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A FAMILY OF FUNCTORS DEFINED ON
GENERALIZED PRIMARY GROUPS

RAY MINES

Let G denote an abelian group; G is called a generalized
p-primary group if ¢G = G for all primes ¢ + p. Let a be an
ordinal, and let J: G — E, satisfy the following four conditions:
(1) E, is p*Ext-injective, (2) p*E, =0, (3) ¢/G) is p*-pure in
FE,, (4) keré = p*G. Define p**G to be that subgroup of E,
such that p*(E,/0(G)) = p**G/o(G). If « is a limit ordinal, let
LAG)= (li_r_nfm G/p8G. Let

U@ = Ext (Z(p=),G) and U.G)= U@/pU@G).

Then we have the following p*-pure containments: G/p*G =
(@) € UG) € p**(G) & L U,(G), whenever « is a countable
limit of lesser hereditary ordinals, We have p**G = UJ/G)
for all groups G if and only if p* Ext is hereditary. From this
we obtain a new proof of the fact that p* Ext is hereditary
when o is a countable limit of lesser hereditary ordinals.
We also obtain an example of a cotorsion group G such that
G/p*G is not equal to L.G), thus refuting a conjecture of
Harrison, A group G is called generally complete if L.(G)/6(G)
is reduced for all limit ordinals a. A generalized p-primary
group G is generally complete if and only if it is cotorsion,

A result of Kulikov [7] will be studied and generalized, and an
application to the study of cotorsion groups will be given.

Troughout this paper the word “group” will mean “abelian
group”. The notation of [2] will be followed. The letter » will
indicate a prime.

The elements of the group Ext (A4, B) are equivalence classes of
extensions E:0— B— E— A—0. However, no distinction will be
made between equivalence classes and an element of the equivalence
class. Thus, it will be said that ¥ is an element of Ext (4, B). Also,
B will be considered as a subgroup of E. The arrow - will denote
a monomorphism, and the arrow -» will denote an epimorphism. The
element Ext (f, 9)E, for EcExt(A,B), f: B— B, and ¢g: A’ — A, will
be denoted by gEf. All other notation will be that used in Chapter
IIT of [8].

Recall that a subgroup H of a group G is said to be p*-pure in
G if the extension H —» G-» G/H is an element of p*Ext(G/H, H);
G/H is said to be a p*-pure quotient of the group G. A group G is
said to be p*-projective if p*Ext (G, A) = 0 for all groups A4; G is
called p*-injective if p* Ext (4, G) = 0 for all groups G.
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The functor p*Ext (-, -) is said to be hereditary (or shorter, « is
called a hereditary ordinal) if every p*-pure subgroup of a p*-projective
is p*-projective, or, equivalently, if every p*-pure quotient of a p*-
injective is p*-injective. In §3 a new proof will be given to show
that p* Ext is hereditary if «, is a countable limit of lesser hereditary
ordinals.

We shall use the notation \MG) to denote the length of G; i.e.,
the least ordinal a satisfying p*"'G = p°G.

1. The functor p*. In [9] it is shown that for all ordinals «
there exists an exact sequence

Z »>— G, —» Ha

such that for all group G the following hold.

(1) G >— G Ext (H,, G) —» Ext (G, G)
is exact, and Im (0) is p*-pure in Ext(H,,G). Here we have identified
G with Hom (Z, G) in the usual way;

(2) H, is a p°projective p-group, so p* Ext(H,, G) =0, and
Ext (H,, G) is p*-injective;

(8) The sequences for « and « + n are connected by

Z )‘Z)"’ Ga+n —» Ha+'n

L I

Z>—G, —H, ;
(4) If «a is a limit ordinal, then

H, =@ > H;;
f<a
(5) p°H,. is cyclic of order p and H, = H,,,/p*H,+, ;
(6) p°H, = 0.
Let p~°G denote &¢'(p* Ext (G., G)); then G/p*G = Imd is a p~-pure
subgroup of p*'G.

THEOREM 1.1. Let E be p*~injective such that p*E = 0, that
there exists a homomorphism 7v:G— E with kernel p*G, and that
Im~ a p*-pure subgroup of E. Let G* denote the subgroup of E
satisfying G*/v(G) = p*(E/v(G)). Then there exists an isomorphism
g: G — G*, such that go = .

Proof. For convenience in the remainder of this paper we will |
denote Ext (H,, G) and Ext(G,,G) by E.(G) and F,.(G), respectively,
or simply by E, and F, if no confusion can result. For this proof
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let E/v(G) = F. Replace Imv and Imd by G/p*G. Then the following
sequences are exact:

G/paG >—'>Ea—»Fa ’
G/p°G »—E —»F .

Before continuing with the proof we prove the following:

LemMA 1.2, If f, g are homomorphisms from E, to E (or E to E,)
such that f|G/p"G = g|G/p*G, then f|p*G = g|p“G (f|G* =g|G").

Proof. Assume f,g: E,— E, the proof for f,g: E— E, being
the same. Let A = f — g; then A(G/p*G) = 0. Therefore, # can be
lifted to a homomorphism A* of F, into E. Since p*E = 0, we have
h*|p*F = 0. Thus, h|p*G = 0; so f|p“G = g|p“G.

We now continue the proof of Theorem 1.1. Since E 18 p"-
injective, there exists a homomorphism g¢’: E,— E such that the
following diagram commutes.

G/p*G >— E, —>» F,

| o b

G/p*G »—> E —» F';

g arises in the usual way. Let g = ¢'|»“G. Since g(p*F,) & p°F,
it follows that g(p*G) < G*. Similarly, there exists a homomorphism
f': E— E, such that

G/p»*G > E —>» F

|l

G/p°G >»>— E,—>» F,

commutes. Let f = f"|G*; then clearly f(G*) < p“G. Consider
f'og: E,— E,. By Lemma 1.2

feg=[fog|p¥G =1, | p*G = 1p*G .

Similarly, gof =g¢'of’|s = 1,. Thus, ¢g is an isomorphism of
»*G — G*, and clearly gé = 7.

It follows that, if E is a p*injective having the following
properties:

(1) There exists a homomorphism v: G — E with ker v =p*G and
Im v p*-pure in E;

(2) pE=0,
then p”G can be taken as the subgroup of E with the property that



352 RAY MINES

PG (G) = p*(E[1(Q)).

Let U(G) = Ext (Z(p~), G) and UG) = UG)/p*U(G). In [11] it
is shown that for all ordinals «, U,(G) is contained in p*'G and
8(G) S UG). In [11] Nunke has shown that a is a hereditary
ordinal if and only if UJ(G) = »*(G) for all groups G.

The remaining part of this section will be spent in proving the
following theorem.

THEOREM 1.3. Let a be an ordinal such that for all v < a there
exists a hereditary B with v < 8 < a. Then p*G < lims, Us(G).

The proof of this theorem follows from a series of lemmas. We
first observe that {Ux(G),7?} is an inverse system, where for
B > v wk: Us(G) — U,(G) is the natural projection with kernel p’U/(G).

LEMMA 1.4. Let B and v be ordinals with v < B. Then there
exists a homomorphism =t p"G— p”"G agreeing with the natural
projection of G/p°G onto G/p’G when restricted to G/p°G. Moreover
of @« < B <7, then wnini = ny.

Proof. The extensions
G/p°G >— Es —>» F
and
G/p’G >— E, — F,

are p’-pure and p’-pure, respectively. Since B> v, the top extension
is also p’-pure. As E, is p’-injective, there exists a map g/ of Ej
into E, such that the following diagram commutes:

' G/Pp*G

J

G/p°G — E;— F}

NN

G/lpG — E,— F,

where 7 is the canonical projection. The homomorphism A\ arises in
the usual way. Define #¢ by nf = ¢ | p*G.

As in the proof of Theorem 1.1, Im ¢ is contained in »"G, and,
as in Lemma 1.2, the homomorphism is unique. If a« < 8 < v, then

let pif = pelpes.
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LEMMA 1.5. Let B and v be ordinals with 8 <. Let w denote
the canonical projection of G[p°G onto G/p’G. If w8 is a homo-
morphism of UyG) into p(G) agreeing with © on G/p°G, then w} is
the canonical projection of Us(G) onto U, G).

Proof. Let p denote the natural projection of U,(G) onto Ux(G).
Consider the homomorphism z{ — ¢, On the group G/p°G the homo-
morphism 7? — g = 0. Thus, there exists a homomorphism \: Us(G)/6(G)
into p(G) such that the following diagram commutes:

Us(G) — Us(@)/6(G) -

”5 - l /,1/
G

Since p'(p"G) = 0 and Uy(G)/6(G) is divisible, » must be the zero
homomorphism. Thus #f — ¢ = 0.

LEMMA 1.6. If vy < B and B is a hereditary ordinal, then the
homomorphism 7t: p¥'G — p"G defined in Lemma 1.4 is the matural
projection of Uy(G) onto U,(G).

Proof. If B is a hereditary ordinal, then p#G = Uy(G). Lemma
1.5 completes the proof.

Let a be a limit ordinal. Then the group H, is Xz . Hz. This
shows that the group E, = ;.. E;, since

E, = Ext(H,, @) = Ext (3H,, G) = Il Ext (H,, G) = I E; .

The homomorphism 6: G — Ej can be defined in terms of 8, G — Ej
by o(x); = ds(x). Then the homomorphism p§ used in the proof of
Lemma 1.4 can be taken as the natural coordinate projection. So
the intersection over all 8 < a of Ker 7§ is zero.

THEOREM 1.7. If « is a limit ordinal, then the set {p*'G, i},
18 an itnverse system, and there is an isomorphic copy of p*G in
lim, ., p*'G.
—

Proof. Lemma 1.4 shows that {p”G,nf} is an inverse system.
The homomorphisms 7§: p*°G — p**G gives a family of maps of the
group p<°'G into this inverse system satisfying nfn§ = 72, Thus,
there is a homomorphism p: p*G — lim,., p*G. The ker # = Ns<a
kerni = 0. Thus, ¢ is a monomorphi;rri

We are now in a position to prove Theorem 1.3.



354 RAY MINES

Proof of Theorem 1.3. We will show that for all v < a the
image of m¢ is contained in U,(G). Let v < «; then there exists a
hereditary ordinal 8 such that v < 8 < a. Since p*G = Uy(G), it
follows that the image of 7§ is contained in Uy(G). Lemma 1.4 and 1.5
show that 77 maps p*'G into U,(G). Since {U,(G),nf} is an inverse
family and nirj, it follows that there exists a homomorphism

2 p*G — lim,., Uy(G) .
As in the proof of Theorem 1.7, ker £ = 0. Thus ¢ is a monomorphism,

COROLLARY 1.8. The group G/p*G is a p*-pure subgroup of the
group limg., Uy(G).

Proof. Since I, ., Uyu(G) S E,, it follows that lim, ., U,(G) S E,.
P—
The group G/p*G is a p*pure subgroup of E,, and

G/p*G < p*G & lim,., Us(G) .

2. The functor L,. Let G be a group and « a limit ordinal.
Then the family {p?G};., forms a neighborhood system at zero for the
group G. This topology will be:called the natural topology. If the
length of G = M@) = a, then the topology is a Hausdorff topology.
If a#X\(G), then {p*G};., leads to a topology on G/p*G, given by
{p°G/p*G}s<.. This topology is a Hausdorff topology on G/p*G. The
family, {p°G}s<., leads to a uniformity on G, respectively G/p°G.
Therefore, we can consider the completion of G, (G/p*G) with respect
to this uniformity. Let L.(G) denote the completion of G if MG) = «,
or completion of G/p*G if MG) > a.

In [12], Zelinsky showed that L.(G) = }_i_r_rlka G/p*G. We remark

that notation L.(G) is consistent with the notation used by Harrison
in [4]. Let m;: L(G) — G/p*G be the natural projection of lim G/p°G
onto G/p*G. A base for the topology on L.G is given by {I;Er_ﬂﬂ}p<a.
We shall call this topology the induced topology. We shall now
study the functor L, on the following class of groups introduced by
Kulikov in [6] and [7].

DEFINITION 2.1. A group G is a generalized p-primary group
(g.p. group), if G is divisible by all primes other than p.
The following theorem is due to Kulikov [7].

THEOREM 2.2. Let G be a g.p. group. Let a be an ordinal less
than or equal to the length of G, satisfying the following condition:



FUNCTORS DEFINED ON GENERALIZED PRIMARY GROUPS 355

(*) There exists a countable increasing sequence of ordinals whose
limit 1s a.

Then if 6 1s the matural map of G into lim,., G/p’G, with
kernel equal to p°G: -

(1) @G + p°L(G) = LAG), for all B < «;

(2) LJG)éG) is divisible;

(8) 4(G) N P’LAG) = pPo(G) for all B < a;

(4) G/p°G = L(G)/p’LGR), for all B < a.

Notice that condition (1) states that 6(G) is dense in L.G) in
the natural topology; and condition (4) shows that L.(G) is complete
in the natural topology, since

L{LG)) = limyc, Lo(G)/P’Lo(@) = lim G/p’G = Lu(G) .

We will show that conditions (1), (2), and (4) are equivalent and
that when they happen, the natural topology and the induced topology
on L.,G) are the same. However, we first shall prove the following.

THEOREM 2.3. If G is a g.p. group and « is a limit ordinal,
then G/p*G is p*-pure in L,(G).

Proof. Since G/p*G is contained in FE;, it follows that
LAG) € lI;..G[p°G < IIE; = E, .

The embedding d: G — L. (G) is the map, 6: G — E,, with its range cut
down to L.(G). Since G/p°G is a p*-pure in E,, the theorem follows.

Notice that this theorem generalized condition (3) of Kulikov’s
theorem.

THEOREM 2.4. If G is a g.p. group and & is a limit ordinal less
than or equal to the length of G, then the following are equivalent:

(1) o(G) ts dense in L,G) in the natural topology; 1i.e.,
HG) + PPLAG) = L(G) for all B < a.

(2) LJG)/(G) 1s divistble.

(8) P°LAG) = kerm, for B < a, where my is the natural pro-
jection, L (GR), onto G/p*G; i.e., the natural topology and the induced
topology are the same.

Proof. First we shall show that (1) implies (3). Note that
;L (G) S G/p’G; it follows that p’L,G < kerw,. If x<ckerm, then
r=y +2 with yed(@ and zep’L,G. Then zekerm,. Thus,
yed(@) Nkerm, = pG. It follows that «ep’G + »’L.G = p°L.G.
Thus, ker 7, = p’L,(G).
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We will now show (3) implies (1). A neighborhood system for
L,(G) in the product topology is given by {kerz,|B < a}. If condition
(3) holds, then {p’L,G|B < a} is a neighborhood system for L.G. The
group 6(G) is dense in L,(G) in the product topology. If condition (3)
holds, then 6(G) is dense in L,(G) in the natural topology.

In order to show (1) is equivalent to (2), we first observe that,
since G is generalized primary, all groups in question are divisible
by all primes other than p. Thus, it only has to be shown that
0(@) is dense in L. (@) if and only if L.(G)/6(G) is a p-divisible. The
proof of this fact follows from a series of lemmas.

LEMMA 2.5. If B<a and my is the map defined in (3) of Theorem
2.4, then L,G = 6(G) + ker m,.

Proof. If xe L,G, then there exists y € G such that y + p°G =
ws(x). Then 6(y) — x € ker 7;.

LeEmmA 2.6. Let G, L,G, 7 be as above. If xeckermy and the
image of x in L (G)/0(G) 1is in p*(L.,G[0(QR)), then x e p°L(G).

Proof. The proof is by induction on 8. If & =1, then 7,(x) =0,
and « maps into p(L,G/6(G)). Thus, there exists a y € L,(G) such that
x + 0(G) = py + (G), and so x — pyed(G). Since w(x — py) =0,
x — py e ker r, N 0(G) = pd(G). Thus, there exists a ze G such that
x — py = pi(z), or x = p(y + 0(2)) € pL.G.

If B> v, then let ¢ be the natural projection of G/»°G — G/p'G.
If B=v+1, then 0= 7! 7y(x) = 7,(x). So xzekerw, and x maps
into »"(L.G/0(G)). Hence, zecp'L,(G). We must show xep*(G).
Since x € p*[L,(G)/6(G)], there exists a y’ € L,(G) such that

Y + 0(G) e p'(L(G)/3(G)) and =+ (G) = py’ + 4(G) ;
thus, 2 — py’ € 8(G). Since x e p'L(G), we see that
& — py’ € pL.G N 4(G) = pi(G) ;

so v =p(y +2) for some z2e¢d(G). Let y =% + 2. Then = = py
and y + 0(G) = ¥ + 0(G) € p"(L.(G)/6(G)). By Lemma 2.5, L. (G) =
0(G) + kerm,. So there exists y"” ekerr,, g€d(G), such that y =
y" + 9. Then y” + 6(G) = y + 8(G) € p'(L(G)/6(G)). Thus, y” € p"L.(G)
by the induction hypothesis. It follows that py” e »’L.G < ker x,.
Thus, pg = © — py” ckerr;, so pg € d(G) ker 7, = p?6(G), and we see
that x € p°L.(G).
Let B be a limit ordinal. Then

T(x) — mims(®) = 0, and = + 6(G) € PP(L(G)/0(®) S P'(L(@)/3(G)) .
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So by the induction hypothesis we see that x € p"L.(G) for all v+ < 8,
and thus z € Ns<r P L(G) = p°L(G).

We can now show the equivalence of conditions (1) and (2) of
Theorem 2.4. Since L. (G) = 6(G) + kerw;, we see that every element
of p*(L.(G)/6(G)) is the image of an element of ker m;,., Lemma 2.6
then assures us that every element of p*(L.(G)/6(G)) is the image of
an element in p°L.(G) under the homomorphism

PPL(G) — (8(G) + p*L.(G))/0(G) .
Since ((G) + PPL(G))/0(G) & P*(L.(G)/6(G)), it then follows that
(0(G) + PPL(G))/0(G) = p*(LG)[6(G)) .

If L.(G)/0(G) is p-divisible, then p*(L.(G)/d(R)) = L(G)/6(G); and so
L.(G) = dG) + »°L,(G). Conversely, if L.G) = 6(G) + p’L.(G), then
P (LA@)/6(R)) = L.(G)/6(G). This completes the proof.

3. Some applications. The following definition is due to
Harrison [4].

DEFINITION 3.1. A g.p. group is called fully complete if L.G =
G/p*G for all limit ordinals « less than or equal to the length of G.

Harrison [4] conjectured that a g.p. group is cotorsion if and
only if G is fully complete. Using Theorems 1.3 and 2.4, we can find
an example of a g.p. cotorsion group G which is not fully complete.

Let 2 be the first uncountable ordinal. Nunke [11] has shown
that p? Ext is not hereditary. Therefore, by Proposition 4.1, [11] and
Theorem 13 we have that U, (G)&»"G S L,U,G), for some group G.
The group U,(G) is a g.p. cotorsion group and is not fully complete.

Let Z > G,—» H, define p°. Let M, be the torsion subgroup of
G,. Nunke [11] has shown that M, is not p° Ext-projective. In
showing that « is hereditary if and only if U/(G) = »*(G) for all
groups G, Nunke actually showed that U,(G) = p*(G) if and only if
p* Bxt (M,, G) = 0, for G fixed.

LEMMA 3.2. p? Ext (M,, Tor (M,, M,)) # 0.

Proof. 1In [11] it is shown that
Mg__ Mp
]
Z > Gg —» Hg

L

Z > Q, —» Z(p~)
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is exact and the last column is p“pure. Here @, = {a/bcQ|b = p"
for some n}. From this we obtain

(Tor M,, M,)

l

(Tor Hp, M) — M,®Z—2 M, @Gy

g |

M, = Tor (Z(p~), My) — M, Q Z .

Here B is the zero map; for if t @ ne M, Q Z, then Bx Q n) = 2@ n.
However, nep°G,. Thus 2@n =0 in M,QG,. Thus 7 is onto.
By Theorem 3.9 of [9], the sequence

E: Tor (M,, M,) — Tor (H,, M,) — Tor (Z(p~), M,) = M,

is p%pure. Since M, is not p-projective, M, is not a summand of
Tor (H,, M,), Theorem [3.1] of [9]. Thus E #+ 0, and

p? Ext (M,, Tor (M,, Mp)) = 0 .

This shows that p*(Tor (M,, M,)) = Uy(Tor (M,, M,)). So, the group
Uy (Tor (M,, M,)) serves as a counter example to Harrison’s conjecture.

We are now in a position to examine condition (*) of Theorem
2.2. Let G = Uy (Tor(M,, M;)). Then L,G/G +# 0. Also, as L,G and
G are cotorsion, L,G/G is reduced. Theorem 2.4 now tells us that
conditions (1), (2), and (4) of Theorem 2.2 do not hold. It follows
that if « is not a countable limit of lesser ordinals, then G need not
be dense in L,G in the natural topology. Also, the induced topology
on L,G need not be the natural topology on L.G.

DEFINITION 3.3. A g.p. group G is called generally complete
provided L.(G)/6(G) is reduced for all limit ordinals « less than or
equal to the length of G.

Notice that if the length of G = M(G) is less than 2 and if G is
generally complete, then G is fully complete.

THEOREM 3.4. A mecessary and sufficient condition for a g.p.
group to be cotorsion is that it be gemerally complete.

Proof. Let G be g.p. cotorsion group. Then G/p*G is cotorsion
for all 8. By Theorem 5.3 of [9], L.(G) is cotorsion. It follows
that L.(G)/6(G) is cotorsion and so reduced. Therefore, G is generally
complete.

Let G be a g.p. generally complete group. Then G/p?G is generally
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complete for all 8. We will show by transfinite induction on « that
G/p*G is cotorsion for all @. If a =0, there is nothing to prove.
Let « = B8 + 1 for some ordinal 8. The sequence p’G/p*G » G/p*G-»
G/p*G is exact with ends cotorsion groups. Therefore, G/p°G is
cotorsion. Let a be a limit ordinal. Then, since G is generally
complete, L(G)/6(G) is reduced. The group L.(G) is cotorsion, since
by the induction hypothesis it is an inverse limit of cotorsion groups
by Theorem 5.3 of [9]. Therefore, 6(G) = G/p*G is cotorsion.

This last theorem answers Question 3 posed by Fuchs in [3].

In [11] Nunke showed that p* Ext is hereditary, if a is a limit
ordinal less than 2. In proving this he relied heavily upon Ulm’s
theorem. We now give a proof of this theorem which does not use
Ulm’s theorem.

THEOREM 3.5. If « is an ordinal which satisfies condition (*)
of theorem 2.4, then p* Ext is hereditary.

Proof. Since « satisfies condition (*) of Theorem 2.4 L, U (G)/U(G)
is divisible. However, L, U,G) and U,G) are cotorsion groups;
therefore, L,U.(G)/U(G) must be reduced. Thus, L,U(G) = U,G),
for all groups G.

Let B be a hereditary ordinal; then # + » is also hereditary
Proposition 4.2 of [11]. If a < 2, Proposition 4.1 of [11] and Theorem
1.3 give the desired result. If @ = Q, then @ + @ + n is hereditary
if n is any integer, by Proposition 4.2 of [11]. This fact together
with Theorem 1.3 give the desired result.

We remark that for all other ordinals 8 p® Ext is not hereditary.
A proof of this fact may be found in [11].

The author wishes to thank Professor Ronald J. Nunke for his
encouragement and valuable suggestions.
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