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THE ADDITION OF RESIDUE CLASSES MODULO n

CHARLES RYAVEC

In the present paper, the following is proved:

THEOREM. Let au — ,am be m distinct, nonzero residues
modulo n, where n is any natural number and where

m ^ Svβΰ exp ίc V l o £ n X ,
I log log n J

where c > 0 is some large constant. Then the congruence

sidi + + εmam = 0 (mod n)

is solvable with ε{ = 0 or 1 and not all e* = 0.

The method of proof is completely elementary, in that it
is based upon well-known results concerning the addition of
residues modulo a natural number n and upon results from
elementary number theory.

In a recent paper by Erdos and Heilbronn (see [1]) the following
question is investigated. Let p be a prime and alf « , α m distinct,
nonzero residue classes modulo p, and N any residue class modulo p.
Let F(N) = F(N; p; aίy , am) denote the number of solutions of the
congruence

( 1 ) ε.a, + + εmαm = N (mod p) ,

where the ε̂  are restricted to the values 0 or 1. What can be said
about the function F(N)1 The authors prove the following result:

THEOREM 1. F(N) > 0 if m ^

They conjecture that the bound 2>VH>p in Theorem 1 is not best
possible: 3τ/6p can probably be replaced by 2]/p. On the other
hand, they show that the constant 2 cannot be replaced by any smaller
constant, as shown by the example

αx = 1 , a2 = - 1 , , am = ( -

Note that if m < 2 ( ι/p" - 2), F(l/2(p - 1) - 0.

The question which now arises is what can be said about F(N)
if the prime p is replaced by a composite integer ni Theorem 1 is
clearly false for composite n. In fact, even the bound m Ξ> — 1 + n/2
will not guarantee that F(N) > 0 for all N when n is composite.
The difficulty is that all of the a{ may have a prime factor in common
with n, in which case N = 1 could not be represented in the form
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(1). However, this predicament does not arise when we try to represent
0 in the form (1). Therefore, it is natural to ask what condition on
m will guarantee F(0) > 0 for all n. Erdos and Heilbronn conjectured
that F(0) > 0 provided m > 2Vn 1 and at a conference at Ohio State
University Erdos raised the question whether i^(0) > 0 could be proved
if one assumed the stronger hypothesis m > K-nill2)+ε, where ε is any
positive number, and K is some absolute constant.

Since the expression exp{c'(v/logn)/(loglogn)} is O(nε) for any
ε > 0, the theorem of this paper answers Erdos' question.

2* Necessary lemmas* In order to prove the theorem a number
of lemmas will be needed. They are rather straightforward modifica-
tions of those given in [1] for the case when % is a prime.

LEMMA 1. Let bu •• ,6Z be I distinct residues modulo %; and let
B(x) denote the number of solutions of

x = bi — bj (mod n)

with 1 <; i,j ^ I. Then B(x + y) ^ —I + B(x) + B(y); i.e.,

l-B(x + y)£(l- B{x)) + (I - B(y)) .

Proof. See [1], page 150.

LEMMA 2. Let 1 <̂  k <£ I <; n/2, n ^ 2 , and let dίy , dk be k

distinct nonzero residues modulo n such that (dif n) = l. Let bu , bι
be I distinct residues modulo n. Then there is an i, 1 ̂  i ^ k, such
that

Bid,) <l-k/Q ,

where B(di) is the number of solutions of

di = bs — bt (mod n) .

Proof. Let G denote the cyclic group of residues modulo n, and
let A = {0, d19 , dk}. Put r = 1 + [(2l/k)]. By I. Chowla's theorem
on the addition of residues modulo n (see [2], Corollary 1. 2. 4 (p. 3)),
one obtains

rA I ̂  rk + 1 ,
1 Relative to th i s conjecture, we mention an unpublished resu l t of Mann and

Olson (see [3]). They have shown t h a t if G is a g roup of type (p, p) and αi, '—fam

a r e dist inct e lements of G, t h e n F(g) > 0 for every gSG if m ^ 2p — 2v/\G \.
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provided jA Φ G for 1 ^ j ^ r. Hence, we obtain t ^ min (n — 1, r&)
distinct, nonzero residues c19 , ct modulo n which can be expressed
as sums of not more than r of the d$\ and the summands need not
be distinct

Since Σis.s* B(c9) ^ B(l) + + B(n - 1) = ί(ί - 1), there is an
s such that

n —
1) _ I I - 1 Z .

2 '- 21-1 2 l - i 2

i.e., I - B(cs) > 1/2.

By using induction on the conclusion of Lemma 1, we obtain

( 2 ) I - B(x, + + xt) ^ Σ (I ~ B(Xi)) .

By construction, cs ~ Σ<=i ε ^i ί (mod ^) is solvable with not all ε{ = 0.
Rewrite the above expression as c8 = Σί=i^i< (modn), where we have
suppressed those terms in the sum for which ε4 = 0. Applying (2) we
obtain

Therefore, one obtains a d€ such that

i - Bid,) > J->Σ> lΛ > A
V *' 2n ~ 2r ~ 2(jfc + 21) ~ 6

since 1 <Ξ rx ^ r.

Now let 1 ^ ώx < d2 < < d̂  <£ w — 1 be v distinct, nonzero residues
modulo n such that (^, ^) = 1. For 1 ^ u ^ v/2, consider all possible
subsets, Stt, of w elements from the set {du , d2J, For each subset
Sω, let L(Stt) denote the number of distinct residue classes modulo n
which can be obtained in the form e ^ + + ε2ud2uy where not all
εt = 0 and where ε4 = 0 or 1 and ε< = 0 if d{ is not in Su. Note that
determining L(SU), we do not include the residue class 0 unless it can
be expressed as the sum of ^u distinct elements of Su.

Finally, put L(u) = Max (L(SU)), where the maximum is taken
over all subsets, S%, of u elements from the set {dl9 , d2u}.
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LEMMA 3. Let du ,dv satisfy the properties in the above
definition. If

Sjdi + + £>Λ* = 0 (mod n)

implies that all s< = 0, then

( 3 ) L(u + 1) ̂  L(u) when u^l

( 4) L(u) ̂  u + 2 when u ^ 3 , /or w :> 4 .

Proof. (3) is obvious. In order to prove (4), it may be assumed
without loss of generality that the maximum, L(u), is obtained from
du > du, which are distinct modulo n by assumption. Also, d1 +
• + du is distinct from them by the assumption that

is impossible unless all e4 — 0. Now let T = {dx + dι\2 ^ i ^u}.
Each element of T is distinct from dι + + cϊtt, when w ̂  3, and
from dl9 It will be shown that at least one element of T is distinct
from all of du , du. This element, in addition to the u + 1 elements
du ' i duy dj_ + + dn will give u + 2 distinct residues modulo w,
which proves (4), provided u ^ 3.

So assume that no element of T is distinct from du "*,du, and
let d1 -\- di = djy where j is a function of i. It is clear that

since no two dj are congruent modulo ^ and none are congruent to
dx. Consequently,

i = 2
i + d^ = Σ dy (mod n) .

i2

Therefore, (u — 1)^ s 0 (mod w), which is impossible since (dlf n) — 1,
and

L E M M A 4 . L e i d l f « ,cίM, •• , ώ v satisfy the same conditions as
in Lemma 3. For 3 ̂  u ^ — 1 + u/2, either L(u) > n/2 or

+ 1) > L W + - ^ r ^ - .

Proof. If L(^) > Λ/2 we are finished. So assume that L(w) ^ n/2.
Now let Stt be a set for which L(tt) = L(SU). So we have L(u) distinct
residue classes 6^ , bUu) modulo n which are representable as sums
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of distinct elements from Su. We have v — u ^ 1 + v/2 ^ u + 2 other
elements d{ which are not in Su. Select u + 2 of these and, if
necessary, relabel them as du , du+2. Since l ^ w + 2 ^ L(u) <: n/2,
we can apply Lemma 2 to the sets {blf , δi(1()} and {dlf , dM+2}, where
k = u + 2,1 = L(u). Hence, we obtain an i, 1 <L i <^ u + 2 for which
B(di) < L(^) — (w + 2)/6, where 2?(tf{) is the number of representations
of di in the form

d{ = bό — bh (mod n) .

Putting Su+1 = Su U {d<}, we have

u + 2
- Bid,))

LEMMA 5. As before, let 1 ̂  d^ < < cίv ̂  ^ — 1 6e v distinct,
nonzero residues modulo n such that (d{, n) = 1. Then if v ^ 3i/ 6^,
ί/̂ e congruence

εjdi + + eudv Ξ 0 (mod n)

is solvable with not all et = 0.

Proof. Assume that ε ^ + . . . + εudv = 0 (mod w)

with ε< = 0 or 1, implies

that all e* = 0. We will then obtain a contradiction. By Lemma 4,
either L(u) > n/2 or

u2 + 3^ + 42
12

which is larger than n/2 provided u ̂  VΊϊn. Therefore, with u ^
we have L(u) > nj2 in either case. But we have v ^ SV"θn distinct
residues. Applying the preceding analysis to the more than 2\/~&n
remaining residues, we obtain L(u) > n/2 for this set also.

Therefore, we have two, not necessarily disjoint, sets each with
more than n/2 residues modulo n. Call these two sets A, B. By a
well-known argument, either A + B — G or

\G\ ̂  \A\ + | B | > Λ / 2 + Λ/2 = Λ .

Therefore, A + B = G; and we conclude that 0 is representable as the
sum of distinct elements from {du , dv}. This contradicts our
original assumption that 0 is not so represented. Therefore,

Mi + + £vd» = 0 (mod n)
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is solvable nontrivially.

3. Proof of theorem* For each divisor d of n, let Φ(d) =
{di I d = (α ,̂ w)}. Put Φ(d) — {cl9 , ch}, where h and the cό depend
on d, although this dependence is suppressed without loss of clarity.

For each cά e Φ(d), we have cs = dc'j9 where (n/d, cj) = 1. Further-
more, since the c5 are distinct modulo n, the c) are distinct modulo
n/d, and they satisfy

Therefore, by Lemma 5, if h >̂ 2>V§n/d, the congruence

βicj + + eAc£ = 0 (mod n/d)

is solvable nontrivially, in which case the congruence β^H hεAcΛ =
(modw) is solvable nontrivially.

So if m = Σd/n I <P(d) I ^ Σd/» 3 ^ 6 ^ , then for some d, Φ(d) will
contain more t h a n iλ/Qn/d distinct elements modulo n such t h a t
{(ajd), (n/d)} = 1. Thus, the congruence exax + + ε m α m = 0 (mod n)
will be solvable nontrivially.

We now obtain an upper bound for ^d/n3]/6n/d in terms of n.
Suppose pep 11 n. Then we have

Σ
din

= 3i/6w Π
pin
Π (i -

iPin

Put f(n) — Πp/* (1 — p~(1/2))~1 and choose the prime q = g(w) such that
^ = Πp̂ <? p ^ n < qf JJp^q p, where q' is the smallest prime greater than
q. Clearly f(η) ^ /(n) . Now

log (f(v)) = - Σ log (1 - P~(1/2)) - Σ P~(1/2) + 0(1)

Mog^

But log 7] — Σp^ g log p — δ(q) <^ log n. It is well known that there
exist positive constants a and β such that

aq ^

for all primes q. Hence, we conclude that logw ^ a-q. Also, y =
η q' > n, which implies that log rf > log w. But log)/ = δ(q') ^ /3^' =
βq(qΊq) ^ T̂ > f ° r some constant y > 0. Therefore, log # ^ Ti log log n;
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and so

~~ ~ I log log n> '

where c > 0 is some positive constant.
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