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A GENERALIZED FATOU THEOREM
FOR BANACH ALGEBRAS

DONALD CURTIS TAYLOR

Let B denote a commutative, semisimple Banach algebra
with unit and let I be a fixed closed ideal in B. In the maximal
ideal space MB of B9 fix a compact set X and put E = X n h(I),
where h(I) is the hull of /. The main result of this note is
the following

THEOREM 1.1. Let I have an approximate unit that is
uniformly bounded by the constant C and let g be a nonnega-
tive continuous function on X of sup-norm <1 that vanishes
on E. If h is an element of I and δ > 0, then there exists an
element / i n I such that

( 1 ) I I / I I ^ C
( 2 ) ΈleAx)^g(x)+\ϊmf(x)\ (xeX)
(3) | | /A-ft | |<a.

Here / denotes the Gelfand transform of an element / in B, \\ \\
denotes the norm in B, and || H*, denotes the sup-norm in the space
of complex, continuous functions on X.

1* A theorem of Fatou* Let A denote the sup-norm algebra
of continuous functions on the closed unit disc which are analytic on
the open disc, and let J = J(E) be the ideal of functions in A which
vanish on E, a closed set of Lebesgue measure 0 on the unit circle.
In J there exists a sequence of functions, each of sup-norm rgl, which
converges uniformly to the constant function 1 on compact subsets of
the complement of E; that is, J has an approximate unit. This fact
may be deduced from a classical theorem of Fatou which guarantees
the existence of a function in A which vanishes precisely on E and
has positive real part elsewhere. The results in this paper stem from
the observation that a reverse implication holds. By using only the
existence of an approximate unit in / and the fact that E is a hull
(This latter fact follows from the P. and M. Riesz theorem, for ex-
ample.), we obtain the following generalized Fatou theorem for A: if
g is a nonnegative continuous function on the closed unit disc of sup-
norm < 1 that vanishes on E, then there exists an / in J such that
| | / I U ^ 1 and R e / ^ </+ | I m / | .

Because of the central role played by approximate units, an anal-
ogous result can be established with surprising ease in the setting of
a general Banach algebra. Specifically, let B denote a commutative,
semisimple Banach algebra with unit and let / be a fixed closed ideal
in B. In the maximal ideal space MB of B, fix a compact set X and
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put E = I n h(I), where h(I) is the hull of /. Our main result is

THEOREM l . l Let I have an approximate unit that is uniformly
bounded by the constant C and let g be a nonnegative continuous
function on X of sup-norm < 1 that vanishes on E. If h is an
element of I and δ > 0, then there exists an element f in I such that

(1) I I / H ^ C
(2) Ref(x) ^ g(x) + | lmf(x) \ (xeX)
(3) | | / Λ - Λ | | < « .

Here / denotes the Gelfand transform of an element / in B, \\ \\
denotes the norm in B, and || H*, denotes the sup-norm in the space
of complex, continuous functions on X. (For definitions and concepts
we refer the reader to [2, p. 80] and [3].)

P. C. Curtis and A. Figa-Talamanca have already proved, by an
application of their factorization theorem (see[l, p. 171]), a version
of Theorem 1.1. They proved that if A is a commutative semisimple
Banach algebra with approximate unit, then the Gelfand transforms
of elements of A vanish arbitrarily slowly at infinity [1, Th. 4.1 and
Th. 4.3, p. 180]. But their argument apparently does not give infor-
mation about conditions (1), (2), and (3) of Theorem 1.1. For our
applications this is crucial because conditions (1), (2), and (3) enable
us to give a useful characterization of an approximate unit in / (see
Corollary 2.4). Furthermore, condition (2) gives us information about
Re/. This is important because we need estimates on the supremum
norm of exp(/). These estimates and condition (1) provide the in-
formation necessary to prove the interpolation Theorem 2.5.

2* Proof of Theorem 1*1* We will first give a precise defini-
tion of an approximate unit in / and then we will state and prove
two preliminary results.

DEFINITION 2.1. The closed ideal I is said to have an approxi-
mate unit, if there exists a real number C ̂  1 and a collection {eλ: λ e Λ}
of elements of /, where the index set A is a directed set, such that
the following two conditions are satisfied: \\ex\\ ^ C, for each λ, and
lim exf = f, for fel.

LEMMA 2.2. // S is a compact subset of MB\h(I) and {eλ} is an
approximate unit in J, then {eλ} converges uniformly to 1 on S.

Proof. For each x in S choose an fx belonging to / such that
fx(x) = 1 and then define

(2.1) Vx = {yeMB:\fx(y)\>V2}.
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The family of sets {Vx:xeS} is an open cover of S and therefore, by
the compactness of S, there exists a finite subcover

(2.2) {Vmι,V.l9 - - - , V X J

of S. Let {fXί, fH, , fxj denote those elements in / from which (2.2)
is defined. It then follows that the inequality

11 - Uv) l < 2 max {\\fXj - fXjeλ\\} (j = 1, 2, 3, . . , n)

holds for each y in S. Since \imeλfXj — fXj, for j — 1, 2, , n, we
conclude that {βj} converges uniformly to 1 on S. Hence our proof is
complete.

LEMMA 2.3. Let I have an approximate unit that is uniformly

bounded by the constant C. If K is a compact Gδ subset of MB that

contains h(I), then there is a closed ideal Io in B such that

(1) /.c/,
( 2 ) h(I0) is a compact Gδ subset of MB,
( 3 ) h(IQ)(zK, and
(4) Io has a countable approximate unit that is uniformly

bounded by C.

Proof. Since K is a compact G§ subset of Ms, there exists a
descending sequence {Vn} of open subsets of MB such that K = Π Vn.
Let {̂ }̂ be an approximate unit of / that is uniformly bounded by C.
Then, by virtue of Lemma 2.2, there exists an eh in /, || eλl \\ ̂  C, such
that 11 — eh \ < 1/2 on MB\VΊ. Suppose that eh, eλ2, , eλn have been
defined in /. Since lim eλeλ. = eλj for j — 1, 2, , n, it follows that
there exists (by Lemma 2.2) an eλn+ι in J, || eλ%+1\\ ̂  C, such that
J1 — ̂ w + 11 < 1/2 on Λfs\ V ^ and such that the inequality

Tiolds for j — 1, 2, , ̂ . Thus, by induction, we have defined a se-
quence of elements {eλj in /, | | β ; Λ | | ^ C , such that eXneλj -^e2j as
n-+oo(j — 1, 2, 3, •) and such that {eλj converges pointwise to 1 on
MB\K. It is easy to show that the subset Io of / defined by

Jo = {/e/: lim β i Λ/ = /}

is a closed ideal in B that satisfies (1), (3), and (4). To see that
Io satisfies (2), we observe that h(Iϋ) = Π^iί^^Λfjsi \eλn(x)\ < 1/n}.
Hence our proof is complete.

Proof of Theorem 1.1. By virtue of Lemma 2.3 we may clearly
assume that E is a compact Gδ subset of MB and g vanishes precisely
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on E.
Let 0 < λ < I/AC and ε = min {1/32, (l-\\g |U)/2}. Let Kp denote

the compact subset of X defined by

Kp = {xe X: g(x) ^ (1 - λ)-γ8} (p = 1, 2, 3, . . .) .

We shall by induction construct a sequence of elements eu e2, e3, in
/ and a sequence of compact subsets Dl9 D2, D3, of X\E such that
for each positive integer p the following hold:

(a) \\ep\\ ^C and \\eph-h\\ <δ.
( b ) Kp+ίUDpczDp+1.
(c) Re βp > 1 - εp and | Im ep \ < εp on Dp.
(d) Σί«i Ml ~ λ)^11 ek 11 ^ (1/32). (1 - λ)» on X\DP+1.

Let A = JKΊ. Then there exists, by virtue of Lemma 2.2, an element
βi in I that satisfies conditions (a) and (c). Suppose that elfe2,e3, , en

have been defined in / and that Dlf D2, ---,DP have been defined in
X\E. Since Σϊ=i λ ( l — λ ) f c ~ 1 ^ is a continuous function on X that
vanishes on E, there exists a compact subset Dp+1 of Jf\2£ that satisfies
conditions (b) and (d). Thus, as before, we have by virture of Lemma
2.2 an element ep+1 in I that satisfies conditions (a) and (c). Hence
our construction is complete.

Let / denote the element in / defined by

/ = Σ λ(l - λ)*-1** .
J f c = l

I t is c lear t h a t \\f\\^C a n d t h a t \\fh- h\\<δ. T h e r e f o r e , w e
c o m p l e t e o u r proof b y s h o w i n g t h a t

(2.3) Ref(x) ^ g(x) + | lmf(x) | (xeX) .

Let x belong to X. If x e E, then it is clear that (2.3) holds. If x
is an element of Du then (2.3) follows directly from (b) and (c).
Otherwise, since g vanishes precisely on E, there exists a positive
integer p such that x belongs to DP+1\DP. Consequently, by conditions
(a), (c), and (d), we have

Re/(x) ^ Σ Ml ~ λ)fe-1Re ek(x) -

fc=i

(2.4) ^ Σ λ(l - X)*-J(l - εk) - (1 - λ)"- 1 ^ - (1 - X)*
k=p+ί

^ Σ M 1 -λ)"- 1 - Σ eMl - λ)*-^- 1 - (9/32)-(1
k=p+l k=p+l

^ (1 - xy - e(l - λ)''-1 - (9/32).(1 - λ)"-1

^ (14/32). ( l - λ ) * - 1
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and

I Im/(αO I ^ Σ λ(l - λ)*-^* + (1 - λ)'-γ4 + (1 - \γ-χβ2
(2.5) k=p+ί

^(δ/iβί α - λ ) ' - 1 .

Since x does not belong to Kp, we see by combining (2.4) and (2.5)
that (2.3) holds.

COROLLARY 2.4. // / has an approximate unit that is uniformly
bounded by the constant C, then I has an approximate unit {eλ: λ e A},
\\eλ || <£ C, such that

(2.6) Re eλ^ | Im eλ \

on MB for each λ.

Proof. Let {ha:aeA} be an approximate unit in I and let A be
the directed set defined by

A = {(a, n): aeA,n a positive integer}

under the usual partial ordering; that is, (alf nλ) ^ (a2, n2), if and only
if, ax ^ a2 and nL ^ n2. For each λ = (a, n) e A we may choose, by
virtue of Theorem 1.1, an element eλ in /, || eλ \\ ^ C, such that

(a) \\eλha- ha\\ < 1/n
( b ) Re eλ(x) ^ | Im eλ(x) \ (x e MB).

Now for arbitrary f el and ε > 0, there is an a0e A such that

\\Kf-f\\ <εβC for a^a0.

Choose λ0 = (aQ, n), where \\f\\jn < ε/2. Then for λ = (α, n) ^ λ0 we
have

\\ej - f\\ = \\eλf - eλhaf + eλhaf - h a f + h a f - f\\ .

^2C \ \ h a f - f\\ + \ \ f \ \ - \ \ e λ h a - h a \ \ < ε .

In other words, limexf' = f for every f el. Hence our proof is com-
plete.

THEOREM 2.5. Suppose I has an approximate unit that is uni-
formly bounded by the constant C and suppose g is an element in B.
If A is a positive continuous function on X such that Δ^\g\ on E
and ε > 0, then there exists an element f in B such that

( 1 ) / = g on E, I/I ^ Δ on X, and

(2) | | / | | ^ | |p | |£ | | f l f | |+e.
Here p is the positive continuous function on X defined by p(x) =
max{l,\g(x)\/J(x)}.
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Proof. Since log(p) is a nonnegative continuous function on X

that vanishes on E, we have by virtue of Theorem 1.1 an element h

in I such that — Re h <̂  — log (p) on X and such that the norm

| | Λ | | ^ ( M o g | | p | U + 37, where V = log(l + e/\\p\\i\\g\\). Set / =

g-exp( — h). I t is c l e a r t h a t f\E=g\E a n d s i n c e | g ( x ) \/p(x) S 4(x),

xeX, the inequalities

\f(x) I - I g(x) I exp ( - R e h{x)) ^ \ g(x) \/p(x) ^ Δ(x)

hold, xe X. We complete the proof by showing (2) holds. To see this,

we observe t h a t the norm

Il/H ^ II (/II exp II λ II ^ || g || exp (log || p | | ^ + η) ^ \\ p\\t \\ g \\ + s .
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