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THE INTEGRATION OF A LIE ALGEBRA
REPRESENTATION

J. Tits AND L. WAELBROECK

Let u: G— A be a differentiable representation of a Lie
group into a b-algebra. The differential 4, = du. of u at the
neutral element ¢ of G is a representation of the Lie algebra
g of G into A. Because a Lie group is locally the union of
one-parameter subgroups and since the infinitesimal generator
of a differentiable (multiplicative) sub-semi-group of A deter-
mines this sub-semi-group, the representation u, determines %
if G is connected.

We shall be concerned with the converse: given a repre-
sentation %, of g, when can it be obtained by differentiating
a representation u of G? We shall assume G connected and
simply connected, which means that we are only interested in
the local aspect of the problem.

Call a ¢ A integrable if a differentiable r: R — A can be found
such that (s + t) = »(s)r(t) and 7'(0) = a. We can only hope to
integrate u,: g — A to a differentiable u: G — A if wux is integrable
for all xeg. We shall prove the

THEOREM. The set Y) of all elements x g such that we s inte-
grable, is a Lie subalgebra of g; the representation u, can be integrated
to a representation u:G— A of the simply connected group G if
and only if 9 = g.

This result is “best possible” in the following sense:

PropoSITION 1. Given a real Lie algebra g and a subalgebra b,
there exists a representation u,:g— A of g in a b-algebra A, so that

b ={xeg|uwx is integrable} .

As a consequence of the theorem, we have the following result:
Let »,y be two integrable elements of a b-algebra, and assume that
the Lie algebra g they generate is finite-dimensional. Then all elements
of g are integrable.

We cannot drop the assumption that g is finite-dimensional. There
exists a b-algebra which contains integrable elements z,y such that
neither © + y nor xy — yx is integrable.

Elementary properties of b-spaces and b-algebras can be found in
[2] or [3]. Differentiable mappings into such spaces are investigated
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in [4]. The results we need about differentiable semi-groups are
established in [5], [6]. Our results are related to, but different from,
those of R. T. Moore [1].

2. We first prove Proposition 1. Let G be a Lie group having
g as Lie algebra and let H be the subgroup of G “generated” by ¥.
Call A the ring of distributions on G whose support is compact and
contained in H. The product in A is the convolution. A subset B
of A is bounded if B is a bounded set of distributions with compact
support, the union of the supports being relatively compact in H.
Then, it is easily seen that the elements of g whose image by the
natural inclusion u,: g— A are integrable, are precisely the elements
of §. This completes the proof.

REMARK. If H is simply connected, the algebra A described
above is the solution of a universal problem: every representation
u:g— A’ of g in a b-algebra A’ such thag uf is integrable can be
factorized in a unique way as u = vou,, where v: A — A’ is a morphism
of b-algebras. An easy but somewhat technical modification of our
definition of A would provide a solution of this problem in general
(for an arbitrary H); the reader will have no difficulty to figure it
out.

3. Let u be a differentiable mapping of a manifold D into another
manifold D’ or into a b-space E. We denote by du(x; -) the derivative
of w at x, so that du(x, &) is a tangent vector to D’ at ux or an
element of F when £ is a tangent vector at xeD. The chain rule
says that if D, D’, D" are manifolds, if E is a b-space and if u: D — D',
v: D' — D" or D' — E are differentiable mappings, then

(1) d(vow)(x; &) = dv(ux; du(x; &) .

Let G be a Lie group whose neutral element will be denoted by
¢ and let g be its Lie algebra. If x, ¥ €G and if ¢ is a tangent vector
at x, then y& and &y will be the tangent vectors at yx, xy respectively
obtained by translating & to the left or to the right. We shall denote
by 7: G X G — G the product mapping (7(x, ¥) = zy), by : G — G the
inverse mapping (i(x) = '), by Ad: G— Autg the adjoint represen-
tation (Ad x-& = xéx~') and by ad the derivative of Ad ate (adé-n =
[&,7]). We have

(2) dr(x, y; §,1m) = an + &y ;
(3) di(x; &) = —at &t
Let H be a Lie group, let A be a b-algebra and let u denote
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either a Lie group homomorphism G — H or a differentiable mapping
G — A which is a homomorphism of G in the multiplicative group of
A. Finally, set u, = du(e; -):g— 9 = Lie H or g— A accordingly.
Then

(4) du(x; ) = u(@)u(x™§) = u(br™")u(z) .
In particular

(5) dAd(x; &) = Ad x-ad(x™€) = ad(éx™)-Ad x .

4, Let A bea b-algebra and A* be the set of its invertible elements.
A mapping u: D — A* will be called differentiable if both x — u(x)
and 2 — u(x)~' are differentiable mappings.

It is not difficult to construct differentiable A-valued mappings
which are A*-valued but are not differentiable A*-valued mappings.

Consideration of the resolvent identity

at—b1t=—ata — b

and standard proofs show that a differentiable mapping u: D — A* with
values in A* is a differentiable A*-valued mapping in the above sense
if and only if u™: D— A is locally bounded. It turns out that

(6) du(; 8) = —u™(@)-du(; §)-u(@) .

5. From now on, G will be a connected, simply connected Lie
group, g will be its Lie algebra, A a b-algebra and u,;g— A a
representation. A differentiable submanifold D of G is called right
(resp. left) integrable for u, if a differentiable u: D — A* exists such
that the equation (7) (resp. (8)) holds:

(7) du(x; &) = uy(é a7 )u(x) ;
(8) du(x; &) = w(@)u(x™-§) .

It will follow from Proposition 2 that the representation u, is integrable
in the sense of §1 if and only if the manifold G itself is right or
left integrable; therefore the terminology. We note that, if « satisfies
(7), then

(9) du(w; &) = —u ' (@& a7 .

A right translate of a right integrable manifold is right integrable.
If u satisfies (7), so does au for every ac A*.

LEMMA 1. Let D be connected, right inmtegrable, containing e,
and let w be a solution of (7) such that w(e) = 1. Then
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(10) u(w€x™) = w(@w)u(§)u(x)™
for all xe D and & eg.

It suffices to show that if ¢: D — A is defined by
Ppx) = u(@) u@ée)u(x) ,

then dp = 0, and this follows from a straightforward computation
using (7), (9), (6) and the fact that u,: g— A is a homomorphism of
Lie algebras.

LEMMA 2. If D s connected, right integrable and contains e,
it s also left integrable. Furthermore, the solution u of (7) such
that u(e) = 1 is also a solution of (8).

This is clear since, by (10),
WE)UA(XTE) = Ug(®- 27T HW(®) = u(Sx™u(x) .

In view of Lemma 2, it is now meaningful to say that a manifold
containing e is integrable.

6. Let D, D’ be two differentiable manifolds. The rank r, of
a differentiable mapping w: D — D’ at a point £ € D is the dimension
of the image of the derivative du(x; -). We recall that », is upper
semi-continuous as a function of x. The mapping % is said to be
regular at x if r, is constant in a neighborhood of x; in that case,
there exists a neighborhood U of #z, a submanifold D” of D', a
manifold E and a diffeomorphism «': U — D" x HE, so that |, = pp.ou’
where p,.. denotes the projection of D” x K of its first factor.

LEMMA 3. For i =1, 2, let D; be an integrable submanifold of G
containing e, and let u;: D, — A be a solution of (7) mapping e on 1.
Assume that the product mapping D, X D,— G is regular at (e, e).
Then, one can find meighborhoods D), D; of e in D,, D, respectively,
so that D = D.-D), is an integrable manifold and the relation

(11) U@, 2,) = ul(xl)'uz(xz) (xi € Di)

defines a mapping u: D — A which is a solution of (7).

Put v(x,, 2,) = w,(x,)u(2,), differentiate and apply (7), (10) and (2).
This yields

12) dv(x,, x,; &, &) = U A7 (2, X35 &1y &) (e, o) .

In particular, dv = 0 whenever dz = 0. This, the regularity assump-
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tion and the implicit function theorem imply the existence of a function
u satisfying (11) locally. In view of (12), this function is locally a
solution of (7).

7. Our main theorem is an immediate consequence of the

PROPOSITION 2. Let D be an integrable submanifold of G of
maximum dimension containing e and let u: D — A be the solution of
(7) with u(e) = 1. Then D 1is a local subgroup, u is a local homo-
morphism of D into A* and D contains locally every integrable sub-
manifold of G containing e.

We first show that

(*) if D' is any integrable submanifold of G containing e, the
tangent space to D’ at ¢ is contained in that of D.

Agssume the contrary. Then there exists a neighborhood U of (e, ¢) in
D x D’ such that, for every (x, «') € U, the tangent space to x~'D at
¢ does not contain that to D'z’*. Let (f,f’)e U be a point where
the product mapping D x D' — D-.D’ is regular (one knows that the
set of those points is dense). Then, by Lemma 3, there exist neigh-
borhoods E of fin D and E’ of f’ in D’ such that f'EE'f'~' is an
integrable manifold, which is obviously of dimension greater than
that of D, in contradiction to the maximality assumption.

It follows from (*) that the tangent space to D at any one of
its points, say «, is a translate of its tangent space at e (take
D' = 7'D). This ensures that D is a local group.

Since D is a local group, the product mapping D X D— D is
regular in (e, e). It then follows from Lemma 3 that there exist a
neighborhood U of (¢,¢) in D x D and a function v defined in a
neighborhood of ¢ in D so that

v(xlxz) = u’(xl)u(wZ)
for (x,, «,) € U. But then, for points x,, z, close enough to e, we have
wW(@)U(X,) = v(0,2,-6) = u(,2,) - ule) = u(x,,) ,

and u is a local representation.

Finally, if D’ is integrable (right or left), it follows from (8)
that the tangent space to D’ at any one of its points is contained in
a translate of the tangent space to D at e. If eecD’, this implies
that D’ is locally (at ¢) contained in D,
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