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KOSTRIKIN'S THEOREM ON ENGEL GROUPS
OF PRIME POWER EXPONENT

S. BACHMUTH AND H. Y. MOCHIZUKI

THEOREM Let p ^ 3 be a prime and e ^ 1 any integer.
Then there exists a group (S which has exponent pe and Engel
length e(pe - p'-1) + (p - 8)/2.

If e = 1, this reduces to a Theorem of Kostrikin [2], whose
proof employed other methods. Our method yields the addi-
tional information, that © is a solvable group of class at most
k + 1, where k is the least integer such that 2 f c l ^ p - 2.

In this paper we give an elementary proof of a theorem due to
Kostrikin [2] which states that for any prime p >̂ 3, there exists a
group of exponent p which has Engel length (3p — 5)/2. Our proof
is conceptually very simple and elementary at least in contrast with
Kostrikin's proof, which uses some rather deep results from Lie ring
theory [3]. Furthermore, our method establishes that this group has
solubility class at most k + 1 where k is the least integer such that
2fc~1 ^ p — 2. (By the solubility class of a group G we mean the least
integer k for which G{h) = 1, where G[i) is the commutator subgroup
of G(ί~1} and G(0} - G. By the Engel length of G we mean the least
positive integer n such that [α, b; n] — 1 for all α, b in (?, where
[α, b; 1] = [α, 6] = abarιb~ι and inductively [α, b; i + 1] = [[α, 6; i], 6].)

Our methods actually generalize to groups of prime power exponent.
That is, for a given prime p ^ 3 and an integer e Ξ> 1, there exists a
group of exponent pe which has Engel length e(pe — p6"1) + (p — 3)/2.
(This contains Kostrikin's Theorem by taking e = 1.) Moreover, this
group has solubility class at most k + 1, where k is the least integer
such that 2k~ι ;> p — 2. We will however limit our discussion to the
case e = 1 in the main body of the paper and indicate in an appendix
how the same methods and proof yield the above theorem for arbitrary e.

We first give the setting and then an outline of the proof of
Kostrikin's Theorem in §2. The remaining sections give the technical
details of the proof until the final section of concluding remarks. Here
we discuss possible alternate proofs.

2* Outline of proof*

KOSTRIKIN'S THEOREM. Let p^>3 be a prime. Then there exists
a group ® of exponent p and Engel length (Sp — 5)/2. Furthermore,
© is of solubility class at most (k + 1) where k is the least integer
for which 2k~ι ^ (p - 2).
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We shall construct the group of Kostrikin's Theorem. Let ω be
a primitive pth root of unity, and let Z denote the ring of integers.
If (p) is the ideal of Z[ω] generated by peZ, then we denote the
ring Z[ω]/(p) by Zp[ω]. An alternative construction of Zp[ω] is as
follows: Let Zp — Z/(p) and let <V> be a cyclic group of order p.
Form the group ring Zpζx} and factor by the ideal generated by
(1 + x + + x*-1) = (1 - x)*-K

We shall call ω,ω2, •• ,ωp~1 the primitive pth roots of unity. Σ
will denote the augmentation ideal of Zp[co], i.e., the ideal generated
by (1 — ωι), 1 ^ i 5g (p — 1). It is well-known that Σ is in fact a
principal ideal, generated by any one of the (1 — ω1). From [1], we
know Σ*~ι = 0 but Σv~2 Φ 0.

Let ξ> be the group of upper triangular (p — 2) x (p — 2) matrices
of Zp[ω] generated by

B =

ω 1

of

0
ω 0

0)2

0

0

0

We first prove that ξ> is a group of exponent p. In fact, we show
that in the ring 9t of upper triangular (p — 2) x (p — 2) matrices each
H in ξ> satisfies the cyclotomic identity; i.e. if / = identity matrix,
I + H + H2 + + i P - 1 = (I - fly-1 = 0.

We do not directly compute the Engel length of the group ξ>, but
we instead use a form of the Magnus representation in order to in-
crease the solubility class of our group by one. (cf. [4].) Let tι and
t2 be indeterminates which commute with all elements of 3ΐ. Let ©
be the group of 2 x 2 matrices over ^i[tu t2] generated by

R = S =
B

We then show © satisfies the conditions for Kostrikin's Theorem.
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To do this, we first note that © is a group of exponent p by observ-
ing that if

YD Pt. + QtΛ

LO 1 J

is in ©, then

"1 0'

0 1
D Pt, + Qt2Ύ YDV (I + D + + D^iPt, + Qt2)~

0 1 " I 0 1

Using the notations BD = DBD~ι and Cn = [A, B; n], we then note
that

where

p ( 3 p _ 7 ) / a = (J - J5^(3p-9)/2) . . . ( J - j3*2)(j - ^ i ) ( l - BA)

and the form of Q{Zv-Ί)i2 is unimportant.
By establishing that P(3ί)_7)/2 ^ 0 in 9ΐ, we show that

[12, S; (Sp - 7)/2] ^ 1 ,

i.e., that ® has Engel length ^ (3p - 5)/2. Almost all the difficulties
of the proof is involved in showing P(82?_7)/2 Φ 0.

In Sections 4, 5 and 6, which are devoted to establishing that
P(3p-7)/2 is not the zero matrix, we analyze the structure of B°n and
Cn. If Me$i, let M be the (p — 3) x (p — 3) matrix obtained from
M by deleting the first row and first column of M. Then MXM2 =Mjiϊ2,
i.e., the first row and first column have no effect on the other rows
and colums during multiplication. In § 4, we first study Bdn and Cn,
the key conclusion here being that BPn ΞΞ B modulo Σn+1. In § 5 we
establish the necessary information concerning the first rows of B°n

and Cn. Section 6 is devoted to using these results to analyze the
(p — 2)th column of PΛ, and in particular the (1, p — 2) entry of
P(3p-7)/2 which proves to be non zero (i.e., not in Σp~λ).

We point out that the proof as it stands is meant only for primes
p ;Ξ> 7. For p = 3, 5, the proof can easily be modified and we omit
the details.

Throught the rest of the paper except the last section, we assume
P ^ 7.

3* The groups ξ> and ©• We first note that any element of ξ>
is of the following form:
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0
ω{

where i is relatively prime to p, or

"1

0
= I+N

where N is upper triangular with diagonal entries zero and hence is
nilpotent, i.e., Np~2 == 0.

PROPOSITION 1. ξ> has exponent p. In fact,

1+ H+ H2 + + H*-1 - (/ - Hy-1 = 0

/or all He&.

Proof. Since I - Hp = (I - H)p, we need only show H e ξ> satis-
fies the cyclotomic identity. Suppose if is of type Hί9 Then, the
characteristic polynomial of H over Zp[ω] divides

Π (x - ωι) = 1 + x + x2 + + xv~γ .

By the Cayley-Hamilton Theorem I + H + + Hp~ι = 0.
If H=I+ N, Np-2 = 0, then we have that [ / - ( / + N)]^1 =

tfp-i _ o# This completes the proof.
Elements of © have the form

VD Pt, + Qt2Ί
LO 1 J

where D e £ and P, Q e 3t.
We can easily show by induction that

YD Ptt +

L0 1

'D* (1 + D
0

i +

Putting i = p and applying Proposition 1 we immediately have.
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PROPOSITION 2. © has exponent p.

The generators R and S of © where described in §2. We now
examine the form of a commutor [R, S; n\. Recall that BD = DBD~\
D G ξ>, and Cn = [A, B; n\.

PROPOSITION 3.

\ (I - BA)tt + (A - CJtJ

j
and, in general, /or n Ξ> 2,

.-1 P *l + QntΓ

1 J
where

Proof. By straightforward computation and an induction
argument.

REMARK. We will also use the notation P1 = (I — BA).

PROPOSITION 4. Let k be the least integer for which 2k~ι ̂  (p — 2).
Then ξ> is of solubility class at most k, and © is of solubility class
at most (k + 1).

Proof. If we can show that £> has solubility class at k, then the
use of the Magnus representation increases the solubility class by 1,
so that © has solubility class at most (k + 1). (cf. [4].)

To prove that ξ> has solubility class at most fc, we must show
ξ>(/1:) = 1. If M = (x^) e 9ΐ, then for fixed j , we define the diagonal of
M consisting of the entries xiti+j, 1 ̂  i ^ (p — 2) — j , as the j t h upper
diagonal. Let j y be the ideal in 9t of all matrices with main diagonal
consisting of zeros. Then it is well-known that j%fn consists entirely
of matrices whose j t h upper diagonal entries are all zero, 1 ̂ j ^ (n — 1).

ξ>(1) consists of matrices of form I + M, M e s$f. We assert that
&k) consists entirely of matrices of form I + M, Mej^f2lc~\ Suppose
the assertion is true for k. If M is in sf2k and B is any element
of £>(fc), then since j y is an ideal, B(I + M)B~ι = 1 + BMB~\ where
BMB~ι is in sf2k. Also if Mlf M2 are in j ^ 2 k then (/ + M^I + M2) =
I + Ms where Λf3 e j^r 2 \ Thus, since ξ>(fc+1) is generated as a normal
subgroup of H by all commutators [x, y] for x, y in £>(A:), to complete
our induction assertion, we need only show [1+ Mu 1 + M2] = I mod s*f2k
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with I + Mt and I + M2 in £>(&), i.e., Mί and M2 in j ^ 2 k ~ \ But since
(I + My1 = (I - M + M2 - •) for M in jf, we have (/ + ikf,)-1 =
I — Mi mod j ^ 2 f c for Λf< in j ^ 2 * " 1 . Hence,

Λfa)(I ~ Mi)(I - M2) = /mod

This proves our assertion.
Thus when 2k~1 ^ (p - 2), ξ)(A;) = 1, and the solubility class of

is k. This completes the proof of Proposition 4.

4. The forms of Cn and f ^ We recall that

ω l

Thus

0

ω 0

0
ft)3 1

o

ω

-ωv

,p-ί 0

0

B-1 =

— Ίl2 ό lC2i

0
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where the (i,j) entry of B~\j }> i ^ 2, is

203

We also compute

BA =

o
ω3

0

We next observe by a direct computation that

where ΛΓ, = (<;#) has (i,i) entry cff = 0(moάΣ),c$ = lίmodl1) and
for i > i ^ 2,

(4.1) c£ - ( - 1 ) ^ ( 0 ) ^ . - co^ui+1J) = 0

LEMMA 1. For 2 <^ i < j < (p - 2), we have c^Λ^vi = ω* w c#.

Proo/.

Q)P~ι(f) ί P - * - i—1) \

This completes the proof.

The next lemma gives the information about Cn and Efin that we
will need.

LEMMA 2. Let Cn = / + Nn where Nn = (cίf).
(a) 5g» Ξ B (mod 2'n+1) /or αH n.
(b) C» Ξ /(modΣn) for all n.
(c) For 2^i <(p - 2), e ^ , i + 1 - ω^^c^f

Proof. For n = 1, part (c) is Lemma 1 and part (b) follows from
(4.1). We shall prove (b) and (c) by an induction argument. Assume
(b) and (c) hold for n. We first prove that (a) is true.
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= ( / - Nn)(modΣn+1)

since JV* = 0 (moάΣkn). (Here we are using the obvious fact that Nn

has only nonzero entries above the main diagonal and hence is nil-
potent.) Thus,

5* = (I+ Nn)B(I - Nn) (mod Σn+1)

= BNnB - BNn

since NnBNn = (modi?2"). Hence to prove (a) we must show

NnB - BNn = 0 (modi^ 1) .

For j ^ (ί + 1), the (i,j) entry of NnB is (c\n

+\fj + ωj+ιc{£ltάΛ1), and the
(ij) entry of BN^ is (ω*+1cί¥lii+1 + ^+2,i+i). Thus, for j ^ i + 1, the
(i, i) entry of NnB - BNn is

But by our induction hypothesis for part (c), we have

and this is in ^ w + 1 since our induction hypothesis for part (b) is that
all entries of Nn are in Σn. Similarly

since by hypothesis all entries of JV» are in Σn. Thus, the (i, i) entry
of NnB - BNn is in Σn+1, and hence 5 Ξ B^ (mod^-^1). Thus for a
fixed n, (b) and (c) implies (a).

We now show that (b) is true for n + 1. We first note that

= 1+ Nn-

Hence, to prove (b) holds for (n + 1) we must show that

Nn - BNnB-1 = 0 (mod^+ 1) .

For j ^ (i + 1) the (i,j) entry of BNnB~ι is

i - 2
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By the induction hypothesis, all the summands after the first term
have the form

±(uci+1>ι - vci+2>ι+1) = ±{u - vω'-^1)

ΞΞ 0 (mod Σn+1) ,

where u and v are powers of ω. Thus, the (i,j) entry of BNnB~x

is just ωp-ί+ic&\tj+ι (mod Σn+1). Hence for j ^ i + 1, the (i,j) entry
of (Nn - BNnB^) is

The proof of (b) of Lemma 1 is now complete.
To prove (c), we first note that we actually have

Cn+ι = I+Nn- BNnB-> (mod JF )

since the neglected terms all contain at least two factors of Nn. Thus
if n ^ 2, we have

Cn+1 ^I+Nn- BNnB~" (mod Σ^) .

Suppose, therefore, that n — 1.
Recomputing Bdi modulo Σ3, we have

- N, + N!) (mod Σz)

Ξ B + iViS - BN, - ( ^ B - BNJNt (mod J3) .

Since in the proof of part (a) we showed (iVj? — BNJ = Oίmodl12),
we^see that B°i = (B + NXB - BNJ (mod Σ3) and hence

C2 = I + JVX - JBJ^B-1 (mod J3) .

Thus for all integers n, we have

Cw+1 = / + Nn - BNnB-> (mod J ^ 2 ) .

In the range (p — 3) > j > i, Nn — BNnB has (i, i) entry,

- Σ [{-
Λ 1

We want to show that multiplying this entry by ωi"j gives us the
(i + 1, j + 1) entry.

by our induction hypothesis. We next compute
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Uk+i

Similarly, we find that

Thus,

j-2
p(n) 1

Σ
k=i+2

Finally, computing in a similar manner, we see that

Combining these results, we see that o)l~j times the '(i,j) entry
of Nn - BNnB-1 is indeed the (i + l,j + 1) entry. Thus, (c) of Lemma 2
is proved.

5* The first rows of Cn and B0*. With the help of Lemma 2,
we will prove

LEMMA 3. Let Cn = I + N%, Nn = (c[f). Then the first row of
Nn has the following form:

c[f = 0 (mod Σ«), c[f = 0 (mod Σn~ι), • • •, c[f

= 0 (mod Σ-i+i), , c\:l+ι = 0 (mod J ) ,

and

c[:l+2 = 1 (mod^), 1 ^ Λ ^ (p - 4) .

As a corollary of Lemma 3 we have

LEMMA 4. For 1 <^ n ^ (p — 5), the first row of Bc* has the
following form: The (i,j) entry is = 0(modl^~i+3) for l^j<^(n + 2)
and the (1, n 4- 3) ewfrπ/ is = 1 (modi/).

Proof of Lemma 4. We are assuming the truth of Lemma 3. We
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first note that C~ι = (I - Nn) (mod Σn) since N* = 0 (mod Σn+i) for
k ^ 2 by Lemma 2. Moreover, since our matrices are triangular,
the (1,2) entry of C"1 is -c\f. Therefore,

Bc« = (I + Nn)B(I - NΛ) (mod Σn)

and for the (1,2) entries we get equality rather than congruence.
(This congruence is not good enough for the (1, 2) entry since we must
show that the (1,2) entry is Ξ= 0(mod2r*+1).) In fact, we can say

£*• s B + (NnB - BN%) (mod 2"1)

where again the (1, 2) entries of both sides are equal. This is because
NnBNn = 0 (mod Σn) and NnBNn has the (i, i + 1) entries all zero.

For (p - 2) ^ i ^ 2, ΛΓWJB has (1, i) entry (eftU + ω ί̂ΓJ) and 5iV,
has the (l,i) entry ωc$. Therefore, NnB — BNn has (l,i) entry,
(n + 2) ^ j ^ 2,

c{7j + (ωJ - ft>)c|ΓJ Ξ 0 (mod Σn~j+Z) f

and (1, n + 3) entry

+3 Ξ 1 (mod Σ)

by Lemma 3. Since for j ^ 2, the (1, j) entry of B is zero, we have
proved Lemma 4.

Proof of Lemma 3. d (described in §4) satisfies Lemma 3. For
an induction argument we assume that the lemma holds for n.

From the proof of Lemma 4,

Cn+ί = B^B-1 = I + N%- BNnB~ι (mod Σn)

where the (1, 2) entries of both sides are equal. An easy calculation
(since only 2 x 2 triangular matrices are involved) shows that the (1, 2)
entry is (1 — ωp~~ι)c[f and hence by induction is in Σn+1. For
(n + 2) ^ j > 2, BNnB~' has (1, j) entry

= ω*-ί+1c$ (mod ̂ -^+3) ,

by our induction hypothesis. Thus, for (n + 2) ;> j1 ^ 3, the (l,i)
entry of (iSΓn - BNnB~ι) is

the (1, w + 3) entry of BNnB~λ is
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and hence the (1, n + 3) entry of (Nn — BNnB~ι) is

since c ^ + 2 Ξ lOrnodi?). Our proof is therefore complete.

6* Proof of Kostrikin's theorem (P(3p-7)/2 Φ 0). The results of
the two previous sections has afforded us with just enough informa-
tion about (I — BCi) so that we can now determine the relevant in-
formation about

ΐ = l

The following lemma completes the proof of Kostrikin's Theorem.

LEMMA 5. (a) For 1 ^ n ^ (p — 4), the last column of Pn = (d£j)
has the following form:

dp_2_n>p_2 Ξ ±ωp~ί (modi?), dv_x_n,v_% = 0 (mod27),

dP-n,P-2 = 0 (mod Σ>), , dp-8,p-i - 0 (mod Σ*~ι) ,

dp_2>p_2 = (1 - a>p-2)w Ξ 0 (mod £•) .

(b) For (3p - 7)/2 ^ Λ ^ (p - 3)/2, ^ _ 2 = ± ω'-^l - ω)9 (mod J?ff+1)
where q — n — (p — 3)/2. /n particular, the ( 1 , ^ — 2) ewfrπ/ o/ P{Sp^7)ι2

is = ±ωp~ί(l — ω)p~2 which is not in Σp~ι and hence is not the zero
element of Zp[ώ\.

Proof. We represent (I — BCn) by

(1 - ω) b[? bίr . bί:PL2

(1 - a/) . . .

(1 - ωp~2)

where

b[:] = 0 (mod Σn-j+*), 2 ^ j ^ n + 2, b[%+z = - 1 (mod I/),

and 6̂ ^ = 0 (mod Σn+ί) if ΐ > 1 by Lemmas 2 and 4.
Pt = (I — BΛ) satisfies property (a) of the lemma (BA is exhibited

in §4). As our induction hypothesis, for 2 <; n < p — 4, suppose P n

satisfies (a) of the lemma. P n + 1 = (/ — B°n)Pn. We may compute
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modulo Σn+1, and thus modulo Σn+1, we have Pn+ι equal to the follow-
ing product.

'(1 - ω) b[? &<?>

(1-ω2) - 1

( 1 - ω 3 ) - 1

0

0

- 1

Irrelevant

T h e (p - 2 - n~l,p -2) e n t r y of P T O + 1 i s

by the induction hypothesis. For 1 <̂  i <̂  n, the (p — 3 — n + i, p — 2)
entry of P n + 1 is (k = p — 3 — w + ί)(l — a)k)dk,p_2 — dk+1}P_2 == 0 (mod J?*)
by the induction hypothesis on P Λ . The (p — 2, p — 2) entry of the
right side is (1 — ωp~2)n+\ Thus, by induction, we have prove (a) of
Lemma 5.

To prove (b) of Lemma 5, we first note that for m = (p — 5)/2,
δίJ+i/2 = — l(modJ?) and dp%2>p_2 = ±ωp~1 (moάΣ). Then d[%t^ =
±ft>?)~1 (mod 2") since all entries in the first row of (I — B°*) to the
left of δί*Vi/2 are in Σ and all entries in the last column of Pn below
rfp+i/2,P-2 are also in Σ. Thus, P(p_3)/2 satisfies part (b) of the lemma.
For n + 1 > (p - 3)/2, we note that

(5.1)
4_

If (w+l) = (p —1)/2, then 6{f, 2 ^ i ^ (p —1)/2, are in 21, δί̂ p+D/ί,,^
and dίJVi>/2,p-2 are each in 21, and d$-z, (p + 3)/2 ^ i ^ (p — 3), and
(1 - ω*-2)n are in Σ2. Thus d!{ίJzί)/2) Ξ ±ω ϊ>~1(l - ω)modi;2.

For (w + 1) > (p — l)/2, it is now clear that all other terms in
(5.1) will be in one higher power of Σ than the term (1 — co)d{%^2

since either the first factor of the second factor lies in a higher power
of Σ for each increase in n. By induction we may assume that
d{C^2 = ±ωp-1(l - ω)q (mod Σ9+1) where q = n - (p - 3)/2. Thus, in
forming d^fll, all the terms after the first in (5.1) are = 0 modulo Σq+1,
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and hence d£+±l = ±ωp~1(l — ω)q+1 (modΣq+2). This completes the
proof of part (b) of Lemma 5.

6* Concluding remarks* The question naturally arises as to
how far the number np — (3p — 5)/2 is from the largest possible.
That np is probably not the Engel length of the restricted Burnside
group B(p) of exponent p has also been demonstrated by Kostrikin [2]
who showed that for p = 5, the Engel length of B(5) is 6 while np is
5. Our proof has yielded the additional information that the group
G(p) whose Engel length is np has solubility class k + 1 where k is
the least integer satisfying 2k > p — 1. In [1] Theorem D, it has
been shown that the Engel length of groups of exponents p and
solubility class k + 1 is at most k(p — 1) + 1. The actual number for
these groups is therefore between (Sp — 5)/2 and k(p — 1) + 1.

One possibility of enlarging the number (Sp — 5)/2 which comes
immediately to mind is to replace the entries of the matrices by
elements of a "larger" ring. That is, instead of taking entries from
Zp[ω], use entries from the group ring of an abelian group of ex-
ponent p; e.g., if Cp is the cyclic group of order p, use entries from
ZP[CP x Cp] modulo a suitable ideal. The suitable ideal would have to
be the cyclotomic ideal (see [1] for definitions) so that the propositions
in §3 remain valid. But the results in [1] (specifically Theorem B)
indicate that there would be no change in the first result. In fact,
for a prime p, the results in [1] indicate that going to any finite
number of variables would make no difference and one may as well use
one variable as we have done.

Finally, we conclude with the observation, based upon computer
calculations for small primes, that it should be possible to give an
even more elementary proof of Kostrikin's Theorem. Namely, instead
of using (p — 2) x (p — 2) matrices, enlarge the matrices to p x p.
Specifically, let

A =

1 1

ω

o
0

ωp

1 0

ω 1

ω2 1

and let as before d = [A, B\,Cn = [A, B; ri\. The group generated by
A, B is a group of exponent p, and the idea now is to show directly
that C(33,_5)/2 Φ 1. Conceptually this is simpler than the proof given in
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this paper, since it avoids the trick of using the Magnus representa-
tion, and furthermore one now has a concrete matrix group which is
amenable to computer calculations (for small primes) to aid in discover-
ing other properties of these groups. Computer calculations for p —
5, 7,11 have shown that indeed for these primes, the (1, p) entry of
C(33,_7)/2 is not in Σp~~ι and hence is nonzero. In fact, the pattern shown
makes it quite clear what happens for arbitrary p. Namely, the (1, p)
entry is a unit for each Cn, n < p — 1, and finally the (1, p) entry of
Cί,_1 falls into Σ. But, unfortunately this entry, in fact, falls into Σ2

and thereafter the (1, p) entry of Cp falls into Σ\ the (1, p) entry of
Cp+1 falls into Σ6, etc.; until finally the (1, p) entry of C(33?_7)/2 lies in
Σp~s and the (1, p) entry of C(33>_5)/2 lies in Σ9"1; i.e. C(3P_7)/2 -Φ 1. Because
of the jumps in the highest power of Σ in which the (1, p) entry lies at
these later stages, one must have exact knowledge of the terms in the
matrices used to compute Cn in order to demonstrate that the entries
do not fall into even higher powers of Σ. The bookkeeping involved
here is rather horrendous, and because of the difficult technical pro-
blems involved we have abandoned such a direct proof of Kostrikin's
Theorem. The method we used enabled us at each stage to calculate
modulo Σι if the entries involved were in Σι~ι. Much more precise
information is required in a direct proof.

Appendix*

THEOREM. Let p ^ 3 be a prime and e >̂ 1 any integer. Then
there exists a group © which has exponent pe and Engel length
e(pe — pe~ι) + (p — 3)/2. Furthermore, (§ has solubility class at most
k + 1, where k is the least integer for which 2k~1 ^ (p — 2).

Proof. Let

ω 1

A =

0

0

O)p~

ω 0

ω2 1

0

0

where ω is a primitive peth root of unity* We first observe that any
element H in the group ξ> generated by A and B satisfies the cyclo-
tomic identity 1 + H + H2 + + Hp0~ι = 0. To see this, we note
that either H has the form
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7

72

o
where 7 is a primitive pίΛ root of unity, 1 5ϊ j ^ e, or H has the form

"1

1

H, = 0 = I + N

where Np~2 = 0.
We have 1 + Ht + + H?'~ι = 0, since the characteristic poly-

nomial of Hίf Π?=ί (Z - r ) , divides 1 + Z + Z2 + . + Z2'6""1. To
show that

1 + H2 + HI + . + IT
= / + (/ + N) NY + . . . + ( / + NY0-1

we shall show that the coefficient of N\ 1 ^ i ^ (p — 2), is congruent
to zero modulo p e . The coefficient of N* is

2-j
+ j i + pe — i

p*

Pe

Since (i + 1) ^ (p — 1), we have . H = 0 (modpe)
U +1/

It thus follows that § is a group with exponent pe and as before
we let © be the group of 2 x 2 matrices over Z(fQ)[tl912] generated by

R =
A t;
o l

and S =
B t2

0 1

The proof that @ satisfies all the conditions of the theorem now
proceeds exactly as in the prime case by replacing p by pe where
appropriate. The only remark necessary to make is that the augmenta-
tion ideal Σ of Zpe[ω] now satisfies Σe{pe-pe~1] = 0, but Σ^"^'1^1 Φ 0,
(see [1]).

We would like to mention here the authors' conviction that this
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work could not have been possible without the aid of a computer.
The computer calculations for small primes not only showed us that
the result is possible but also enabled us to discover the method of
proof. It is a pleasure for us to acknowledge the generous assistance
of Professor Glen Culler, who placed the computing facilities of the
University of California at Santa Barbara at our disposal, and to Miss
Helen Smith, who did outstanding programming work for us.
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