EXTENSIONS OF OPIAL'S INEQUALITY

P. R. Beesack and K. M. Das

In this paper certain inequalities involving integrals of powers of a function and of its derivative are proved. The prototype of such inequalities is Opial's Inequality which states that $2 \int_{0}^{x}\left|y y^{\prime}\right| d x \leqq X \int_{0}^{x} y^{\prime 2} d x$ whenever y is absolutely continuous on $[0, X]$ with $y(0)=0$. The extensions dealt with here are all integral inequalities of the form

$$
\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq K(p, q) \int_{a}^{b} r\left|y^{\prime}\right|^{p+q} d x
$$

(or with \leqq replaced by \geqq), where r, s are nonnegative, measurable functions on $I=[a, b]$, and y is absolutely continuous on I with either $y(a)=0$, or $y(b)=0$, or both. In some cases y may be complex-valued, while in other cases y^{\prime} must not change sign on I. The inequality (as stated) is obtained in case $p q>0$ and either $p+q \geqq 1$ or $p+q<0$, while the opposite inequality is obtained in case $p<0, q \geqq 1, p+q<0$, or $p>0, p+q<0$. In all cases, necessary and sufficient conditions are obtained for equality to hold.

1. In a recent paper [11], G. S. Yang proved the following generalization of an inequality of Z. Opial [7]:

If y is absolutely continuous on $[a, X]$ with $y(a)=0$, and if $p, q \geqq 1$, then

$$
\begin{equation*}
\int_{a}^{x}|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq \frac{q}{p+q}(X-a)^{p} \int_{a}^{x}\left|y^{\prime}\right|^{p+q} d x \tag{1}
\end{equation*}
$$

Yang's proof is actually valid for $p \geqq 0, q \geqq 1$. For $p=q=1, a=0$, (1) is Opial's result. (See also Olech [6], Beesack [1], Levinson [4], Mallows [5], and Pederson [8] for successively simpler proofs of Opial's inequality; as well as Redheffer [9] for other generalizations of this inequality.) The case $q=1, p$ a positive integer, was proved by Hua [3], and the result for $q=1, p \geqq 0$ is included in a generalization of Calvert [2]; a short, direct proof of the latter case was also given by Wong [10]. If $q=1$ the inequality (1) is sharp, but it is not sharp for $q>1$.
2. The purpose of this paper is to obtain sharp generalizations of (1), and to consider other values of the parameters p, q; the method of proof is a modification of that of Yang [11]. To this end, we suppose first that y is absolutely continuous on $[a, X]$, where $-\infty \leqq$ $a<X \leqq \infty$, and that y^{\prime} does not change sign on (a, X), so that

$$
\begin{equation*}
|y(x)|=\int_{a}^{x}\left|y^{\prime}(t)\right| d t, \quad a \leqq x \leqq X \tag{2}
\end{equation*}
$$

If r is nonnegative on (a, X) and the integrals exist, then it follows from Hölder's inequality that

$$
\begin{equation*}
\int_{a}^{x}\left|y^{\prime}\right| d t \leqq\left(\int_{a}^{x} r^{-\{1 /(p+q-1)\}} d t\right)^{(p+q-1) /(p+q)}\left(\int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d t\right)^{1 /(p+q)} \tag{3}
\end{equation*}
$$

if $p+q>1$, while

$$
\begin{equation*}
\int_{a}^{x}\left|y^{\prime}\right| d t \geqq\left(\int_{a}^{x} r^{-11 /(p+q-1)]} d t\right)^{(p+q-1) /(p+q)}\left(\int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d t\right)^{1 /(p+q)} \tag{4}
\end{equation*}
$$

if either $p+q<0$ or $0<p+q<1$. Taking the case $p+q>1$, we suppose first that $p>0, q>0$. Then,

$$
\begin{align*}
|y|^{p} \leqq\left(\int_{a}^{x} r^{-(11(p+q-1)} d t\right)^{p(p+q-1) /(p+q)} & \left(\int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d t\right)^{p /(p+q)} \tag{5}\\
& a \leqq x \leqq X
\end{align*}
$$

Now, set $z(x)=\int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d t$. So $z^{\prime}=r\left|y^{\prime}\right|^{p+q}$, and

$$
\left|y^{\prime}\right|^{q}=r^{-\{q /(p+q)}\left(z^{\prime}\right)^{q /(p+q)} .
$$

Thus, if s is nonnegative on (a, X),

$$
s|y|^{p}\left|y^{\prime}\right|^{q} \leqq s r^{-(q /(p+q)}\left(\int_{a}^{x} r^{-1 /(p+q-1))} d t\right)^{p(p+q-1) /(p+q)} z^{p /(p+q)}\left(z^{\prime}\right)^{q /(p+q)}
$$

If we assume the existence of the following integrals, then applying Hölder's inequality again, with indices $(p+q) / p$ and $(p+q) / q$, we obtain

$$
\begin{align*}
\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x & \leqq K_{1}(X, p, q)\left(\int_{a}^{x} z^{p / q} z^{\prime} d x\right)^{q /(p+q)} \tag{6}\\
& =K_{1}(X, p, q) \int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d x
\end{align*}
$$

since $z(a)=0$ and $(p+q) / q>0$. Here,

$$
\begin{align*}
& K_{1}(X, p, q) \\
& \quad=\left(\frac{q}{p+q}\right)^{q /(p+q)}\left\{\int_{a}^{X} s^{(p+q) / p} r^{-(q / p)}\left(\int_{a}^{x} r^{-(1 /(p+q-1))} d t\right)^{p+q-1} d x\right\}^{p /(p+q)} \tag{7}
\end{align*}
$$

Similarly, if $p<0$ and $q<0$, then (5) again follows from (2) and (4). As above, since $(p+q) / p>1$ and $(p+q) / q>1$ again, we obtain inequality (6). This proves the main part of

Theorem 1. Let p, q be real numbers such that $p q>0$, and
either $p+q>1$, or $p+q<0$, and let r, s be nonnegative, measurable functions on (a, X) such that $\int_{a}^{X} r^{-1 /(p+q-1)} d x<\infty$, and the constant $K_{1}(X, p, q)$ defined by (7) is finite, where $-\infty \leqq a<X \leqq \infty$. If y is absolutely continuous on $[a, X], y(a)=0$, and y^{\prime} does not change sign on (a, X), then

$$
\begin{equation*}
\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq K_{1}(X, p, q) \int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d x \tag{8}
\end{equation*}
$$

Equality holds in (8) if and only if either $q>0$ and $y \equiv 0$, or

$$
\begin{equation*}
s=k_{1} r^{(q-1) /(p+q-1)}\left(\int_{a}^{x} r^{-(1 /(p+q-1))} d t\right)^{p(1-q) / q}, \tag{9}
\end{equation*}
$$

and

$$
y=k_{2} \int_{a}^{x} r^{-(1 /(p+q-1)\}} d t
$$

for some constants $k_{1}(\geqq 0), k_{2}$ real.
It only remains to prove the assertion concerning (9). Now, equality holds in (8) only if it holds in (3)-or (4) - and in Hölder's inequality leading to (6); that is, only if both

$$
r\left|y^{\prime}\right|^{p+q}=A r^{-\{1 /\langle p+q-1)\}} \quad \text { or } \quad y^{\prime}=k_{2} r^{-\{1 /(p+q-1)\}}
$$

and

$$
z^{p / q} z^{\prime}=B s^{(p+q) / p} r^{-(q / p)}\left(\int_{a}^{x} r^{-(1 /(p+q-1))} d t\right)^{p+q-1}
$$

The first of these conditions is equivalent to the second of equations (9) since $y(a)=0$. Using this condition and the definition of z, the second reduces to

$$
R^{(p+q)(1-q) / q}=C s^{(p+q) / p}\left(R^{\prime}\right)^{(p+q)(q-1) / q}, \quad\left(R \equiv \int_{a}^{x} r^{-\{1 /(p+q-1) \mid} d t\right)
$$

which is equivalent to the first of equations (9). Finally, if s is given by (9), it is easy to verify that the corresponding value of K_{1} in (7) is

$$
k_{1} \frac{q}{p+q}\left(\int_{a}^{X} r^{-\{1 /(p+q-1)!} d t\right)^{p / q}
$$

and hence is finite. Similarly, choosing y as in (9),

$$
\int_{a}^{X} r\left|y^{\prime}\right|^{p+q} d x=\left|k_{2}\right|^{p+q} \int_{a}^{x} r^{-\{1 /(p+q-1)\}} d x<\infty,
$$

completing the proof of the theorem.

Corollary 1. If $p q>0, p+q>1$, (8) holds even if y is complexvalued. Equality holds if and only if s and y are given by (9) with $k_{1} \geqq 0, k_{2}$ complex.

Proof. The inequality (8) follows as above but in place of (2) we have

$$
|y(x)| \leqq \int_{a}^{x}\left|y^{\prime}(t)\right| d t, \quad a \leqq x \leqq X
$$

Equality holds in (8) only if, in addition to

$$
\left|y^{\prime}\right|=A r^{-\{1 /(p+q-1)\}}, z^{p / q} z^{\prime}=B s^{(p+q) / p} r^{-(q / p)}\left(\int_{a}^{x} r^{-\{1 /(p+q-1)\rangle} d t\right)^{p+q-1}
$$

we also have

$$
|y(x)|=\int_{a}^{x}\left|y^{\prime}(t)\right| d t
$$

thus only if

$$
y(x)=\left(A \int_{a}^{x} r^{-(1 /(p+q-1))} d t\right) e^{i \theta(x)}
$$

which, in view of the condition on $\left|y^{\prime}\right|$, leads to $\theta^{\prime}(x) \equiv 0$ and, therefore, only if

$$
y=A e^{i \alpha} \int_{a}^{x} r^{-!1 /(p+q-1)!} d t=k_{2} \int_{a}^{x} r^{-(11 /(p+q-1)!} d t
$$

The rest follows as before.
Remark 1. If $p q>0$ and $p+q=1$, then in place of (5) we have

$$
|y|^{p} \leqq M^{p}\left(\int_{a}^{x} r\left|y^{\prime}\right| d t\right)^{p}
$$

where $M(x)=$ ess. $\sup _{t \in[a, x]} r^{-1}(t)$ and r is a positive, measurable function on (a, X). Therefore, if

$$
\widetilde{K}_{1}(X, p, q)=q^{q}\left\{\int_{a}^{X} M s^{1 / p} r^{-(q / p)} d x\right\}^{p}<\infty
$$

then

$$
\begin{equation*}
\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq \widetilde{K}_{1}(X, p, q) \int_{a}^{x} r\left|y^{\prime}\right| d x \tag{10}
\end{equation*}
$$

As in the corollary above, equality holds in (10) if and only if $y \equiv 0$, or

$$
r=\text { const. }>0 \quad \text { and } \quad y=k\left(\int_{a}^{x} s^{1 / p} d t\right)^{q}
$$

k complex.
We only state the next theorem, since its proof is the same as that of Theorem 1, with $[a, x]$ replaced by $[x, b]$ throughout.

Theorem 2. Let p, q be real numbers satisfying the same conditions as in Theorem 1, and let r, s be nonnegative measurable functions on (X, b), where $-\infty \leqq X<b \leqq \infty$, such that $\int_{X}^{b} r^{-1 /(p+q-1)} d x<\infty$, and

$$
\begin{align*}
& K_{2}(X, p, q) \\
& \quad=\left(\frac{q}{p+q}\right)^{q /(p+q)}\left\{\int_{X}^{b} s^{(p+q) / p} r^{-(q / p)}\left(\int_{x}^{b} r^{-\{1 /(p+q-1)\}} d t\right)^{p+q-1} d x\right\}^{p /(p+q)} \tag{11}
\end{align*}
$$

is finite. If y is absolutely continuous on $[X, b], y(b)=0$, (and y^{\prime} does not change sign on (X, b) in case $q<0)$, then

$$
\begin{equation*}
\int_{X}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq K_{2}(X, p, q) \int_{X}^{b} r\left|y^{\prime}\right|^{p+q} d x \tag{12}
\end{equation*}
$$

Equality holds in (12) if and only if either $q>0$ and $y \equiv 0$, or

$$
s=k_{3} r^{(q-1) /(p+q-1)}\left(\int_{x}^{b} r^{-\{1 /(p+q-1)\}} d t\right)^{p(1-q) / q}
$$

and

$$
y=k_{4} \int_{x}^{b} r^{-\{1 /(p+q-1)\}} d t
$$

for some constants $k_{3}(\geqq 0), k_{4}$ real.
Remark 2. As above, if $p q>0$ and $p+q>1$, then (12) holds even if y is complex-valued. Also, if $p+q=1, r$ is a positive, measurable function on $(X, b), \hat{M}(x)=$ ess. $\sup _{t \in[x, b]} r^{-1}(t)$ and

$$
\widetilde{K}_{2}(X, p, q)=q^{q}\left\{\int_{X}^{b} \widehat{M} s^{1 / p} r^{-(q / p)} d x\right\}^{p}<\infty
$$

then

$$
\begin{equation*}
\int_{X}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq \widetilde{K}_{2}(X, p, q) \int_{X}^{b} r\left|y^{\prime}\right| d x \tag{13}
\end{equation*}
$$

where y is again complex-valued. Equality holds if and only if $r=$ const. >0 and $y=\hat{k}\left(\int_{x}^{b} s^{1 / p} d t\right)^{q}$.

Corollary 2. Let $p q>0$ with $p+q>1$, and let r, s be nonnegative, measurable functions on (a, b), where $-\infty \leqq a<b \leqq \infty$, such that $\int_{a}^{b} r^{-11 /(p+q-1)!} d x<\infty$, and

$$
\begin{equation*}
(K(p, q) \equiv) K_{1}\left(X_{1}, p, q\right)=K_{2}(X, p, q)<\infty \tag{14}
\end{equation*}
$$

where K_{1}, K_{2} are defined by (7), (11) respectively, and $X(a<X<b)$ is the (unique) solution of equation (14). If y is complex-valued, absolutely continuous on $[a, b]$, with $y(a)=y(b)=0$, then

$$
\begin{equation*}
\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq K(p, q) \int_{a}^{b} r\left|y^{\prime}\right|^{p+q} d x \tag{15}
\end{equation*}
$$

Moreover, equality holds if and only if either $y \equiv 0$, or

$$
s= \begin{cases}\alpha_{1} r^{(q-1) /(p+q-1)}\left(\int_{a}^{x} r^{-\{1 /(p+q-1))} d t\right)^{p(1-q) / q}, & a \leqq x<X, \\ \alpha_{2} r^{(q-1) /(p+q-1)}\left(\int_{x}^{b} r^{-(11 /(p+q-1))} d t\right)^{p(1-q) / q}, & X<x \leqq b,\end{cases}
$$

and

$$
y= \begin{cases}\beta_{1} \int_{a}^{x} r^{-\{1 /(p+q-1)} d t, & a \leqq x \leqq X, \\ \beta_{2} \int_{x}^{b} r^{-\{1 /(p+q-1)\}} d t, & X \leqq x \leqq b\end{cases}
$$

where α_{1}, α_{2} are nonnegative constants, and β_{1}, β_{2} are complex constants such that

$$
\beta_{1} \int_{a}^{X} r^{-(1 /(p+q-1))} d t=\beta_{2} \int_{X}^{b} r^{-\{1 /(p+q-1))} d t .
$$

Proof. The conclusion follows from Corollary 1 and Theorem 2 since, on choosing X to be the unique solution of equation (14), we have

$$
\begin{aligned}
\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x & =\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x+\int_{X}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \\
& \leqq K_{1}(X, p, q) \int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d x+K_{2}(X, p, q) \int_{X}^{b} r\left|y^{\prime}\right|^{p+q} d x \\
& =K(p, q) \int_{a}^{b} r\left|y^{\prime}\right|^{p+q} d x
\end{aligned}
$$

Moreover, equality holds in (15) if and only if it holds in both (8) and (12).

Remark 3. As before, if $p q>0$ and $p+q=1$, then for r a positive, measurable function on (a, b),

$$
\begin{equation*}
\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq \widetilde{K}(p, q) \int_{a}^{b} r\left|y^{\prime}\right| d x \tag{16}
\end{equation*}
$$

where

$$
(\widetilde{K}(p, q) \equiv) \widetilde{K}_{1}(X, p, q)=\widetilde{K}_{2}(X, p, q)
$$

Equality holds in (16) if and only if either $y \equiv 0$, or

$$
r(x)=\left\{\begin{array}{ll}
c_{1}(>0), & a \leqq x<X, \\
c_{2}(>0), & X<x \leqq b,
\end{array} \text { and } y= \begin{cases}\gamma_{1}\left(\int_{a}^{x} s^{1 / p} d t\right)^{q}, & a \leqq x \leqq X, \\
\gamma_{2}\left(\int_{x}^{b} s^{1 / p} d t\right)^{q}, & X \leqq x \leqq b,\end{cases}\right.
$$

where

$$
\gamma_{1}\left(\int_{a}^{X} s^{1 / p} d t\right)^{q}=\gamma_{2}\left(\int_{X}^{b} s^{1 / p} d t\right)^{q}
$$

Examples

1. Setting $r=s \equiv 1$ in (8) or (10), we obtain as an improvement of (1),

$$
\begin{equation*}
\int_{a}^{x}|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq \frac{q^{q /(p+q)}}{p+q}(X-a)^{p} \int_{a}^{x}\left|y^{\prime}\right|^{p+q} d x \tag{17}
\end{equation*}
$$

if $p q>0, p+q \geqq 1$. It may be remarked that (17) is also true if $p=0$. Equality holds in (17) in case $p+q>1$ if and only if either $p=0$, or else $y \equiv 0$, or else $q=1$ and $y=A(x-a)$; if $p+q=1$, equality holds if and only if $y=A(x-a)$. In case $q=1$, (17) reduces to the results of Hua, Yang, Calvert and Wong, while Opial's original inequality is obtained for $p=q=1$. (Note that if $p<0$ and $q<0$, $K_{1}(X, p, q)=\infty$.)
2. Taking $q=1, s \equiv 1$ in (15), we obtain

$$
\begin{equation*}
\int_{a}^{b}\left|y^{p} y^{\prime}\right| d x \leqq \frac{1}{p+1}\left(\int_{a}^{x} r^{-(1 / p)} d x\right)^{p} \int_{a}^{b} r\left|y^{\prime}\right|^{p+1} d x \tag{18}
\end{equation*}
$$

if $p \geqq 0$, and y is complex-valued, absolutely continuous on $[a, b]$ with $y(a)=y(b)=0$. Here, X is the unique solution of

$$
\int_{a}^{X} r^{-(1 / p)} d x=\int_{X}^{b} r^{-(1 / p)} d x, \int_{a}^{b} r^{-(1 / p)} d x<\infty
$$

Equality holds in (18) if and only if $y=A \int_{a}^{x} r^{-(1 / p)} d t$ for $a \leqq x \leqq X$ and $y=B \int_{x}^{b} r^{-(1 / p)} d t$ for $X \leqq x \leqq b$. In case $p=1$, (18) reduces to a result of Beesack [2].
3. Taking $r \equiv 1, s \equiv(x-a)^{p(1-q) / q}$ in Theorem 1 ,

$$
\begin{equation*}
\int_{a}^{x}(x-a)^{p(1-q) / q}|y|^{p}\left|y^{\prime}\right|^{q} d x \leqq \frac{q}{p+q}(X-a)^{p / q} \int_{a}^{x}\left|y^{\prime}\right|^{p+q} d x \tag{19}
\end{equation*}
$$

Equality holds if and only if either $q>0$ and $y \equiv 0$, or $y=A(x-a)$. As a special case of (19), let $y=u^{1 / 2}, p=q=-1, a=0$. Then

$$
\int_{0}^{x} \frac{x^{2}}{\left|u^{\prime}\right|} d x<X \int_{0}^{x} \frac{|u|}{\left|u^{\prime}\right|^{2}} d x \quad \text { unless } u=A x^{2}
$$

4. Taking $r \equiv(x-a)^{p(p+q-1) /(p+q)}, s \equiv 1$ in Theorem 1 ,

$$
\begin{align*}
& \int_{a}^{X}|y|^{p}\left|y^{\prime}\right|^{q} d x \\
& \quad \leqq\left(\frac{q}{p+q}\right)^{1-p}(X-a)^{p /(p+q)} \int_{a}^{X}(x-a)^{p(p+q-1) /(p+q)}\left|y^{\prime}\right|^{p+q} d x . \tag{20}
\end{align*}
$$

Equality holds if and only if either $q>0$ and $y \equiv 0$, or $y=A(x-a)^{q / p+q}$. As a special case of (20), let $y=u^{1 / 2}, p=q=-1, a=0$. Then

$$
\int_{0}^{x} \frac{d x}{\left|u^{\prime}\right|}<\frac{1}{2} X^{1 / 2} \int_{0}^{x} \frac{x^{-3 / 2}|u|}{\left|u^{\prime}\right|^{2}} d x \quad \text { unless } u=A x
$$

3. To obtain lower bounds for $\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x\left(\right.$ or $\left.\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x\right)$ consider first the case when $p+q>1$. If, in addition, $p<0$, (3) yields

$$
\begin{equation*}
|y|^{p} \geqq\left(\int_{a}^{x} r^{-\{1 /(p+q-1)\}} d t\right)^{p(p+q-1) /(p+q)}\left(\int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d t\right)^{p /(p+q)} \tag{21}
\end{equation*}
$$

If s is non-negative on (a, X), then

$$
s|y|^{p}\left|y^{\prime}\right|^{q} \geqq s r^{-\mid q /(p+q)}\left(\int_{a}^{x} r^{-(1 /(p+q-1)\}} d t\right)^{p(p+q-1) /(p+q)} z^{p /(p+q)}\left(z^{\prime}\right)^{q /(p+q)}
$$

where $z(x)=\int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d t$.
Thus, Hölder's inequality with indices $(p+q) / p$ and $(p+q) / q$-note that the latter lies between 0 and 1 -gives

$$
\begin{equation*}
\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x \geqq K_{1}(X, p, q) \int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d x \tag{22}
\end{equation*}
$$

where $K_{1}(X, p, q)$ is defined by (7).
Similarly, if $p>0$ and $p+q<0$, then (4) yields (21). Again, if s is non-negative on (a, X), Hölder's inequality with indices $(p+q) / p$ and $(p+q) / q$-note that $0<(p+q) / q<1$ still holds-leads to (22). Equality holds in (22) if and only if it holds in (3)-or (4)-and in Hölder's inequality leading to (22); that is, if and only if s, y are given by (9). This proves

Theorem 3. Let p, q be real numbers such that either $p<0$ and
$p+q>1$, or $p>0$ and $p+q<0$. Let r, s be nonnegative measurable functions on (a, X) such that $\int_{a}^{X} r^{-1 /(p+q-1)} d x<\infty$, and the constant $K_{1}(X, p, q)$ defined by (7) is finite, where $-\infty \leqq a<X \leqq \infty$. If y is absolutely continuous on $[a, X], y(a)=0$, and y^{\prime} does not change sign on (a, X), then (22) holds. There is equality in (22) if and only s and y are as defined in (9).

Corollary 3. If $p<0$ and $p+q>1$, (22) holds even if y is complex-valued. Equality holds if and only if s and y are given by (9) with $k_{1} \geqq 0, k_{2}$ complex.

The proof of this is essentially the same as that of Corollary 1.
Remark 4. If $p<0$ and $p+q=1$, then in place of (21) we have

$$
|y|^{p} \geqq M^{p}\left(\int_{a}^{x} r\left|y^{\prime}\right| d t\right)^{p}
$$

where $M(x)=\operatorname{ess} \sup _{t \in[a, x]} r^{-1}(t)$ and r is a positive, measurable function on (a, X).

Thus, if

$$
\widetilde{K}_{1}(X, p, q)=q^{q}\left\{\int_{a}^{X} M s^{1 / p} r^{-(q / p)} d x\right\}^{p}<\infty
$$

then

$$
\begin{equation*}
\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x \geqq \widetilde{K}_{1}(X, p, q) \int_{a}^{x} r\left|y^{\prime}\right| d x \tag{23}
\end{equation*}
$$

As in the corollary above, equality holds in (23) if and only if

$$
r=\text { const. }>0 \quad \text { and } \quad y=k\left(\int_{a}^{x} s^{1 / p} d t\right)^{q}
$$

k complex.
Replacing $[a, x]$ by $[x, b]$ throughout Theorem 3, we obtain
Theorem 4. Let p, q be real numbers satisfying the same conditions as in Theorem 3, and let r, s be non-negative measurable functions on (X, b), where $-\infty \leqq X<b \leqq \infty$, such that $\int_{X}^{b} r^{-1 /(p+q-1)} d x<\infty$, and $K_{2}(X, p, q)$ defined by (11) is finite. If y is absolutely continuous on $[X, b], y(b)=0$, (and y^{\prime} does not change sign on (X, b) in case $p>0$), then

$$
\begin{equation*}
\int_{X}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \geqq K_{2}(X, p, q) \int_{X}^{b} r\left|y^{\prime}\right|^{p+q} d x \tag{24}
\end{equation*}
$$

Equality holds in (24) if and only if

$$
\begin{align*}
& s=k_{3} r^{(q-1) /(p+q-1)}\left(\int_{x}^{b} r^{-11 /(p+q-1))} d t\right)^{p(1-q) / q}, \text { and } \\
& y=k_{4} \int_{x}^{b} r^{-(1) /(p+q-1)\}} d t \tag{25}
\end{align*}
$$

for some constants $k_{3}(\geqq 0), k_{4}$ real.
Remark 5. If $p<0$ and $p+q>1$, then (24) holds even if y is complex-valued. Also, if $p<0, p+q=1$ and r is a positive, measurable function on (X, b), and

$$
\left.\widehat{M}(x)=\underset{t \in[x, b]}{\operatorname{ess} \sup } r^{-1}(t), \widetilde{K}_{2}(X, p, q)=q^{q} \int_{X}^{b} \hat{M} s^{1 / p} r^{-(q / p)} d x\right\}<\infty,
$$

then

$$
\begin{equation*}
\int_{X}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \geqq \widetilde{K}_{2}(X, p, q) \int_{X}^{b} r\left|y^{\prime}\right| d x \tag{26}
\end{equation*}
$$

where y is again complex-valued. Equality holds if and only if $r=$ const. >0 and $y=\hat{k}\left(\int_{x}^{b} s^{1 / p} d t\right)^{q}$.

Corollary 4. Let $p<0$ and $p+q>1$. Let r, s be nonnegative, measurable functions on $(a, b),-\infty \leqq a<b \leqq \infty$, such that $\int_{a}^{b} r^{-11 /(p+q-1)\rangle} d x$ is finite. Let y be complex-valued, absolutely continuous on $[a, b]$ with $y(a)=y(b)=0$. Then,

$$
\begin{equation*}
\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} \geqq K(p, q) \int_{a}^{b} r\left|y^{\prime}\right|^{p+q} d x \tag{27}
\end{equation*}
$$

where $K(p, q)$ is defined by (14). Moreover, equality holds if and only if s and y are defined as in theorem 2.

The proof is immediate in view of Theorems 3 and 4, Corollary 3 and Remark 5.

Remark 6. Again if $p<0$ and $p+q=1$, then for $r(x)$ positive, measurable on (a, b),

$$
\begin{equation*}
\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \geqq \widetilde{K}(p, q) \int_{a}^{b} r\left|y^{\prime}\right| d x \tag{28}
\end{equation*}
$$

where $\hat{K}(p, q)$ is defined as in Remark 3. Further, equality holds in (28) if and only if r and y are defined as in Remark 3.

Our next result is an extension of Theorem 3 to the case when $0<p+q<1$ and $q>1$. (Note that in Theorem 3 the restriction $q>1$ is implicit since $p+q>1$ and $p<0$ imply $q>1$.)

Theorem 5. Let $p<0, q>1$ and $0<p+q<1$. Let r, s be nonnegative, measurable functions on (a, X) such that $\int_{a}^{X} r^{-\mathrm{i} 1 /(p+q-1))} d x$ and $\int_{a}^{x} s^{-\{1 /(q-1)\}} d x$ are finite. If y is complex-valued, absolutely continuous on $[a, X], y(a)=0$, then

$$
\begin{equation*}
\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x \geqq \widehat{K}_{1}(X, p, q) \int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d x \tag{29}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{K}_{1}(X, p, q)=\left(\frac{q}{p+q}\right)^{q}\left(\int_{a}^{x} s^{-(1 /(q-1)\}} d x\right)^{1-q}\left(\int_{a}^{x} r^{-\{1 /(p+q-1)\}} d x\right)^{p+q-1} \tag{30}
\end{equation*}
$$

Equality holds in (29) if and only if s and y are as defined by (9) with k_{2} complex.

Proof. Since $p / q<0$,

$$
|y|^{p / q} \geqq\left(\int_{a}^{x}\left|y^{\prime}\right| d t\right)^{p / q}, \quad a \leqq x \leqq X
$$

Therefore,

$$
\begin{equation*}
\int_{a}^{x}|y|^{p / q}\left|y^{\prime}\right| d x \geqq \frac{q}{p+q}\left(\int_{a}^{x}\left|y^{\prime}\right| d x\right)^{(p+q) / q} \tag{31}
\end{equation*}
$$

From Hölder's inequality with indices q and its conjugate, it follows that

$$
\int_{a}^{x}|y|^{p / q}\left|y^{\prime}\right| d x \leqq\left(\int_{a}^{x} s^{-(1 /(q-1) \mid} d x\right)^{(q-1) / q}\left(\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x\right)^{1 / q}
$$

and also with indices $p+q$ and its conjugate, that

$$
\int_{a}^{X}\left|y^{\prime}\right| d x \geqq\left(\int_{a}^{x} r^{-(1) /(p+q-1)]} d x\right)^{(p+q-1) /(p+q)}\left(\int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d x\right)^{1 /(p+q)}
$$

In view of the above inequalities, (29) follows from (31).
Again, equality holds in (29) if and only if

$$
|y|=\int_{a}^{x}\left|y^{\prime}\right| d t, \quad A_{1} s^{-(1 /(q-1)\}}=s|y|^{p}\left|y^{\prime}\right|^{q}
$$

and

$$
A_{2} r^{-11 /(p+q-1)\}}=r\left|y^{\prime}\right|^{p+q} ;
$$

that is, if and only if

$$
\left|y^{\prime}\right|=a_{2} r^{-\{1 /(p+q-1)\}}, \quad|y|=a_{2} \int_{a}^{x} r^{-\{1 /(p+q-1)} d t
$$

and

$$
s=k_{3} r^{(q-1) /(p+q-1)}\left(\int_{a}^{x} r^{-\{1 /(p+q-1))} d t\right)^{p(1-q) / q} ;
$$

thus, as in Corollary 1, if and only if s and y are as defined by (9) with k_{4} complex.

Remark 7. If $p<0,0<p+q<1$ and $q=1, s(x)$ positive and measurable on (a, X), then in place of (29) the following holds:

$$
\begin{equation*}
\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right| d x \geqq \frac{M^{*-1}}{p+1}\left(\int_{a}^{x} r^{-(1 / p)} d x\right)^{p} \int_{a}^{x} r\left|y^{\prime}\right|^{p+1} d x \tag{32}
\end{equation*}
$$

where $M^{*}=M^{*}(X)=$ ess $\sup _{x \in[a, X]} s^{-1}(x)$. Equality holds in (32) if and only if $s=$ const. >0 and $y=k^{*} \int_{a}^{x} r^{-(1 / p)} d t, k^{*}$ complex.

Replacing $[a, x]$ by $[x, b]$ throughout Theorem 5, we obtain
Theorem 6. Let p, q be real numbers satisfying the same conditions as in Theorem 5. Let r, s nonnegative, measurable functions on (X, b) such that $\int_{X}^{b} r^{-(1 /(p+q-1))} d x$ and $\int_{X}^{b} s^{-(1 /(q-1))} d x$ are finite. If y is complex-valued, absolutely continuous on $[X, b], y(b)=0$, then

$$
\begin{equation*}
\int_{X}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \geqq \hat{K}_{2}(X, p, q) \int_{X}^{b} r\left|y^{\prime}\right|^{p+q} d x \tag{33}
\end{equation*}
$$

where

$$
\hat{K}_{2}(X, p, q)=\left(\frac{q}{p+q}\right)^{q}\left(\int_{X}^{b} s^{-(1 /(q-1))} d x\right)^{1-q}\left(\int_{X}^{b} r^{-\{1 /(p+q-1)} d x\right)^{p+q-1}
$$

Equality holds in (33) if and only if s and y are defined by (25) with k_{4} complex.

As a direct consequence of Theorem 5 and 6 we have
Corollary 5. Let p, q be real numbers satisfying the same conditions as in Theorem 5. Let r, s be nonnegative measurable functions on (a, b) such that $\int_{a}^{b} r^{-1 /(p+q-1)} d x$ and $\int_{a}^{b} s^{-1 /(q-1)}$ are finite. If y is complex-valued, absolutely continuous on $[a, b]$ with $y(a)=y(b)=0$, then,

$$
\begin{equation*}
\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right|^{q} d x \geqq \hat{K}(p, q) \int_{a}^{b} r\left|y^{\prime}\right|^{p+q} d x \tag{34}
\end{equation*}
$$

where $\hat{K}(p, q)=\hat{K}_{1}(X, p, q)=\hat{K}_{2}(X, p, q)$, with X the unique solution ($a<X<b$) of the latter equation. Moreover equality holds in (34) if and only if s and y are defined as in corollary 1.

Remark 8. Let $p<0,0<p+q<1$ and $q=1 ; s(x)$ positive and measurable on (X, b). Then, for complex-valued, absolutely continuous y on $[X, b]$ such that $y(b)=0$,

$$
\begin{equation*}
\int_{X}^{b} s|y|^{p}\left|y^{\prime}\right| d x \geqq \frac{\hat{M}^{*-1}}{p+1}\left(\int_{X}^{b} r^{-1 / p} d x\right)^{p} \int_{X}^{b} r\left|y^{\prime}\right|^{p+1} d x \tag{35}
\end{equation*}
$$

where $\hat{M}^{*}=\hat{M}^{*}(X)=$ ess $\sup _{x \in[X, b]} s^{-1}(x)$.
Finally, if y is complex-valued, absolutely continuous on $[a, b]$ such that $y(a)=y(b)=0$, and if s is positive and continuous on (a, b), then (32) and (35) yield

$$
\begin{equation*}
\int_{a}^{b} s|y|^{p}\left|y^{\prime}\right| d x \geqq \frac{\bar{M}^{-1}}{p+1}\left(\int_{a}^{x} r^{-1 / p} d x\right)^{p} \int_{a}^{b} r\left|y^{\prime}\right|^{p+1} d x \tag{36}
\end{equation*}
$$

where $\bar{M}=M^{*}(X)$ and X is the unique solution $(a<X<b)$ of the equation $\hat{M}^{*}(X)\left(\int_{a}^{X} r^{-(1 / p)} d x\right)^{p}=M^{*}(X)\left(\int_{a}^{X} r^{-(1 / p)} d x\right)^{p}$. Equality holds in (36) if and only if $s=$ const. >0 and

$$
y=k_{1}^{*}\left(\int_{a}^{x} r^{-(1 / p)} d t\right)^{p}\left(k_{2}^{*}\left(\int_{x}^{b} r^{-(1 / p)} d t\right)^{p}\right)
$$

according as $a \leqq x \leqq X(X \leqq x \leqq b)$.
Examples can be constructed for special cases of r and s as before. However, we content ourselves with noting that if $s(x) \equiv 1$, (32) reduces to the following inequality of Calvert's paper [2, p.75],

$$
\int_{a}^{X}\left|u^{p-1} u^{\prime}\right| \geqq \frac{1}{p}\left(\int_{a}^{X} r^{1-q}\right)^{p-1} \int_{a}^{X} r\left|u^{\prime}\right|^{p}, \quad 0<p<1 \quad \text { and } \quad \frac{1}{q}+\frac{1}{p}=1
$$

4. Let u be a given function and let

$$
y=u^{q /(p+q)} \quad(p+q \neq 0)
$$

If p and q are such that $q /(p+q)>0$, then it is obvious that y is absolutely continuous on an interval if and only if u is, and that y vanishes at a point if and only if u does. A simple computation gives

$$
|y|^{p}\left|y^{\prime}\right|^{q}=\left(\frac{q}{p+q}\right)^{q}\left|u^{\prime}\right|^{q} \quad \text { and } \quad\left|y^{\prime}\right|^{p+q}=\left(\frac{q}{p+q}\right)^{p+q}|u|^{-p}\left|u^{\prime}\right|^{p+q}
$$

that is,

$$
\begin{equation*}
|y|^{p}\left|y^{\prime}\right|^{q}=\left(\frac{P+Q}{Q}\right)^{P+Q}\left|u^{\prime}\right|^{P+Q} \quad \text { and } \quad\left|y^{\prime}\right|^{p+q}=\left(\frac{P+Q}{Q}\right)^{Q}|u|^{P}\left|u^{\prime}\right|^{Q} \tag{37}
\end{equation*}
$$

where $p=-P, p+q=Q$.
In view of (37) and Theorem 1 we have

Theorem 7. Let P, Q be real numbers such that either $P<0$, $Q>1$ and $P+Q>0$ or $P>0$ and $P+Q<0$. Let r, s be nonnegative, measurable functions on (a, X) such that $\int_{a}^{x} s^{-1 /(Q-1)} d x<\infty$. Let the constant

$$
\begin{equation*}
K_{1}^{*}(X, P, Q)=\left(\frac{Q}{P+Q}\right)^{\mid(P+Q) / Q\}-P}\left\{\int_{a}^{x} r^{-(Q / P)} s^{(P+Q) / P}\left(\int_{a}^{x} s^{-\{1 /(Q-1)\rangle} d t\right)^{Q-1} d x\right\}^{P / Q} \tag{38}
\end{equation*}
$$

be finite. If u is absolutely continuous on $[a, X], u(a)=0$, and u^{\prime} does not change sign on (a, X), then

$$
\begin{equation*}
\int_{a}^{x} s|u|^{P}\left|u^{\prime}\right|^{Q} d x \geqq K_{1}^{*}(X, P, Q) \int_{a}^{x} r\left|u^{\prime}\right|^{P+Q} d x \tag{39}
\end{equation*}
$$

Equality holds in (38) if and only if

$$
\begin{aligned}
& r=k_{1}^{*} s^{(P+Q-1) /(Q-1)}\left(\int_{a}^{x} s^{-\{1 /(Q-1) \mid} d t\right)^{P-\{P /(P+Q)\}}, \quad \text { and } \\
& u=k_{2}^{*}\left(\int_{a}^{x} s^{-\{1 /(Q-1)\}} d t\right)^{Q /(P+Q)},
\end{aligned}
$$

for some constants $k_{1}^{*}(\geqq 0), k_{2}^{*}$ real.
Theorems 3 and 7 lead to

Corollary 6. Let p, q be real numbers as in Theorem 3. Let r, s be nonnegative measurable functions on (a, X) such that $K_{1}(X, p, q)$, $K_{1}^{*}(X, p, q)$ defined by (7), (38) respectively are finite. If y is absolutely continuous on $[a, X], y(a)=0$, and y^{\prime} does not change sign on (a, X), then

$$
\int_{a}^{x} s|y|^{p}\left|y^{\prime}\right|^{q} d x \geqq \max \left(K_{1}, K_{1}^{*}\right) \int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d x
$$

Moreover, equality holds if and only if s and y are defined by (9) or

$$
\begin{align*}
& r=k_{1}^{*} s^{(p+q-1) /(q-1)}\left(\int_{a}^{x} s^{-(1 /(q-1)\}} d t\right)^{p-\{p /(p+q)\}}, \text { and } \\
& y=k_{2}^{*}\left(\int_{a}^{x} s^{-\{1 /(q-1)\rangle} d t\right)^{q /(p+q)}, \tag{40}
\end{align*}
$$

for some constants $k_{1}^{*}(\geqq 0), k_{2}^{*}$ real.
Proof. The inequality is immediate in view of (22) and (39) and the fact that $q>1$ is implicit if $p<0$. Again, a straight-forward computation shows that (9) holds if and only if (40) holds. Thus, equality holds in (22) if and only if it holds in (39). Also, then $K_{1}=$ K_{1}^{*}. This completes the proof.

Remark 9. If $r=s \equiv 1, K_{1}^{*}$ are meaningful constants when $p+q>0$ and $q>0$ respectively. Therefore, in Corollary 6 if $r=s \equiv 1$ and $p<0, p+q>1$,

$$
K_{1}=\frac{q^{q /(p+q)}}{p+q}(X-a)^{p}, \quad K_{1}^{*}=\frac{q^{1-p}}{(p+q)^{(p / q)+1-p}}(X-a)^{p}
$$

It is easy to verify that $\ln x /\left(1-x^{-1}\right)$ is an increasing function of x for $x>1$. Thus,

$$
\frac{1}{1-\frac{1}{q}} \ln q>\frac{1}{1-\frac{1}{p+q}} \ln (p+q)
$$

whence

$$
q^{p-\{p /(p+q)\}}<(p+q)^{p-(p / q)} .
$$

Consequently, in this case $K_{1}^{*}>K_{1}$.
Another example where $K_{1}^{*} \geqq K_{1}$ is when $r=(x-a)^{p(p+q-1) /(p+q)}$, $s=(x-a)^{p(1-q) / q}, p<0$ and $p+q>1$. Then,

$$
K_{1}=\left(\frac{q}{p+q}\right)^{1-p}\left(\frac{q}{q+(p+q)(1-q)}\right)^{p /(p+q)}(X-a)^{\{p /(p+q)\}+\{(1-q) p \mid q\}}
$$

and

$$
K_{1}^{*}=\frac{q}{p+q}\left(\frac{p+q}{q+(p+q)(1-q)}\right)^{p / q}(X-a)^{\{p /(p+q)\}+(1-q) p / q} .
$$

If $q \leqq 2, q+(p+q)(1-q)>0$ and therefore, in view of

$$
0<-p /(p+q)(q-1)<1
$$

and $-\ln x$ convex if $x>0$, we have

$$
(q+(p+q)(1-q))^{-\{p /(p+q)(q-1)\}} \cdot q^{1+\{p /(p+q)(q-1)\}} \leqq p+q
$$

whence

$$
\left(\frac{p+q}{q+(p+q)(1-q)}\right)^{p+q} \leqq\left(\frac{q}{p+q}\right)^{-q(p+q)}\left(\frac{q}{q+(p+q)(1-q)}\right)^{q}
$$

that is,

$$
\begin{array}{r}
\left(\frac{p+q}{q+(p+q)(1-q)}\right)^{p / q} \geqq\left(\frac{q}{p+q}\right)^{-p}\left(\frac{q}{q+(p+q)(1-q)}\right)^{p /(p+q)} \\
\text { if } 2 \geqq q>p+q>1
\end{array}
$$

proving that $K_{1}^{*} \geqq K_{1}$ in this case.

As above, in view of (37) and Theorem 3 we have

Theorem 8. Let P, Q be real numbers such that $P Q>0$, and either $Q>1$ or $Q<0$. Let r, s be nonnegative, measurable functions on (a, X) such that $\int_{a}^{x} s^{-1 /(Q-1)} d x<\infty$, and the constant K_{1}^{*} de fined by (38) is finite. If y is absolutely continuous on $[a, X], y(a)=0$, and y^{\prime} does not change sign on (a, X), then

$$
\begin{equation*}
\int_{a}^{x} s|u|^{P}\left|u^{\prime}\right|^{Q} d x \leqq K_{1}^{*} \int_{a}^{x} r\left|u^{\prime}\right|^{P+Q} d x \tag{40}
\end{equation*}
$$

Equality holds in (40) if and only if r and u are as defined in Theorem 7.

Remark 10. If P and Q above satisfy

$$
P>0, P+Q>1 \quad \text { and } \quad 0<Q<1
$$

then (37) and Theorem 5 yield

$$
\begin{equation*}
\int_{a}^{x} s|u|^{P}\left|u^{\prime}\right|^{Q} d x \leqq \hat{K}_{1}(X, P, Q) \int_{a}^{x} r\left|u^{\prime}\right|^{P+Q} d x \tag{41}
\end{equation*}
$$

where \hat{K}_{1} is defined by (30). Here u can be taken as complex-valued. Equality holds if and only if it holds in (29), that is if and only if s and $u(=y)$ are as defined by (9) with k_{2} complex.

If $P>0$ and $Q=1$, then (37) and (23) yield

$$
\begin{equation*}
\int_{a}^{x} s|u|^{P}\left|u^{\prime}\right| d x \leqq \hat{K} \int_{a}^{x} r\left|u^{\prime}\right|^{P+1} d x \tag{42}
\end{equation*}
$$

where s is a positive, measurable function on (a, X) and

$$
\begin{equation*}
\hat{K}(P)=\frac{1}{P+1}\left(\int_{a}^{X} M^{*} s^{(P+1) / P} r^{-(1 / P)} d x\right)^{P}, M^{*}(x)=\underset{t \in[a, x]}{\operatorname{ess} \sup } s^{-1}(t) \tag{43}
\end{equation*}
$$

Equality holds in (42) if and only if $s=$ const. >0 and $u=k\left(\int_{a}^{x} r^{-(1 / P)} d t\right)$, k complex.

Combining Theorems 1 and 8 and Remark 10 we have

Corollary 7. Let p, q be real numbers such that $p q>0$. Let r, s be nonnegative, measurable functions on (a, X) such that

$$
\int_{a}^{X} r^{-\{1 /(p+q-1)!} d x, \int_{a}^{X} s^{-(1 / q-1)!} d x
$$

(or $M^{*}(x)$ if $p>0, q=1$) exist, and the constants $K_{1}, K_{1}^{*}, \hat{K}_{1}$ and $\hat{K}(p)$ are finite. If y is absolutely continuous on $[a, X], y(a)=0$,
and y^{\prime} does not change sign on (a, X), then

$$
\int_{a}^{x} s|y|^{P}\left|y^{\prime}\right|^{q} d x \leqq K \int_{a}^{x} r\left|y^{\prime}\right|^{p+q} d x
$$

where $K=\min \left(K_{1}, K_{1}^{*}\right)$ if $\left.\alpha\right) q>1$ or $q<0,=\min \left(K_{1}, \hat{K}_{1}\right)$ if β) $0<q<1$ and $p+q>1,=\min \left(K_{1}, \hat{K}\right)$ if $\left.\gamma\right) q=1$. Moreover, equality holds if and only if it holhs in both (8) and (40), (8) and (41), (8) and (42) according as α), β), γ) is the case.

Remark 11. If $r=s \equiv 1$ and $q>1$ (so $p>0$) in Corollary 7, the fact that $\ln x /\left(1-x^{-1}\right)$ is an increasing function of x for $x>1$ leads to $K_{1}^{*}>K_{1}$ and thus $K=K_{1}$. Again, if $r=s \equiv 1$ and $q=1$ above, $K=K_{1}=\hat{K}$. Also, if $r=s \equiv 1$ and $0<q<1<p+q$ then

$$
K_{1}=\frac{q^{q /(p+q)}}{p+q}(X-a)^{p}, \quad \hat{K}_{1}=\left(\frac{q}{p+q}\right)^{q}(X-a)^{p} .
$$

That $\hat{K}_{1}>K_{1}$ follows from the fact that for $0<q<1<p+q$,

$$
\frac{q}{q-1} \ln q<1<\frac{p+q}{p+q-1} \ln (p+q)
$$

whence

$$
\left(1-\frac{1}{q}\right) \ln (p+q)<\left(1-\frac{1}{p+q}\right) \ln q .
$$

Similar results could be stated on $[X, b]$ and $[a, b]$.

References

1. Paul R. Beesack, On an integral inequality of Z. Opial, Trans. Amer. Math. Soc. 104 (1962), 470-475.
2. James Calvert, Some generalizations of Opial's inequality, Proc. Amer. Math. Soc. 18 (1967), 72-75.
3. L. K. Hua, On an inequality of Opial, Scientia Sinica 14 (1965), 789-790.
4. N. Levinson, On an inequality of Opial and Beesack, Proc. Amer. Math. Soc. 15 (1964), 565-566.
5. C. L. Mallows, An even simpler proof of Opial's inequality, Proc. Amer. Math. Soc. 16 (1965), 173.
6. C. Olech, A simple proof of a certain result of Z. Opial, Ann. Polon. Math. 8 (1960), 61-63.
7. Z. Opial, Sur une inégalité, Ann. Polon. Math. 8 (1960), 29-32.
8. R. N. Pederson, On an inequality of Opial, Beesack, and Levinson, Proc. Amer. Math. Soc. 16 (1965), 174.
9. R. Redheffer, Inequalities with three functions, J. Math. Anal. Appl. 16 (1966), 219-242.
10. J. S. W. Wong, A discrete analogue of Opial's inequality, Can. Math. Bull. 10 (1967), 115-118.
11. Gou-Sheng Yang, On a certain result of Z. Opial, Proc. Japan Acad., 42 (1966), 78-83.

Received November 17, 1967.
Carleton University, Ottawa
AND
Michigan State University.
(Now at Iowa State University)

