - G is nondecreasing and nonnegative valued, so that, for each nonnegative integer r,

$$igg| \sum\limits_{k=0}^r A_k (1-G_k) igg| \leq 2B \; , \ igg| \sum\limits_{k=0}^r A_k G_k \mid \leq 4B \; ,$$

418

and

$$\left|\sum\limits_{p=0}^{m}M_{np}^{f}
ight|\leq4B$$
 ,

and M^{f} satisfies condition (1) of Lemma 1.

Let c have limit d. $M \cdot (c-d)$ converges, $L(f,c) = M \cdot (c-d) + L(f,d)$, so that L(f,c) converges with limit $\sum_{p=0}^{\infty} A_p(c_p-d) + d \cdot f(1)$.

THEOREM 2. Suppose that f is a function from [0, 1] to the complex plane and f is continuous on [0, 1). Suppose that, for each absolutely convergent sequence c, L(f, c) converges. Then there is a complex sequence A such that $\sum_{p=0}^{\infty} A_p$ is bounded and, if x is in $[0, 1), f(x) = \sum_{p=0}^{\infty} A_p x^p$.

Proof. Since each sequence dominated by a geometric sequence with ratio less than 1 is absolutely convergent, we know from [3, Th. 3] that there is a complex sequence A such that if x is in [0, 1) then $f(x) = \sum_{p=0}^{\infty} A_p x^p$, and A_p is the limit of the sequence $M^{f}[\ , p]$.

By Lemma 1 there is a positive number B such that if each of n and m is a positive integer then $|\sum_{p=0}^{m} M_{np}^{f}| \leq B$, and, consequently, $|\sum_{p=0}^{m} A_{p}| \leq B$.

THEOREM 3. Suppose that c is an infinite complex sequence such that, for each function f, analytic on the unit disc and defined at 1, such that $\sum_{p=0}^{\infty} f^{(p)}(0)/p!$ is bounded, L(f, c) converges. Then c is absolutely convergent.

Proof. Suppose that $\sum_{p=0}^{\infty} |c_{2p+1} - c_{2p}|$ is not bounded.

Let \mathscr{F}_0 be the set of all functions f as described in the theorem such that f(1) = 0. For each member f of \mathscr{F}_0 let N(f) be the least number L such that if n is a nonnegative integer then

$$\left|\sum_{p=0}^n f^{(p)}(0)/p!\right| \leq L$$
 .

 $\{\mathcal{F}_0, N\}$ is a complete, normed linear space.

For each positive integer n let T_n be the continuous linear transformation from \mathscr{F}_0 to the plane such that if f is in \mathscr{F}_0 then $T_n(f) = L(f, c)_n$. By the "principle of uniform boundedness" there is a number B such that if f is in \mathscr{F}_0 and $N(f) \leq 1$ then $|T_n(f)| \leq B$ for each positive integer n.

Let *m* be a positive integer such that $\sum_{p=1}^{m} |c_{2p+1} - c_{2p}| > 2B$. Let *A* be a sequence such that $A_0 = A_1 = 0$ and if *p* is a positive integer then $A_{2p+1} = -A_{2p} = 0$ if $c_{2p+1} = c_{2p}$ or p > m and

$$A_{2p+1} = -A_{2p} = |c_{2p+1} - c_{2p}|/(c_{2p+1} - c_{2p})$$

otherwise.

Let f be the polynomial such that if z is a complex number then

$$f(z) = \sum_{p=0}^{m} \{A_{2p+1}z^{2p+1} + A_{2p}z^{2p}\}$$
 .

f is in \mathscr{F}_0 and $N(f) \leq 1$. By Theorem A there is a positive integer n such that

$$\left| L(f,c)_n - \sum_{p=0}^{2m+1} A_p c_p \right| < \sum_{p=1}^m |c_{p2+1} - c_{2p}| - 2B$$

so that

$$|L(f, c)_n| > \left|\sum_{p=0}^{2m+1} A_p c_p\right| - \sum_{p=1}^m \left|c_{2p+1} - c_{2p}\right| + 2B = 2B > B$$
 ,

which is a contradiction. So $\sum_{p=0}^{\infty} |c_{2p+1} - c_{2p}|$ is bounded.

Similarly $\sum_{p=1}^{\infty} |c_{2p} - c_{2p-1}|$ is bounded. Hence $\sum_{p=0}^{\infty} |c_p - c_{p+1}|$ converges and c is absolutely convergent.

BIBLIOGRAPHY

1. A. Jakimovski, Some Remarks on the moment-problem of Hausdorff, J. London Math. Soc. 33 (1958), 1-13.

2. J. S. MacNerney, Hermitian moment sequences, Trans. Amer. Math. Soc. 103 (1962), 45-81.

3. P. C. Tonne, Power-series and Hausdorff matrices, Pacific J. Math. 21 (1967), 189-198.

Received January 9, 1968.

EMORY UNIVERSITY