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THE INTEGRATION OF A LIE ALGEBRA
REPRESENTATION

J. TITS AND L. WAELBROECK

Let u: G —> A be a differentiable representation of a Lie
group into a 6-algebra. The differential u0 = due of u at the
neutral element e of G is a representation of the Lie algebra
9 of G into A. Because a Lie group is locally the union of
one-parameter subgroups and since the infinitesimal generator
of a differentiable (multiplicative) sub-semi-group of A deter-
mines this sub-semi-group, the representation u0 determines u
if G is connected.

We shall be concerned with the converse: given a repre-
sentation u0 of o, when can it be obtained by differentiating
a representation u of G? We shall assume G connected and
simply connected, which means that we are only interested in
the local aspect of the problem.

Call aeA integrable if a differentiable r: R—*A can be found
such that r(s + t) = r(s)r(t) and r'(0) = a. We can only hope to
integrate u0: g —» A to a differentiable u: G —> A if uox is integrable
for all XGQ. We shall prove the

THEOREM. The set I) of all elements X^Q such that uox is inte-
grable, is a Lie subalgebra of g; the representation uQ can be integrated
to a representation u:G-+ A of the simply connected group G if
and only if ί) — g.

This result is "best possible" in the following sense:

PROPOSITION 1. Given a real Lie algebra g and a subalgebra ^,
there exists a representation UQ:Q—>A of g in a b-algebra A, so that

ί) = {x e g I uox is integrable} .

As a consequence of the theorem, we have the following result:
Let x, y be two integrable elements of a δ-algebra, and assume that
the Lie algebra g they generate is finite-dimensional. Then all elements
of g are integrable.

We cannot drop the assumption that g is finite-dimensional. There
exists a δ-algebra which contains integrable elements x, y such that
neither x + y nor xy — yx is integrable.

Elementary properties of 6-spaces and 6-algebras can be found in
[2] or [3]. Diίferentiable mappings into such spaces are investigated
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in [4]. The results we need about differentiable semi-groups are
established in [5], [6]. Our results are related to, but different from,
those of R. T. Moore [1].

2* We first prove Proposition 1. Let G be a Lie group having
g as Lie algebra and let H be the subgroup of G "generated'' by §.
Call A the ring of distributions on G whose support is compact and
contained in H. The product in A is the convolution. A subset B
of A is bounded if B is a bounded set of distributions with compact
support, the union of the supports being relatively compact in H.
Then, it is easily seen that the elements of g whose image by the
natural inclusion u0: g —• A are integrable, are precisely the elements
of ϊ). This completes the proof.

REMARK. If H is simply connected, the algebra A described
above is the solution of a universal problem: every representation
u: Q —* Ar of g in a 6-algebra A such that vfy is integrable can be
factorized in a unique way as u = vouQ, where v: A—>A' is a morphism
of 6-algebras. An easy but somewhat technical modification of our
definition of A would provide a solution of this problem in general
(for an arbitrary H); the reader will have no difficulty to figure it
out.

3* Let u be a differentiable mapping of a manifold D into another
manifold Dr or into a δ-space E. We denote by du(x; •) the derivative
of u at x, so that du(x, ξ) is a tangent vector to D' at ux or an
element of E when ξ is a tangent vector at xeD. The chain rule
says that if D, Dr, D" are manifolds, if E is a 6-space and if u: D—>D',
v: D' —>Ώ" or D'—+E are differentiable mappings, then

(1) d(v o u)(x; ξ) = dv(ux; du(x; ξ)) .

Let G be a Lie group whose neutral element will be denoted by
e and let g be its Lie algebra. If x, y eG and if ξ is a tangent vector
at x, then yξ and ξy will be the tangent vectors at yx, xy respectively
obtained by translating ζ to the left or to the right. We shall denote
by π: G x G —> G the product mapping (π(x, y) = xy), by i: G —• G the
inverse mapping (i(x) = or1), by Ad:G—+Autg the adjoint represen-
tation (Ad# f = xζx-1) and by ad the derivative of Ad at e (adζ-η =
[ζ, η}). We have

( 2 ) dπ{x, y; ξ, η) = xη + ξy

(3) di(x;ξ) = -x-'-ξ-x-1 .

Let H be a Lie group, let A be a δ-algebra and let u denote
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either a Lie group homomorphism G —>H or a differentiable mapping
G —* A which is a homomorphism of G in the multiplicative group of
A. Finally, set u0 = du(e; •): g —> § — Lie if or g —> A accordingly.
Then

( 4) du(x; ζ) = i

In particular

( 5 ) dAd(a; £) - Adx-adix-'ζ) = ad{ξχ-ι)Άd x .

4* Let A be a 6-algebra and A* be the set of its invertible elements.
A mapping u: D —> A* will be called differentiable if both # —> w(#)
and α;—> (̂α;)~1 are diίferentiable mappings.

It is not difficult to construct differentiable A-valued mappings
which are A*-valued but are not differentiable A*-valued mappings.

Consideration of the resolvent identity

α-i _ δ-i = -a-\a - b)b~ι

and standard proofs show that a differentiable mapping u: D-+A* with
values in A* is a differentiable A*-valued mapping in the above sense
if and only if u*1: D—>A is locally bounded. It turns out that

( 6 ) du-^x; ξ) = -u~\x)*du{x) ξ)-v,-\x) .

5. From now on, G will be a connected, simply connected Lie
group, Q will be its Lie algebra, A a 6-algebra and u0: g —»A a
representation. A differentiable submanifold D of G is called right
(resp. left) integrable for u0 if a differentiable u: D —> A* exists such
that the equation (7) (resp. (8)) holds:

( 7 ) du(x; ξ) = uo(ξ-x~ι)u(x)

( 8) du(x; ξ) =

It will follow from Proposition 2 that the representation uQ is integrable
in the sense of § 1 if and only if the manifold G itself is right or
left integrable; therefore the terminology. We note that, if u satisfies
(7), then

(9) dvr\x\ ζ) = -^(αOttoίS a-1) .

A right translate of a right integrable manifold is right integrable.
If u satisfies (7), so does an for every αeA*.

LEMMA 1. Let D be connected, right integrable, containing ey

and let u be a solution of (7) such that u(e) = 1. Then
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(10) u^xξx-1) = u{x)u,{ξ)u{x)-1

for all xeD and ζ eg.

It suffices to show that if φ: D —> A is defined by

φ(χ) = uix^

then dφ = 0, and this follows from a straightforward computation
using (7), (9), (5) and the fact that UO:Q-+A is a homomorphism of
Lie algebras.

LEMMA 2. // D is connected, right integrable and contains e,
it is also left integrable. Furthermore, the solution u of (7) such
that u(e) = 1 is also a solution of (8).

This is clear since, by (10),

u(x)uQ(x~ιζ) = uύ(x x^ζ x~ι)u{x) = uQ(ξx~ι)u(x) .

In view of Lemma 2, it is now meaningful to say that a manifold
containing e is integrable.

6* Let D, Dr be two differentiate manifolds. The rank rx of
a differentiate mapping u: D -+Df at a point x e D is the dimension
of the image of the derivative du(x; •). We recall that rx is upper
semi-continuous as a function of x. The mapping u is said to be
regular at # if r^ is constant in a neighborhood of x; in that case,
there exists a neighborhood [/ of x, a submanifold D" of Dr, a
manifold i?and a diffeomorphism %': £7—*D" x £7, so that w|̂  = pD,,ou'
where pD,, denotes the projection of D" x E of its first factor.

LEMMA 3. For i = 1, 2, let Di be an integrable submanifold of G
containing e, and let u{\ Di—>A be a solution of (7) mapping e on 1.
Assume that the product mapping Dx x D2-+G is regular at (e,e).
Then, one can find neighborhoods D[, D'2 of e in Όγ, D2 respectively,
so that D — D[*D'2 is an integrable manifold and the relation

(11) u(x, x2) = u^x,) u2(x2) (xt e D[)

defines a mapping u:D—*A which is a solution of (7).

Put v(xux2) = u1(x1)ui(x2)9 differentiate and apply (7), (10) and (2).
This yields

(12) dv(xlyx2; ξu ξ2) = uQ(dπ(x19 x2; ξ19 ξ2)xT1x

In particular, dv = 0 whenever dπ = 0. This, the regularity assump-
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tion and the implicit function theorem imply the existence of a function
u satisfying (11) locally. In view of (12), this function is locally a
solution of (7).

7 Our main theorem is an immediate consequence of the

PROPOSITION 2. Let D be an ίntegrable submanifold of G of
"maximum dimension containing e and let u: D —• A be the solution of
(7) with u(e) — 1. Then D is a local subgroup, u is a local homo-
morphism of D into A* and D contains locally every integrable sub-
manifold of G containing e.

We first show that

( * ) if D' is any integrable submanifold of G containing e, the
tangent space to Df at e is contained in that of D.

Assume the contrary. Then there exists a neighborhood U of (e, e) in
D x Df such that, for every (x, xr) e £7, the tangent space to x^D at
e does not contain that to Drxf~\ Let (/, /') e U be a point where
the product mapping D x D' -+D-D' is regular (one knows that the
set of those points is dense). Then, by Lemma 3, there exist neigh-
borhoods E of / in D and E' of / ' in D' such that f-ιEE'f'~ι is an
integrable manifold, which is obviously of dimension greater than
that of D, in contradiction to the maximality assumption.

It follows from (*) that the tangent space to D at any one of
its points, say a;, is a translate of its tangent space at e (take
Ώ' — x^D). This ensures that D is a local group.

Since D is a local group, the product mapping D x D—*D is
regular in (β, β). It then follows from Lemma 3 that there exist a
neighborhood U of (e, e) in D x D and a function v defined in a
neighborhood of e in D so that

v(x1x2) = u(Xj)u(x2)

for (x19 x2) e U. But then, for points x19 x2 close enough to e, we have

u(x1)u(x2) = viXjXz e)

and u is a local representation.
Finally, if D' is integrable (right or left), it follows from (8)

that the tangent space to D' at any one of its points is contained in
a translate of the tangent space to ΰ at e. If e e Ό\ this implies
that D9 is locally (at e) contained in D.
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