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A GENERALIZED FATOU THEOREM
FOR BANACH ALGEBRAS

DoNALD CurTIis TAYLOR

Let B denote a commutative, semisimple Banach algebra
with unit and let I be a fixed closed ideal in B, In the maximal
ideal space M; of B, fix a compact set X and put £ = X n k(I),
where h(I) is the hull of I, The main result of this note is
the following

TueoreM 1.1, Let I have an approximate unit that is
uniformly bounded by the constant C and let ¢ be a nonnega-
tive continuous function on X of sup-norm <1 that vanishes
on E, If his an element of I and ¢ > 0, then there exists an
element f in I such that

(1) lIfI=C )
(2) Refw)z g@) + |Imf(@)| (zeX)
(3) llfh—Rll<a.

Here f denotes the Gelfand transform of an element f in B, || ||
denotes the norm in B, and || ||.. denotes the sup-norm in the space
of complex, continuous functions on X.

1. A theorem of Fatou. Let A denote the sup-norm algebra
of continuous functions on the closed unit disc which are analytic on
the open disc, and let J = J(E) be the ideal of functions in A which
vanish on E, a closed set of Lebesgue measure 0 on the unit circle.
In J there exists a sequence of functions, each of sup-norm <1, which
converges uniformly to the constant function 1 on compact subsets of
the complement of E'; that is, J has an approximate unit. This fact
may be deduced from a classical theorem of Fatou which guarantees
the existence of a function in A which vanishes precisely on £ and
has positive real part elsewhere. The results in this paper stem from
the observation that a reverse implication holds. By using only the
existence of an approximate unit in J and the fact that E is a hull
(This latter fact follows from the F. and M. Riesz theorem, for ex-
ample.), we obtain the following generalized Fatou theorem for A: if
g is a nonnegative continuous function on the closed unit disc of sup-
norm <1 that vanishes on E, then there exists an f in J such that
|flle=1and Ref=z g+ |Imf

Because of the central role played by approximate units, an anal-
ogous result can be established with surprising ease in the setting of
a general Banach algebra. Specifically, let B denote a commutative,
semisimple Banach algebra with unit and let I be a fixed closed ideal
in B. In the maximal ideal space M, of B, fix a compact set X and
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put E = XN k(I), where h(I) is the hull of I. Our main result is

THEOREM 1.1. Let I have an approzimate unit that is uniformly
bounded by the constant C and let g be a monmegative continuous
function on X of sup-norm <1 that vanishes on E. If h is an
element of I and 0 > 0, then there exists an element f in I such that

(1) |if|=C )

(2) Ref(®) =g + |Imf(x)| (zeX)

(3) lIfh—R| <o.

Here f denotes the Gelfand transform of an element f in B, || ||
denotes the norm in B, and || ||. denotes the sup-norm in the space
of complex, continuous functions on X. (For definitions and concepts
we refer the reader to [2, p.80] and [3].)

P.C. Curtis and A. Figi-Talamanca have already proved, by an
application of their factorization theorem (see[1, p. 171]), a version
of Theorem 1.1. They proved that if A is a commutative semisimple
Banach algebra with approximate unit, then the Gelfand transforms
of elements of A vanish arbitrarily slowly at infinity [1, Th. 4.1 and
Th. 4.3, p. 180]. But their argument apparently does not give infor-
mation about conditions (1), (2), and (3) of Theorem 1.1. For our
applications this is crucial because conditions (1), (2), and (3) enable
us to give a useful characterization of an approximate unit in I (see
Corollary 2.4). Furthermore, condition (2) gives us information about
Ref. Thisis important because we need estimates on the supremum
norm of exp (f). These estimates and condition (1) provide the in-
formation necessary to prove the interpolation Theorem 2.5.

2. Proof of Theorem 1.1. We will first give a precise defini-
tion of an approximate unit in I and then we will state and prove
two preliminary results.

DEFINITION 2.1. The closed ideal I is said to have an approxi-
mate unit, if there exists a real number C = 1 and a collection {e;: » € 4}
of elements of I, where the index set 4 is a directed set, such that
the following two conditions are satisfied: ||e;|| < C, for each \, and
lime,f = f, for fel.

LEMMA 2.2. If S is a compact subset of Mp\h(I) and {e;} is an
approximate unit in I, then {€;} converges uniformly to 1 on S.

Proof. For each x in S choose an f, belonging to I such that
F.(@) =1 and then define

2.1) V. = {ye My |f.(y)| > 1/2} .
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The family of sets {V,:x €S} is an open cover of S and therefore, by
the compactness of S, there exists a finite subcover

(2'2) {Vxly sza M) Vxn}

of S. Let {f., fy, **+, f.,} denote those elements in I from which (2.2)
is defined. It then follows that the inequality

11— o) <2max{|f, — fuell  (G=1,2,3-m)

holds for each y in S. Since lime,f,; = f,,, for j=1,2, .-+, n, we
conclude that {&,} converges uniformly to 1 on S. Hence our proof is
complete,

LEMMA 2.3. Let I have an approximate unit that is uniformly
bounded by the constant C. If K s a compact G; subset of M, that
contains h(I), then there is a closed ideal I, in B such that

(1) Lcl,

(2) k() is a compact G; subset of My,

(3) k() CK, and

(4) I, has a countable approximate wunit that is uniformly
bounded by C.

Proof. Since K is a compact G, subset of M,, there exists a
descending sequence {V,} of open subsets of M; such that K =NV,.
Let {e¢;} be an approximate unit of I that is uniformly bounded by C.
Then, by virtue of Lemma 2.2, there exists an ¢; in I, |[¢, || = C, such
that |1 — &; | < 1/2 on M;\V,. Suppose thate;,e;, ---, ¢, have been
defined in I. Since lim €€, = €, for 7 =1,2, .-+, m, it follows that
there exists (by Lemma 2.2) an ¢, ., in I,|le, || <C, such that
1 - | <1/2 on M\V,., and such that the inequality

ézn+1
lleyer,,, — el < 1/2"+

holds for 5 =1,2,---,n. Thus, by induction, we have defined a se-
quence of elements {e,} in I, |le;, || < C, such that e, e, —e;, as
n—oo(j =1,2,8,--) and such that {¢; } converges pointwise to 1 on
M)\K. It is easy to show that the subset I, of I defined by

I, ={fel:lime, = f}

is a closed ideal in B that satisfies (1), (8), and (4). To see that
I, satisfies (2), we observe that A(l,) = N5, {we My |é; ()| < 1/n}.
Hence our proof is complete.

Proof of Theorem 1.1. By virtue of Lemma 2.3 we may clearly
assume that £ is a compact G, subset of M, and g vanishes precisely
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on E.
Let 0 <A < 1/4C and ¢ = min {1/32, (1 — || 9||-)/2}. Let K, denote
the compact subset of X defined by

K,,:{xeX:g(x)g(l—x)”‘l/S} (p:17273y"')'

We shall by induction construct a sequence of elements e, ¢, ¢;, --+ in
I and a sequence of compact subsets D,, D,, D, --- of X\E such that
for each positive integer p the following hold:

(a) lle,ll = C and [[e,h — A <.

(b) K,,UD,CD,,,.

(c) Reé,>1—c¢c? and [Imé,| <e” on D,.

(d) 3p= ML =N é ] = (1/32)-(L — N)? on X\D,.,.
Let D, = K,. Then there exists, by virtue of Lemma 2.2, an element
e, in I that satisfies conditions (a) and (¢). Suppose that e, e, e;, -« -, e,
have been defined in I and that D,, D,, ---, D, have been defined in
X\E. Since >2_, M1 — \)*'g, is a continuous function on X that
vanishes on E, there exists a compact subset D,., of X\E that satisfies
conditions (b) and (d). Thus, as before, we have by virture of Lemma
2.2 an element e,,, in I that satisfies conditions (a) and (c). Hence
our construction is complete.

Let f denote the element in I defined by

F= ML=,

It is clear that ||f|| < C and that ||fh — k|| < . Therefore, we
complete our proof by showing that

(2.3) Ref(@) = g(x) + |Imf(z)| (xeX).

Let x belong to X. If z¢ E, then it is clear that (2.3) holds. If x
is an element of D,, then (2.3) follows directly from (b) and (c).
Otherwise, since ¢ vanishes precisely on E, there exists a positive
integer p such that « belongs to D,.,\D,. Consequently, by conditions
(a), (¢), and (d), we have

Ref@) = 35 ML —N)*"Redu(w) — ML — 2 |l o, |

— ML= 0 6|

(2.4) = i. ML — N)FHL — €F) — (L — NP4 — (1 — \)?PY32

k=p+1

> 3 ML =) — 3 en(l — M)Fiet — (9/32) (1 — Ay

= (—1 — NP —el - 7t=)”‘1 —(9/32)-(1 — M)
= (14/32)-(1 — A~
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and
| Im fa)| < k=i+1"'(1 — Nt (1 — NP4 (L — N)P32
< (5/16)-(1 — N> .

Since x does not belong to K,, we see by combining (2.4) and (2.5)
that (2.3) holds.

COROLLARY 2.4. If I has an approximate unit that is uniformly
bounded by the constant C, then I has an approximate unit {e;: N € 4},
le:]] < C, such that

(2.6) Reéx_z_ 'Imé\xl

on My for each \.

Proof. Let {h,:ac A} be an approximate unit in I and let 4 be
the directed set defined by

A= {(a,n):axe A, n a positive integer}

under the usual partial ordering; that is, (a,, n,) < (@, n,), if and only
if, a, < a, and n, < n,. For each M = (o, n) €4 we may choose, by
virtue of Theorem 1.1, an element ¢; in I, ||¢;|| < C, such that

(a) [leds — hel| <1/n

(b) Reéy(») = |Iméx(x)|  (veMp).
Now for arbitrary f eI and & > 0, there is an a,c A such that

| R f — [l < €/4C for a = «,.

Choose \, = (&, n), where || f||/n < ¢/2. Then for A = (a, n) = », we
have

lef — fll = llexf — ehaf + eshef — hof + hof — f1I .
S 2C|[haf = fUl + WFIl 1l €:ha — holl <&

In other words, lime,f = f for every f e€I. Hence our proof is com-
plete.

THEOREM 2.5. Suppose I has an approximate unit that is uni-
formly bounded by the constant C and suppose g is an element in B.
If 4 is a positive continuous function on X such that 4= |G| on E
and € > 0, then there exists an element f in B such that

(1) f=gon E, |f|<4on X, and

(2) [Ifl=linlldllgll +e.

Here p is the positive continuous function on X defined by p(x) =
max {1, | §(x) |/4(=)}.
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Proof. Since log (p) is a nonnegative continuous function on X
that vanishes on E, we have by virtue of Theorem 1.1 an element A
in I such that — Reh < — log(p) on X and such that the norm
[h]] < C-log||p|l. + %, where 7 =1log(1+¢/llpllEllgl). Set f=
g-exp(— k). Itisclear that f|F = §| E and since |§ (z) |/p(x) < 4(x),
x ¢ X, the inequalities

|7(@)] = |§(x) | exp (—Re h(x)) < | §(x) |/p(x) < 4(x)

hold, ze X. We complete the proof by showing (2) holds. To see this,
we observe that the norm

IFll=llgllexpllhl < |lgllexp(log [l +7) = [[pll<llgll + .
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