THE ADDITION OF RESIDUE CLASSES MODULO n

Charles Ryavec

In the present paper, the following is proved:
Theorem. Let a_{1}, \cdots, a_{m} be m distinct, nonzero residues modulo n, where n is any natural number and where

$$
m \geqq 3 v^{\prime} \overline{6 n} \exp \left\{c \frac{v \overline{\log n}}{\log \log n}\right\}
$$

where $c>0$ is some large constant. Then the congruence

$$
\varepsilon_{1} a_{1}+\cdots+\varepsilon_{m} a_{m} \equiv 0(\bmod n)
$$

is solvable with $\varepsilon_{i}=0$ or 1 and not all $\varepsilon_{i}=0$.
The method of proof is completely elementary, in that it is based upon well-known results concerning the addition of residues modulo a natural number n and upon results from elementary number theory.

In a recent paper by Erdös and Heilbronn (see [1]) the following question is investigated. Let p be a prime and a_{1}, \cdots, a_{m} distinct, nonzero residue classes modulo p, and N any residue class modulo p. Let $F(N)=F\left(N ; p ; a_{1}, \cdots, a_{m}\right)$ denote the number of solutions of the congruence

$$
\begin{equation*}
\varepsilon_{1} a_{1}+\cdots+\varepsilon_{m} a_{m} \equiv N(\bmod p) \tag{1}
\end{equation*}
$$

where the ε_{i} are restricted to the values 0 or 1 . What can be said about the function $F(N)$? The authors prove the following result:

Theorem 1. $F(N)>0$ if $m \geqq 3 \sqrt{6 p}$.
They conjecture that the bound $3 \sqrt{6 p}$ in Theorem 1 is not best possible: $3 \sqrt{6 p}$ can probably be replaced by $2 \sqrt{p}$. On the other hand, they show that the constant 2 cannot be replaced by any smaller constant, as shown by the example

$$
a_{1}=1, \quad a_{2}=-1, \cdots, \quad a_{m}=(-1)^{m-1}\left[\frac{m+1}{2}\right] .
$$

Note that if $m<2 \cdot(\sqrt{p}-2), F(1 / 2(p-1)=0$.
The question which now arises is what can be said about $F(N)$ if the prime p is replaced by a composite integer n ? Theorem 1 is clearly false for composite n. In fact, even the bound $m \geqq-1+n / 2$ will not guarantee that $F(N)>0$ for all N when n is composite. The difficulty is that all of the a_{i} may have a prime factor in common with n, in which case $N=1$ could not be represented in the form
(1). However, this predicament does not arise when we try to represent 0 in the form (1). Therefore, it is natural to ask what condition on m will guarantee $F(0)>0$ for all n. Erdös and Heilbronn conjectured that $F(0)>0$ provided $m>2 \sqrt{n} ;^{1}$ and at a conference at Ohio State University Erdös raised the question whether $F(0)>0$ could be proved if one assumed the stronger hypothesis $m>K \cdot n^{(1 / 2)+\varepsilon}$, where ε is any positive number, and K is some absolute constant.

Since the expression $\exp \{c \cdot(\sqrt{\log n}) /(\log \log n)\}$ is $O\left(n^{\varepsilon}\right)$ for any $\varepsilon>0$, the theorem of this paper answers Erdös' question.
2. Necessary lemmas. In order to prove the theorem a number of lemmas will be needed. They are rather straightforward modifications of those given in [1] for the case when n is a prime.

Lemma 1. Let b_{1}, \cdots, b_{l} be l distinct residues modulo n; and let $B(x)$ denote the number of solutions of

$$
x \equiv b_{i}-b_{j}(\bmod n)
$$

with $1 \leqq i, j \leqq l$. Then $B(x+y) \geqq-l+B(x)+B(y)$; i.e.,

$$
l-B(x+y) \leqq(l-B(x))+(l-B(y)) .
$$

Proof. See [1], page 150.
Lemma 2. Let $1 \leqq k \leqq l \leqq n / 2, n \geqq 2$, and let d_{1}, \cdots, d_{k} be k distinct nonzero residues modulo n such that $\left(d_{i}, n\right)=1$. Let b_{1}, \cdots, b_{l} be l distinct residues modulo n. Then there is an $i, 1 \leqq i \leqq k$, such that

$$
B\left(d_{i}\right)<l-k / 6
$$

where $B\left(d_{i}\right)$ is the number of solutions of

$$
d_{i} \equiv b_{s}-b_{t}(\bmod n)
$$

Proof. Let G denote the cyclic group of residues modulo n, and let $A=\left\{0, d_{1}, \cdots, d_{k}\right\}$. Put $r=1+[(2 l / k)]$. By I. Chowla's theorem on the addition of residues modulo n (see [2], Corollary 1. 2. 4 (p. 3)), one obtains

$$
\begin{aligned}
& |2 A| \geqq|A|+|A|-1=2 k+1 \\
& \vdots \\
& |r A| \geqq r k+1,
\end{aligned}
$$

[^0]provided $j A \neq G$ for $1 \leqq j \leqq r$. Hence, we obtain $t \geqq \min (n-1, r k)$ distinct, nonzero residues c_{1}, \cdots, c_{t} modulo n which can be expressed as sums of not more than r of the d_{j}; and the summands need not be distinct

Since $\sum_{1 \leqq s \leqq t} B\left(c_{s}\right) \leqq B(1)+\cdots+B(n-1)=l(l-1)$, there is an s such that

$$
\begin{aligned}
B\left(c_{s}\right) & \leqq \frac{l(l-1)}{t} \\
& \leqq l(l-1) \max \left\{\frac{1}{n-1}, \frac{1}{r k}\right\} \\
& \leqq \frac{l(l-1)}{2 l-1}=\frac{l}{2} \frac{l-1}{l-\frac{1}{2}}<\frac{l}{2}
\end{aligned}
$$

i.e., $l-B\left(c_{s}\right)>l / 2$.

By using induction on the conclusion of Lemma 1, we obtain

$$
\begin{equation*}
l-B\left(x_{1}+\cdots+x_{t}\right) \leqq \sum_{i=1}^{t}\left(l-B\left(x_{i}\right)\right) \tag{2}
\end{equation*}
$$

By construction, $c_{s} \equiv \sum_{i=1}^{r} \varepsilon_{i} d_{j_{i}}(\bmod n)$ is solvable with not all $\varepsilon_{i}=0$. Rewrite the above expression as $c_{s} \equiv \sum_{i=1}^{r_{1}} d_{j_{i}}(\bmod n)$, where we have suppressed those terms in the sum for which $\varepsilon_{i}=0$. Applying (2) we obtain

$$
\frac{l}{2}<l-B\left(c_{s}\right) \leqq \sum_{i=1}^{r}\left(l-B\left(d_{j_{i}}\right)\right)
$$

Therefore, one obtains a d_{i} such that

$$
l-B\left(d_{i}\right)>\frac{l}{2 r_{1}} \geqq \frac{l}{2 r} \geqq \frac{l k}{2(k+2 l)} \geqq \frac{k}{6}
$$

since $1 \leqq r_{1} \leqq r$.
Now let $1 \leqq d_{1}<d_{2}<\cdots<d_{\nu} \leqq n-1$ be ν distinct, nonzero residues modulo n such that $\left(d_{i}, n\right)=1$. For $1 \leqq u \leqq \nu / 2$, consider all possible subsets, S_{u}, of u elements from the set $\left\{d_{1}, \cdots, d_{2 u}\right\}$. For each subset S_{u}, let $L\left(S_{u}\right)$ denote the number of distinct residue classes modulo n which can be obtained in the form $\varepsilon_{1} d_{1}+\cdots+\varepsilon_{2 u} d_{2 u}$, where not all $\varepsilon_{i}=0$ and where $\varepsilon_{i}=0$ or 1 and $\varepsilon_{i}=0$ if d_{i} is not in S_{u}. Note that determining $L\left(S_{u}\right)$, we do not include the residue class 0 unless it can be expressed as the sum of $\leqq u$ distinct elements of S_{u}.

Finally, put $L(u)=\operatorname{Max}\left(L\left(S_{u}\right)\right)$, where the maximum is taken over all subsets, S_{u}, of u elements from the set $\left\{d_{1}, \cdots, d_{2 u}\right\}$.

Lemma 3. Let d_{1}, \cdots, d_{ν} satisfy the properties in the above definition. If

$$
\varepsilon_{1} d_{1}+\cdots+\varepsilon_{\imath} d_{\nu} \equiv 0(\bmod n)
$$

implies that all $\varepsilon_{i}=0$, then

$$
\begin{array}{ll}
L(u+1) \geqq L(u) & \text { when } \quad u \geqq 1 \\
L(u) \geqq u+2 \quad \text { when } \quad u \geqq 3, \quad \text { for } n \geqq 4 \tag{4}
\end{array}
$$

Proof. (3) is obvious. In order to prove (4), it may be assumed without loss of generality that the maximum, $L(u)$, is obtained from d_{1}, \cdots, d_{u}, which are distinct modulo n by assumption. Also, $d_{1}+$ $\cdots+d_{u}$ is distinct from them by the assumption that

$$
\varepsilon_{1} d_{1}+\cdots+\varepsilon_{2} d_{\nu} \equiv 0(n)
$$

is impossible unless all $\varepsilon_{i}=0$. Now let $T=\left\{d_{1}+d_{i} \mid 2 \leqq i \leqq u\right\}$. Each element of T is distinct from $d_{1}+\cdots+d_{u}$, when $u \geqq 3$, and from d_{1}. It will be shown that at least one element of T is distinct from all of d_{1}, \cdots, d_{u}. This element, in addition to the $u+1$ elements $d_{1}, \cdots, d_{u}, d_{1}+\cdots+d_{u}$ will give $u+2$ distinct residues modulo n, which proves (4), provided $u \geqq 3$.

So assume that no element of T is distinct from d_{1}, \cdots, d_{u}, and let $d_{1}+d_{i}=d_{j}$, where j is a function of i. It is clear that

$$
\left\{d_{j} \mid 2 \leqq j \leqq u\right\}=\left\{d_{2}, \cdots, d_{u}\right\}
$$

since no two d_{j} are congruent modulo n and none are congruent to d_{1}. Consequently,

$$
\sum_{i=2}^{n}\left(d_{1}+d_{i}\right) \equiv \sum_{j=2}^{n} d_{j} \quad(\bmod n)
$$

Therefore, $(u-1) d_{1} \equiv 0(\bmod n)$, which is impossible since $\left(d_{1}, n\right)=1$, and

$$
2 \leqq u-1<\nu-1 \leqq n-2
$$

Lemma 4. Let $d_{1}, \cdots, d_{u}, \cdots, d_{\nu}$ satisfy the same conditions as in Lemma 3. For $3 \leqq u \leqq-1+\nu / 2$, either $L(u)>n / 2$ or

$$
L(u+1)>L(u)+\frac{u+2}{6}
$$

Proof. If $L(u)>n / 2$ we are finished. So assume that $L(u) \leqq n / 2$. Now let S_{u} be a set for which $L(u)=L\left(S_{u}\right)$. So we have $L(u)$ distinct residue classes $b_{1}, \cdots, b_{L(u)}$ modulo n which are representable as sums
of distinct elements from S_{u}. We have $\nu-u \geqq 1+\nu / 2 \geqq u+2$ other elements d_{i} which are not in S_{u}. Select $u+2$ of these and, if necessary, relabel them as d_{1}, \cdots, d_{u+2}. Since $1 \leqq u+2 \leqq L(u) \leqq n / 2$, we can apply Lemma 2 to the sets $\left\{b_{1}, \cdots, b_{L(u)}\right\}$ and $\left\{d_{1}, \cdots, d_{u+2}\right\}$, where $k=u+2, l=L(u)$. Hence, we obtain an $i, 1 \leqq i \leqq u+2$ for which $B\left(d_{i}\right)<L(u)-(u+2) / 6$, where $B\left(d_{i}\right)$ is the number of representations of d_{i} in the form

$$
d_{i} \equiv b_{j}-b_{h} \quad(\bmod n)
$$

Putting $S_{u+1}=S_{u} \cup\left\{d_{i}\right\}$, we have

$$
L(u+1) \geqq L\left(S_{u+1}\right)=L(u)+\left(L(u)-B\left(d_{i}\right)\right)>L(u)+\frac{u+2}{6}
$$

Lemma 5. As before, let $1 \leqq d_{1}<\cdots<d_{\nu} \leqq n-1$ be ν distinct, nonzero residues modulo n such that $\left(d_{i}, n\right)=1$. Then if $\nu \geqq 3 \sqrt{6 n}$, the congruence

$$
\varepsilon_{1} d_{1}+\cdots+\varepsilon_{2} d_{\nu} \equiv 0 \quad(\bmod n)
$$

is solvable with not all $\varepsilon_{i}=0$.

$$
\begin{gathered}
\text { Proof. Assume that } \varepsilon_{1} d_{1}+\cdots+\varepsilon_{\nu} d_{\nu} \equiv 0(\bmod n) \\
\text { with } \varepsilon_{i}=0 \text { or } 1, \text { implies }
\end{gathered}
$$

that all $\varepsilon_{i}=0$. We will then obtain a contradiction. By Lemma 4, either $L(u)>n / 2$ or

$$
L(u)>\sum_{\lambda=3}^{u-1}\left(\frac{\lambda+2}{6}\right)+L(3) \geqq \frac{u^{2}+3 u+42}{12},
$$

which is larger than $n / 2$ provided $u \geqq \sqrt{6 n}$. Therefore, with $u \geqq \sqrt{6 n}$, we have $L(u)>n / 2$ in either case. But we have $\nu \geqq 3 \sqrt{6 n}$ distinct residues. Applying the preceding analysis to the more than $2 \sqrt{6 n}$ remaining residues, we obtain $L(u)>n / 2$ for this set also.

Therefore, we have two, not necessarily disjoint, sets each with more than $n / 2$ residues modulo n. Call these two sets A, B. By a well-known argument, either $A+B=G$ or

$$
|G| \geqq|A|+|B|>n / 2+n / 2=n
$$

Therefore, $A+B=G$; and we conclude that 0 is representable as the sum of distinct elements from $\left\{d_{1}, \cdots, d_{\nu}\right\}$. This contradicts our original assumption that 0 is not so represented. Therefore,

$$
\varepsilon_{1} d_{1}+\cdots+\varepsilon_{\nu} d_{\nu} \equiv 0 \quad(\bmod n)
$$

is solvable nontrivially.
3. Proof of theorem. For each divisor d of n, let $\Phi(d)=$ $\left\{a_{i} \mid d=\left(a_{i}, n\right)\right\}$. Put $\Phi(d)=\left\{c_{1}, \cdots, c_{h}\right\}$, where h and the c_{j} depend on d, although this dependence is suppressed without loss of clarity.

For each $c_{j} \in \Phi(d)$, we have $c_{j}=d c_{j}^{\prime}$, where $\left(n / d, c_{j}^{\prime}\right)=1$. Furthermore, since the c_{j} are distinct modulo n, the c_{j}^{\prime} are distinct modulo n / d, and they satisfy

$$
1 \leqq c_{1}^{\prime}<\cdots<c_{n}^{\prime} \leqq\left[\frac{n-1}{d}\right]=\frac{n}{d}-1
$$

Therefore, by Lemma 5 , if $h \geqq 3 \sqrt{6 n / d}$, the congruence

$$
\varepsilon_{1} c_{1}^{\prime}+\cdots+\varepsilon_{h} c_{h}^{\prime} \equiv 0 \quad(\bmod n / d)
$$

is solvable nontrivially, in which case the congruence $\varepsilon_{1} c_{1}+\cdots+\varepsilon_{h} c_{h} \equiv 0$ $(\bmod n)$ is solvable nontrivially.

So if $m=\sum_{d / n}|\Phi(d)| \geqq \sum_{d / n} 3 \sqrt{6 n / d}$, then for some $d, \Phi(d)$ will contain more than $3 \sqrt{6 n / d}$ distinct elements modulo n such that $\left\{\left(a_{i} / d\right),(n / d)\right\}=1$. Thus, the congruence $\varepsilon_{1} a_{1}+\cdots+\varepsilon_{m} a_{m} \equiv 0(\bmod n)$ will be solvable nontrivially.

We now obtain an upper bound for $\sum_{d / n} 3 \sqrt{6 n / d}$ in terms of n. Suppose $p^{e_{p}} \| n$. Then we have

$$
\begin{aligned}
\sum_{d / n} 3 \sqrt{6 n / d} & =3 \sqrt{6 n} \sum_{d / n} d^{-(1 / 2)} \\
& =3 \sqrt{6 n} \prod_{p / n}\left(1+p^{-(1 / 2)}+\cdots+\left(p^{e} p\right)^{-(1 / 2)}\right) \\
& <3 \sqrt{6 n} \prod_{p / n}\left(1-p^{-(1 / 2)}\right)^{-1} .
\end{aligned}
$$

Put $f(n)=\Pi_{p / n}\left(1-p^{-(1 / 2)}\right)^{-1}$ and choose the prime $q=q(n)$ such that $\eta=\Pi_{p \leqq q} p \leqq n<q^{\prime} \Pi_{p \leqq q} p$, where q^{\prime} is the smallest prime greater than q. Clearly $f(\eta) \geqq f(n)$. Now

$$
\begin{aligned}
\log (f(\eta)) & =-\sum_{p \leq q} \log \left(1-p^{-(1 / 2)}\right)=\sum_{p \leq q} p^{-(1 / 2)}+O(1) \\
& =O\left(\sum_{p \leqq q} p^{-(1 / 2)}\right)=O\left(\frac{\sqrt{q}}{\log q}\right)
\end{aligned}
$$

But $\log \eta=\sum_{p \leqq q} \log p=\delta(q) \leqq \log n$. It is well known that there exist positive constants α and β such that

$$
\alpha q \leqq \delta(q) \leqq \beta q
$$

for all primes q. Hence, we conclude that $\log n \geqq \alpha \cdot q$. Also, $\eta^{\prime}=$ $\eta \cdot q^{\prime}>n$, which implies that $\log \eta^{\prime}>\log n$. But $\log \eta^{\prime}=\delta\left(q^{\prime}\right) \leqq \beta q^{\prime}=$ $\beta q\left(q^{\prime} / q\right) \leqq \gamma q$, for some constant $\gamma>0$. Therefore, $\log q \geqq \gamma_{1} \cdot \log \log n$;
and so

$$
f(n) \leqq f(\eta) \leqq \exp \left\{c \frac{\sqrt{\log n}}{\log \log n}\right\}
$$

where $c>0$ is some positive constant.

Bibliograpy

1. P. Erdös, and H. Heilbronn, On the addition of residue classes mod p, Acta Arithmetika 7 (1964), 149-159.
2. H. B. Mann, The Addition Theorems of Number Theory and Group Theory, New York, Interscience Publishers, 1965.
3. H. B. Mann, and J. E. Olson, Sums of Sets in the Elementary Abelian Group of Type (p, p), Math Research Center, United States Army, Madison, Wisconsin.

Received November 27, 1967.
University of Eastern Michigan

[^0]: ${ }^{1}$ Relative to this conjecture, we mention an unpublished result of Mann and Olson (see [3]). They have shown that if G is a group of type (p, p) and a_{1}, \cdots, a_{m} are distinct elements of G, then $F(g)>0$ for every $g \in G$ if $m \geqq 2 p=2 \sqrt{|G|}$.

