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BOUNDED SERIES AND HAUSDORFF MATRICES FOR
ABSOLUTELY CONVERGENT SEQUENCES

PuiLip C. TONNE

If f is a function from [0,1] to the complex plane and ¢
is a complex sequence, then the Hausdorff matrix H(c) for
¢ and a sequence L(f,c) are defined :

H(o)y = (;‘)g(—m( "y Yoosa
Lf, 0 = z H©)up () .

This paper consists of the following theorem and two converses
to it.

TaeoreM 1. If A is a complex sequence and X, A4, is
bounded (there is a number B such that if n is a nonnegative
integer then |>,_,A,| < B), fis a function from [0, 1] to the
complex plane such that if 0 <z <1 then flx) =35, 4,2,
and ¢ is an absolutely convergent sequence (35 | ¢p+1—Cpl
converges), then L(f,c) converges. Furthermore, if ¢ has
limit d, L(f, ¢) has limit 35_, A,(c, — d) + f1)-d.

Let & be the collection of all functions f satisfying the hypo-
thesis of Theorem 1. & be the set of all absolutely convergent
sequences. Theorem 1 and its converses show that & and S are
related in the same way that certain sets of continuous functions are
related to certain sets of sequences in [3]. There, for example, the
set of functions analytic on the unit disc with power-series absolutely
convergent at 1 is shown to be related to the set of bounded sequences.

In Theorem 3 we use the following result due to J. S. MacNerney
[2, p. 56] and A. Jakimovski [1], which, incidentally, was used in [3]
the relate the set of polynomials to the set of all sequences.

THEOREM A. If f is a polynomial and ¢ is a complex sequence
then L(f,c) converges. Furthermore, if f(2) = >n.,A,z" for each
complex number z, then L(f,c) has limit 3%, A,c,.

The following lemma is useful in the proofs of Theorems 1 and 2.

LEmMmA 1. If M is an infinite, complex, lower-triangular matriz,
these are equivalent:

(1) There is a positive number B such that if each of q, n, and
m is a mnonnmegative integer then |>.r ., M,,| < B and there is a
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sequence A such that, for each mownegative integer p, the sequence
M[ ,p] has limit A,.

() If x is an absolutely comvergent sequence with limit 0, then
M-x converges ([M-x], = Sip_oM,,,).
Furthermore, if (1) holds and x is an absolutely convergent sequence
with limit 0 then M-x has limit >3 A, %,.

Proof. First, suppose that (1) holds and that x is an absolutely
convergent sequence. If each of ¢ and m is a nonnegative integer,
then |37 ,A,| < B and

Ms

m P m
Apxp = Z (xp - xpﬂ)];; AJ‘ + xmﬂjg;l Ai ’

=q

3
I

q

-]

from which we see that >> 4,2, converges.

If each of m and n is a positive integer, then (M-x), — S\rt A2,
= Z:L:DI(MM? - Ap)wp + Z;=m(xp - xp+l) Z§=mMnJ' + Lnt1 Z]n=mMni andy
from this, we see that M-z has limit >}; ,4,2,.

Second, suppose that (2) holds. Sequences having the value 1 at
one nonnegative integer and 0 at the others show us that there is a
sequence A such that, for each nonnegative integer p, the sequence
M[ , p] has limit A,.

Let S be the set of all absolutely convergent sequences with limit
0 and let N be a function from S to the numbers such that if  is
in S then N(z) = >3, |®, — #,4+,|. {S, N} is a complete, normed, linear
space.

For each nonnegative integer =, let T, be a function from S to
the complex numbers such that if « is in S then T,(x) = (M-x),, and
note that T, is a continuous linear transformation.

For each « in S the sequence T(x) converges, so that by the
‘¢ principle of uniform boundedness’’ there is a number B such that
if n is a nonnegative integer and z is in S and N(x) <1 then
| T.(%)| = B.

If each of ¢ and m is a nonnegative integer, let z(q, m) be the
sequence such that if p is a nonnegative integer, then z(q, m) = 1/2 if
g =< p=<m and 2(¢q, m), = 0 otherwise, and notice that z(¢g, m) isin S
and N(z(q, m)) < 1.

If each of m and ¢ is a nonnegative integer,

l%MM = | T.(2(q,9)| < B,

and if n is a nonnegative integer,

1

| 255 M| = | To(a(a,m + 1) = Moo 3| < 2B,
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and Lemma 1 is proved.

LEMMA 2. Suppose that B > 0 and v is a nondecreasing non-
negative-number-sequence and b is a complex sequence such that if
each of n and q is a nonnegative integer then | >,»_,b,| < B. Then,
if m is a nonnegative integer, | > b,v,| < v,B.

Proof. The lemma is true if m is 0. Suppose that m is a
positive integer such that, for each sequence b as described above,
| 2p=b,v, | < v, B,

Let a be a complex sequence such that if each of » and ¢ is a
nonnegative integer, then |>7_a,| < B. Let b be the sequence such
that if p is a nonnegative integer, then b,=4¢a, if p<m —1,
bpy=0,_, +a,, and b, =0 if p = m. Then

m

2 a]’vp

»=0

m—1

Zoaz"”p + A Vp_1 + am(vm - vm—l)
p=

+ | Q, | (,Um - ,vm—l)

m—1
=[Sbw,
=0
g va—-l + B(vm - vm—l) = va ’
and Lemma 2 is proved.

Let us define a matrix Y such that if each of p and %k is a
nonnegative integer, then

Yo = 3 (~10()er,

q=0
where we interpret 0° as 1. Without proof we state
LEMMA 3. If each of p and k 1is a monnegative integer, then
Y]J+1,k+1 = (p + 1)(ka + Yﬂ-(—l,k); Ypp = p!; ka g 0 fOT p > k ) and)

if m is a positive integer Y, .. n*'=Y,n*%lim, .Y, nt=1;
and, therefore, Y, n"* < 1,

If » is a positive integer, f is a function from [0,1] to the
complex plane and ¢ is a complex sequence then

L, 90 = 3 () 2 (~ 0 (B) ftgm)

and we let M” be a matrix such that if p is a nonnegative integer,
then

M, = () 3 (— v (B)fiafm -

Proof of Theorem 1. Suppose that A, f, B and ¢ are as in the
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theorem.
Let n be a positive integer.

M, = 1) + 3 (=1( 1) flafm)
= 7@ + 5 (-1(7) 5 At
= f1) = 3 Al - n7Y)

If each of m and ¢ is a nonnegative integer | 3", A,| < 2B, so
that by Lemma 2 and Lemma 3,

S AntY,,| < n Y, (2B) < 2B,
k=0

and
[ M| <] f)|+B+2B=|f1)]+3B.

Suppose, now, that m is a nonnegative integer less than n.

m

37, = 3 (1) S 4wy,
=0 p=0 p k=p

»=0

For each nonnegative integer k£ let G, be >, (Z)n—" o and

note that
G, — Gl = i n(g) Yo — p”% <Z> Yok
= 2V = 5 ()Y = 5 (G 7o

so that G is a nonincreasing sequence. G, = 1. The sequence 1 — G
is nondecreasing and nonnegative valued, so that, for each nonnegative
integer 7,

340 - G| = 2B,

kiAka|g4B,
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and

m
>, M,
p=0

< 4B,

and M’ satisfies condition (1) of Lemma 1.
Let ¢ have limit d. M-(¢c — d) converges, L(f,¢) = M-(c — d)
+ L(f, d), so that L(f, ¢) converges with limit >3, 4,(c, — d) + d-f(1).

THEOREM 2. Suppose that f is a function from [0,1] to the
complex plane and f is continuous on [0,1). Suppose that, for each
absolutely convergent sequence c, L(f, c) converges. Then there is a
complex sequence A such that >y, A, is bounded and, if x is in
[0, 1), f(z) = Xi5m0 A7,

Proof. Since each sequence dominated by a geometric sequence
with ratio less than 1 is absolutely convergent, we know from |3,
Th. 3] that there is a complex sequence A such that if x is in [0, 1)
then f(z) = 35, 4,27, and A, is the limit of the sequence M/[ , p].

By Lemma 1 there is a positive number B such that if each of n
and m is a positive integer then | 3™, M;,| < B, and, consequently,
12504, = B.

THEOREM 3. Suppose that ¢ 1is an infinite complex sequence such
that, for each function f, analytic on the unit disc and defined at
1, such that >\7,f™(0)/p! is bounded, L(f,c) converges. Then ¢ s
absolutely convergent.

Proof. Suppose that >3 ;| cypri — €| is not bounded.

Let .#, be the set of all functions f as described in the theorem
such that f(1) = 0. For each member f of &, let N(f) be the least
number L such that if n is a nonnegative integer then

|3 77 0)/p!| < L

{F,, N} is a complete, normed linear space.

For each positive integer n let T, be the continuous linear trans-
formation from &, to the plane such that if f is in &, then T,(f)
= L(f, ¢),. By the ‘‘principle of uniform boundedness’’ there is a
number B such that if f is in &, and N(f) <1 then |T.(f)| < B
for each positive integer n.

Let m be a positive integer such that >™,| ¢y, — ¢, | > 2B.
Let A be a sequence such that 4, = A4, =0 and if p is a positive
integer then A4,,., = —A,, = 0 if ¢,,,, = ¢,, or p > m and
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Agppirr = —Asp = | Coprr — Cop |[(Copir — C2p)
otherwise.

Let f be the polynomial such that if z is a complex number then
F&) = 35 {Auy@* o+ Any??) .

fisin &, and N(f) < 1. By Theorem A there is a positive integer
n such that

2m+1

L0, — 5 4,

m

Z I Cpo+1 — sz)l - 2B

p=1

so that

Copt1 — €| +2B=2B > B,

2m+1
|L(F, | > | 3 Ase,

-

which is a contradiction. So X2, | ¢yr1 — €2, | is bounded.
Similarly 3., | ¢, — ¢y | is bounded. Hence >7,|c, — ¢ppy
converges and ¢ is absolutely convergent.
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