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ABSOLUTE ( C I H M A O SUMMABILITY OF A
FOURIER SERIES AND ITS CONJUGATE SERIES

H. P. DIKSHIT

In the present paper we have established theorems con-
cerning absolute (C, 1) (JV, pn) summability of a Fourier series
and its conjugate series. Incidentally these theorems include
as special cases previous theorems on the | C |-summability of
Fourier series and its conjugate series due to Bosanquet and
Bosanquet and Hyslop.

l Definitions and notations* Let Σan be a given infinite series
with the sequence of partial sums {Sty. Let {pn} be a sequence of
constants, real or complex, and let us write Pn = p0 + Vι + + Vn)
P_, = v~, = 0.

The sequence-to-sequence transformation:

(1.1) tn = ± puSζ-JPn = Σ Pua»-JPn (Pn Φ 0) ,

defines the sequence {tn} of Norlund means [9] of the sequence
generated by the sequence of coefficients {pn}. The series Σan is said
to be summable (N, pn) to the sum £f if lim^̂ oo tn exists and is equal
to £f, and is said to be absolutely summable (N, pn) or summable
\N,pn\ [8], if the sequence {tn} is of bounded variation, that is, the
infinite series Σn I *• — *n-il < oo.1 In the special case in which

( 1 2 ) Λ = ( « _ i ) = r o ( α > - 1 )

the Norlund mean reduces to the familiar (C, a) mean.
The summability \N,pn\, where {pn} is defined by (1.2), is the

same as summability | C, a |.
The conditions for the regularity of the (N, pn) method of sum-

mation are

(1.3) \impn/Pn = 0 and Σ | p * | = OflPJ) , n~+ ex..
fc 0

We define the (C, 1) (JV, j)w) mean of {Sζ} as the (C, 1) mean of
{ίΛ}, the sequence of Norlund means of {Sζ\. We write ti and u\ for
the (C, 1) means of {tn} and {un} = {n(ίw — ίn_i)}, respectively. Thus
the (C, l) (iSΓ,pn) mean of {Sζ\ is

1 Symbolically, {tn}eBV. Similarly by 'f(x)eBV(a, 6)' we mean that /(a?) is a
function of bounded variation in the interval (α, b) and by {^}Sΰ that {γn} is a
bounded sequence.
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(1.4) ti = ± tj(n + 1) .

The series Σan is said to be summable (C, 1) (N, pn) to the sum t
if lim^oo t\ exists and is equal to t and is said to be absolutely summable
(C, l) (iV, pn) or summable | (C, Ϊ)-(N, pn) |, if Σ I «i - *U l < °°.

Let /(£) be a periodic function, with period 2π and integrable in
the sense of Lebesgue over ( — π,π). We assume without any loss of
generality that the constant term in the Fourier series of f(t) is zero,
so that Γ f(t)dt = 0, and

(1.5) /(ί) ~ Σ K cos nt + δ, sin nt) = Σ Aw(ί) .

Then the conjugate series of (1.5) is

(1.6) Σ (6. cos nί - an sin wt) = Σ 5,(t) .

We write throughout:

ψ(t) = hf(x + t)+ f(x - t)} f(t) - hf(x + t ) - f(x - t)}
Δ Δ

ψί{t) = t-'Φtf)

Rn = (np,)/Pn

SM = Σ Pv(y + l)-1/^. ΛΛ = / . - Λ+i

T = [π/t]9 i.e., the greatest integer contained in π/t.
K, denotes a positive constant not necessarily the same at each

occurrence.

2* Introduction* Astrachan has proved the following theorem
for the (N, pn) (C, 1) summability of a Fourier series.

THEOREM A2. The (N, pn) (C, 1) mβίfeod is Ka-effective (0 < α ^ 1),
provided the generating sequence satisfies the conditions

(2.1) {R.}eB,

(2.2)

2 Astrachan [1], §11, Theorem II. In Astrachan's notations (N,pn)'(C,ϊ) is
denoted by (N, p%) Cι. In [4] the present author has indicated and supplied a defi-
ciency in the proof of this theorem.
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and

(2.3) {±kr*\Pk\/Pn}eB.

Theorem A implies inter alia that the Fourier series of f(t) is
summable (N,pn) (C, 1), at every point t = x9 at which l im^ ^(ί) =

Since bounded variation is the property associated with absolute
summability in the same sense in which continuity is associated with
ordinary summability it may be expected that the bounded variation
of φλ(t) over (0, π) along with the bounded variation of sequences in
(2.1)-(2.3) may be sufficient to ensure the | (C, Ϊ) (N, pn) | summability
of the Fourier series of f{t), at t = x. That, this is indeed, true,
in one of the most important cases: when {pn} is a positive, monotonic
nonincreasing sequence, is established in our Theorem 1. Since in this
case if {Rn} eBV then the sequence in (2.2) is automatically of bounded
variation and {Sn}eBV is equivalent to Pncn = 0(1) ([14]; [12]) which
in its turn is equivalent to {Sn} e B ([12]; [13]), therefore the hypotheses:
{Rn}eBV and Pncn = 0(1), or equivalent^, {Rn}eBV and {Sn}eB,
are sufficient to ensure the | (C, l) (iV, pn) | summability of the Fourier
series at a point.

Incidentally, the following form of a result of Bosanquet follows
as a corollary from our Theorem 1, when we observe that the (C, δ)
mean is a special case of the (N, pn) mean and appeal to Kogbetliantz
[6].

THEOREM B [2]. i/^(i)G5F(0,7r), then the Fourier series of
/(£), at t = x, is summable \ C, 1 + δ |, for every δ > 0.

Concerning the \N,pn\ summability of the conjugate series Pati
has recently proved the following theorem.

T H E O R E M C [ 1 2 ] . If ψ(t) G S F ( 0 , π), ( V 1 1 ψ(t) \dt^K and {pn}
Jo

is a positive sequence such that {Rn} eBV and {Sn} eBV then the
conjugate series of the Fourier series of f(t), at t — x, is summable
\N,pn\.

The object of our Theorem 2 and Theorem 3 is to study the
! (C, 1) (N, pn) I summability of the conjugate series under each of the
two conditions on ψ(t) used in Theorem C. We observe here that
our Theorem 2 and Theorem 3 contain as special cases the following
two theorems of Bosanquet and Hyslop on the ] C | summability of
the conjugate series, respectively.
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THEOREM D 3 . / / I t~ι \ ψ(t) \dt <; K, then the conjugate series of
Jo

the Fourier series of f(t), at t = x, is summable \C, 1 + δ\, for
every δ > 0.

THEOREM E4. // ψ(t)eBV(0,π), then the sequence {nBn(x)} is
summable \ C, 1 4- δ \, for every δ > 0.

3* We establish the following theorems.

THEOREM 1. If φt(t) eBV(0, π) and {pn} is a positive, monotonίc
nonincreasing sequence, such that (i) {Rn} eBV and (ii) {Pncn} eB, then
the Fourier series of f(t), at t — x, is summable \(C,l) (N,pn)\.

THEOREM 2. If \ t~ι\ ψ(t) \dt <* K, and {pn} satisfies the same

conditions as in Theorem 1, then the conjugate series of the Fourier
series of f(t), at t — x, is summable \ (C, l) (iV, pn) |.

THEOREM 3. If ψ(t) eBV(0, π) and {pn} satisfies the same condi-
tions as in Theorem 1, then the sequence {nBn(x)} is summable
\(C,l)-(N,pn)\.

4* We require the following lemmas for the proof of our theorems.

LEMMA 1 [7]. // {qn} is nonnegative and nonincreasing, then
for 0^a^b^oof0^t^π, and any n

b

X qk exp {i(n — k)t)
k=a

where τ = [π/t] and Qm = q0 + q1 + + ?m

LEMMA 25. If {pn} is a positive sequence and (i) and (ii) holdf

then uniformly in 0 < t ^ π,

{PnPk - PuPt)fάn (n-k)t

W P W _ ! I *=o n - k

5* Proof of Theorem 1* We have by a well known identity
of Kogbetliantz [6],

3 Bosanquet and Hyslop [3], Theorem 1, when a = 0.
4 Bosanquet and Hyslop [3], Theorem 5.
5 Pati [12] and Varshney [14]. For a more general result see Dikshit [5].
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Therefore, in order to prove the theorem, it is sufficient to show that

Σ n~ι\ K\ ^ K .

Now, as in Pati [10], for the series (1.5), we have

tn - tn_, = - Γ { p I Σ(P»P* - VnPk) cos (n - k)t)φ(t)dt .
π Jo I PnPn^ κ=o )

Hence

nrHii - - Γ { . X ,. Σ ^ — Σ (PvP* ~ P Λ ) COS (v - k)t\φ{t)dt
π Jo I n(n + 1) =̂i P,P^X =̂o J

- AfV(n, t)φ{t)dt ,
7Γ Jo

where

(5.1) g\n, t) = \ Σ ^ — Σ (PA - PΛ) COS (V -
^ ( t l + 1) v=l P^P^ k=Q

Integrating by parts, we get

['φ(t)gι(n, t)dt = [Φ&Win, t)]l - [φ^t)4τ^n> Qdt

Jo Jo dt

^^in, tήφi(t)dt

f %A^n, u)du\
o d ^ Jo

But

S ί rZ f *

u-—g1(n, u)du = ί^ι(^, ί) - \ ^(^,
o du Jo

Thus

j*φ(t)g\n, t)dt = ̂ {tg'in, t) - JV(^,

and therefore,

£ Σ w"1 KI - Σ I Γίίβr1 ,̂ ί) - (W, w)
2 n n I Jo I Jo

lt) I | ί Σ I ff1^, ί) I + Σ I jV(n, «)<«wI} ,
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since by hypothesis, I | dφγ(t) | <; K, it suffices for our purpose to show
Jo

that, uniformly in 0 < t ^ π,

(5.2) tΣ\g\nrt)\SK,
n

and

(5.3)

In order to establish (5.2), we prove that uniformly in 0 < t <̂  π

(5.4) tΣ
n

Now, we have

, ^ 1

+ 1)
exp {i(v - k)t) < K.

»=i n(n
exp

n(n

v—l

Σ
k=0

exp [ι(v -

pk} exp {ι'(y — k)t)

(5.5)
»=1 % ( %

+ ί Σ

+ ί Σ

Σ

Σ

Σ

RJ)Pk exp

Σ {v - k)pk exp {i(v - k)t)
* »
Σ

Σ (y - Λ)P* exp {i(y - k)t)
k=0

say.
We write

(5.6)

*=i %(W + 1)

^ 1
" i n(n + 1)

iΓ-
! l - θ x p ΐ ί | έ i n(n

l/—1

Σ

Σ ^-B, Σ Pk exp {i(v - k)t]
μ=0 k=0

Σ^-ΣP4exp{ί

^ 1 A 1

by Abel's Lemma,
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by virtue of the hypotheses (i) and (ii).
Next, since | exp {i(n — k)t} \ <£ 1, therefore

(5.7) ^ ί Σ

In Σz changing the order of summation of the inner sums, we get

V 7 J. ' ^~ 1 -*-

(5.8)
n(n

n—1 1 v

Σ ^ Σ (y - fc + l)pfcexp{i(i; - fe + l)t}
0 P fe0

I exp it I ΐpϊ v - k + 1

Now, by AbePs transformation

N£ — Z — Z — exp {i(v — k)t)

exp {i(v — k)t)

= Σ Λ( „ + Σ exp {i(μ - k)t)

Σ exp {i(^ -
*

= (1 - exp iί)-

exp

= (l-exp^r[-Σ-p^

n—ί I

- exp {i(υ - k

exp {<(y - A; + l)ί}

— A; + 1
exp {i(w - &)<} + — .

Thus, from (5.8), we get

n>τ n(n
Σ ?>* Σ -k + 1) exp {i(υ - k

n—ί n—l

Σ,.-^-exp{i(v-k + l)t}
v + 1
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(5.9)
n(n + l)Pn

1 g
w(?ι + 1) fc=°
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n—ί I

Σ Pk(n — k + 1)exp{i(n — k)t}\
fco I

= ΣZ

say.
First changing the order of summation of the inner sums and

then breaking the range of v, we get

v^v+1 *='

τ~~ί R

n(n

1 n~1 P

(5.10)

tl(^ + 1)

1 ϊ^1

max - λ + l)ί}

by AbeΓs Lemma,

1 + ^Pr Σ
+ 1) ίΞi- Γί^r Λ(Λ + 1) « Py

 7

by virtue of hypothesis (i) and Lemma 1,

n>τ n(n + 1) τΣ-i- Σ

^ K +

by the hypothesis (iί).
Similarly,

r—1

Σ
r/=0

(5.11)
»>Γ Λ ( Λ w P

exp {i(y - A; + l)ί}

+1)
Σ

P

by the technique used in showing (5.10).
Applying AbeΓs Lemma, we get
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(n + l)nPn

Σ pk(n - k + 1) exp {i(n - k)t}

max(5.12)

by virtue of Lemma 1 and the hypothesis (ii).
Finally,

*=o Pk

(5.13)

since (k + ΐ)pk ^ Pk

Combining (5.9)-(5.13), we get that Σz ^ K. This result combined
with (5.6) and (5.7) proves (5.4) and a fortiori (5.2).

Lastly, in order to establish (5.3) we have to show that uniformly
in 0 < t ^ 7Γ,

Now

y
v

1 PvPv-l

1

v—1

i—1

Σ«

P>*k
s i n

v-k

v-k

1

»=» n(n + 1)

v - ft

by virtue of Lemma 2.
This completes the proof of Theorem 1.

6. Proof of Theorem 2. As in Pati [11], for the conjugate
series (1.6), we have

s i n ( w ~ dt

and therefore,
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Thus
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n . , i/—1

sin (y - k)t\dt .
J

, Σ
n(n + 1) »=!

Σ sin (υ -

x V (P n *n P \ QiTi (\3 lr\t 1/7/
k=0 I J

Hence by vir tue of the condition t h a t I t~ι \ ψ(t) \dt <L K, it is sufficient
Jo

to show that uniformly in 0 < t ^ π

+ 1)
sin

in order to prove the theorem.
This follows directly from (5.4), which has been proved in the

previous section. This completes the proof of the theorem.

7* Proof of Theorem 3. Since

nBn(x) = —l ψ(t)n sin ntdt ,
π Jo

therefore for the sequence {nBn(x)}, we have

7Γ t-o
- *) sin (n - k)tdt .

Hence

7Γ 1)

x [πψ(t)(v - k) sin (v - k)t dt
Jo

Integrating by parts, we get

V n-11 u1 I - —
π
x

+ 1)

Γ{cos(y - /c)ί - l}df(ί)
Jo

Vk
y
^ n(n + 1

x {cos(υ -k)t - l}\\\dγ(t)\ .
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S ir

ci-f(ί) I 5Ξ K, to prove that
0

it is enough to show that uniformly in 0 < t S π,

Σ v ± (-§- -
• »(» + 1)

Applying the Abel's transformation to the inner sum, we get

Therefore, in order to prove our theorem, it is sufficient to show that
uniformly in 0 < t <; π,

I sin (ί/2) Iv» n(n + 1) Σ p p

x Σ (P.P» - V.Pk) sin (v - k - -£•

which follows directly from (5.4).
This completes the proof of Theorem 3.

My warmest thanks are due to Professor T. Pati, of the University
of Jabalpur, for his kind interest in the preparation of this paper.
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