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FULL CO-ORDINALS OF RETS

ALFRED B. MANASTER

Recursive analogues of cardinal and ordinal numbers have
been developed by considering only subsets of the natural
numbers and considering only one-to-one partial recursive
functions as the maps or correspondences between sets, The
recursive analogue of a cardinal is called a recursive equiva-
lence type (RET) and that of an ordinal is called a co-ordinal.
Using the RETs and the co-ordinals analogues of Cantor’s
number classes are defined and considered in this paper. The
degree of indecomposability of an RET is seen to determine
the set of classical ordinals represented in the RET’s co-
ordinal number class. If the RET is infinite this set of ordinals
is always an initial segment (not necessarily proper) of Cantor’s
second number class,

The basic reference for RETs is Dekker-Myhill [3]. The basic
reference for co-ordinals is Crossley [1]. If & and 7 are subsets of
EE ={0,1,2,---}), n is called recursively equivalent to & if there
exists a one-to-one partial recursive function f whose domain includes
& such that the f-image of & is 7. The class of all sets recursively
equivalent to ¢ is called the recursive equivalence type (RET) of &
and will be denoted by <&>. If <, is a well-ordering of ¢ and <, is
a well-ordering of 7, then (¢, <;) is called recursively isotonic to
(9, <,) if there exists a one-to-one partial recursive function f whose
domain includes & and such that f is an order isomorphism of (&, <,)
onto (9, <,). The class of all-orderings (7, <,) recursively isotonic
to (&, <,) is called the co-ordinal of (¢, <.) and will be denoted by
&, <. If Y =<§ <, is a co-ordinal, the classical order type of
(&, <) is a countable ordinal which will be referred to as the order
type of Y and denoted | Y| (Cf. Definition IV. 2.1 of Crossley [1]).

Addition is defined for RETs and co-ordinals in the following
manner. The subsets & and &, of E are called RE separable if there
exists a pair of disjoint recursively enumerable (RE) sets, 4, and 4,,
such that £, =6, and £, <S6,. Assume that & and &, are RE separable,
<; is a well-ordering of &; for ¢ = 1,2, and X, =<£>,Y; =&, <>
for i =1,2. Then X, + X, =<§, U &) and

Y1+ Y2=<E1U52,<1U<2U(51XE2)>°

Using the definitions of addition, partial orderings < have been
defined in both the RETs and the co-ordinals. For RETs X and X,
define X, < X if and only if there is a RET X, such that X, + X, =
X. Analogously, for co-ordinals Y, and Y define Y, < Y if and only
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if there is a co-ordinal Y, such that Y, + Y, =Y.

Let Y, =<¢, <) and Y, = (&, <> be co-ordinals. Y, is called
an initial segment of Y, if (&,, <<;) is recursively isotonic to an initial
segment of (&, <,). Definition X. 4.3 of Crossley [2] may now be
rephrased as follows. A co-ordinal Y is full if every initial segment
of Y is a predecessor of Y in the sense of <. Note that if (&, <)
is an initial segment of (¢, <), then {§,, <> < (¢, <> if and only
if & and & — &, are RE separable. Thus <{¢,, <> is full if and only if
every initial segment of (£, <)) is RE separable from its complement
in &. Example IV. 5.1 of Crossley [1] shows the existence of co-
ordinals which are not full. The existence of many full co-ordinals
is proved in IV. 5.4 of Crossley [1].

There is a natural sense in which the field of a co-ordinal is an
RET. To see this consider {§, <.>; if (¢, <) is recursively isotonic
to (9, <,) then & is recursively equivalent to 7 and <{&) = (%), con-
versely if & is recursively equivalent to » then there is an ordering
<, of 7 such that {n, <,> = <&, <,>. This observation justifies the
following definition.

DEFINITION. The field of the co-ordinal Y = (¢, <,> is the RET
X =<{&.

In this paper we consider the question of determining the order
types of full co-ordinals with a given field X. For each RET X let
Z (X) be the set of full co-ordinals Y whose field is X. Let

I (X)) ={Y|YesF(X)}

be the set of order types of full co-ordinals with field X.

It will be shown that for each infinite RET X either || & (X)|| =
[@, w,) where w, is the first uncountable ordinal or there is a countable
positive ordinal « and a finite »>0 such that || & (X)||=[w, 0*(n+1)).
([, B) = {v:a¢ < v < B}. ¢ is the cardinality of the continuum.) For
each positive ordinal a and each finite » > 0 there exist ¢ RETs X
such that || & (X)|| = [w, @*(n + 1)). It will also be shown that if
the RET X is not an isol (See Chapter IV of Dekker-Myhill [3]) then
|7 (X) || = [0, w).

A hierarchy structure of the RETs similar to that in Manaster
[4] will be useful in demonstrating the results stated above. Note
that although the terms and the symbols are similar to those in
Definition 0.1 of [4], the definition is slightly different.

DEFINITION. I, = {X: X is finite}. For each positive countable
ordinal « define
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Paz{X:X-—— Y+Z=Y€HaIpVZ€}<JaIﬂ}

and

I, = {X: there is an n and RETs X, ---, X, such that
each X;eP,and X=X, + --- + X,}.

Elements of P, are called «a-order indecomposable. Elements of
Ugs<o I are called a-small. Elements of P, which are not a-small
are called strictly a-order indecomposable.

In spite of the difference between this definition and definition
0.1 of [4], the two notions of a-order indecomposability are similar
enough that most of the results of [4] are also correct for this defini-
tion of a-order indecomposability. If Definition 0.1 of [4] is modified
by defining S, = {X: X = 0}, then the two definitions of P, and I,
are the same. Replacing some occurrences of P, N S.(P, — S,) with
occurrences of Ujsco Ii(Py — Us<a I; respectively), all results of §1 of
[4] remain valid except Lemma 1.1 and Theorem 1.4. In particular
P, is closed under predecessor (Lemma 1.5) so that I, is the ideal
generated by P,. Moreover the arguments used in Construction I of
§ 2 and the first part of §3 (through Theorem 3.2) are still valid
under the present interpretation and show the existence of ¢ strictly
a-order indecomposable isols for each countable ordinal a.

The main result of this paper is the following theorem.

THEOREM. Let « be a positive countable ordinal. If X is a sum
of n strictly a-order indecomposables, || # (X)|| = [@, w*(n + 1)). If
X ¢ Uaca, Loy then || & (X) || = [0, 0).

LEMMA 1. Let 0<a < w,. If X is a sum of n a-order inde-
composables and Y e # (X), then | Y| < o%(n + 1).

Proof. The proof is an induction on «. Assume inductively that
for 8 < a if Z is a sum of m B-order indecomposables and T e & (Z)
then | T| < w?(m + 1). (Note that the remainder of the proof applies
for all « = 1.) In particular, if Z is a-small and Te & (Z) then
|T| < w*. Suppose X = X, + --- + X, where » =1 and each X; e P,.
Suppose Ye #(X) and |Y| = w*(n +1). Since Y is full, ¥ =
Y+ - +Y,,, where | Y;|=w*forl<i<mnand|Y,,| = w. BEach
Y, is full since initial segments and tails of full co-ordinals are full.
X=Z + --- + Z,,, where each Z, is the field of Y;. By the inductive
hypotheses each Z,; is not a-small since Y,e.&# (Z,) and |Y;| = w°.
By the refinement property (Theorem 15 (I) of Dekker-Myhill [3])
there exist RETs X ; satisfying the following system of equations.
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X1,1 + o A+ Xl,n+1 = X1

+ +
X2,1 + oo+ Xz,n+1 = Xz

+

+ -

Xn,l + ce + Xn,n+1 = X'n
Il oo Il
Zl e Zn+1 .

Since each Z; is not a-small, for each j there is at least one ¢
such that X, ; is not a-small. Since there are n + 1 columns but
only n rows there must be a row, say row 7, in which there are at
least two terms, X;; and X;,, neither of which is a-small. Thus
X, ¢ P,. Contradiction.

Lemma 1 shows that if X is a sum of n a—order indecomposables,
then || # (X)|| S [w, w*(n + 1)). The next sequence of lemmas lead
to the converse inclusion.

LeEMMA 2. If X is not a-small and B ts any ordinal less than
a, then there exist X, and X, such that X = X, + X,, X, is not B-
small, and X, is not a-small.

Proof. Suppose X is not a-small. Since, in particular, X ¢ P,,
there exist X, and X, such that X = X, + X, and neither X, nor X,
is B-small. Not both X, and X, can be a-small.

LEmMMA 3. If X is not a-small, then there is a Y e 7 (X) of
order type w°.

Proof. The proof is an induction on @. The base step, a =1,
is easy since every infinite RET is the field of full co-ordinals of type
w. Let 1 <a<w,. Let {8} be a sequence of ordinals such that
18 <8 =B, .-+ <a and such that for every B8 < a there is
an ¢ such that < B8,. (If a =7 + 1, let each 8; = 7.)

Since X is not a-small and B, < «, by Lemma 2 there exist X,
and Z, such that X = X, + Z,, X, is not 8-small, and Z, is not a-small.
Inductively for each n, X=X+ --- + X, + Z, where Z, is not
a-small. Since B,., < a by Lemma 2 there exist X,., and Z,,, such
that Z, = X,., + Z,41, X141 18 not B,.,-small and Z,., is not a-small.
Thus

X:X0+ "'+Xn+Xn+1+Zn+l



FULL CO-ORDINALS OF RETS 551

where each X, is not B;-small and Z,,, is not a-small.

Since B, < a the inductive hypothesis asserts the existence of a
full co-ordinal Y, of order type w?» with field X,. Unfortunately the
ordinal sum of the Y, is not well defined and even if it were it would
not, in general, be a co-ordinal with field X. However, it would be
a full co-ordinal of type w*. To remove these difficulties, it seems
necessary to work with a representative of X.

Let <¢) = X. For each n let &, be a representative of X such
that U, ¢, S¢ and U~, &; is RE separable from & — |J7, &;.. Define

&=&U(mnenTE)

and X, = <&,>. For any RET Z both Z and Z + 1 have the same
order of indecomposability, if any. Thus X, is not B,-small. Now
apply the inductive hypothesis to obtain full co-ordinals Y, of order
type wf» with field X,. Let Y, = <&, <,> and define

v = Y& U<, UU € x s;)> :

n<w

Y is a full co-ordinal of type 3, w?» = w* with field X.

LEMMA 4. If Ye 7 (X),|Y|=a, and @ < B < a, then there
is a Y'e 5 (X) such that | Y'| = B.

Proof. First consider the case in which a« — 8 is finite. Y =
Y, + Y, where |Y,|=8 and |Y,|=a—-fFB<w. Y =Y,+7Y, is
then a full co-ordinal of type (¢ — B) + B = B with field X.

Next consider the case in which a — 8 =w and w*<B. Y =
Y,+ Y, where |Y,|=8 and |Y,| =a — 8= w. Let Y, be a (neces-
sarily full) ordering of type @ of the field of ¥V,. Y'=Y/+ 7Y,
satisfies the conclution of the lemma.

Finally consider the case in which a—f#=w and w?>pB. Observe
that for every k < w, any co-ordinal of type w + k is full. Let
B = wn + k where n and k are finite. If n =1 the field of Y has
full co-ordinals of type B by the observation just made. Otherwise
let w=m +1 where m =1, Y=Y, + Y, where |Y,| = om and

[ Y, =a—om=za—(on+k)=a—-—L=w.

Let Y, be a full co-ordinal of type @ + k& with the same field as the
field of Y,. Y =Y, + Y, is a full co-ordinal of type om + w + k = B
with field X.

LEMMA 5. If X is not a-small then [w, w*]S||F (X)||.
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Proof. Apply Lemmas 3 and 4.

Proof of theorem. First suppose X is not a-small for any count-
able ordinal a. w<%e|| # (X)|| for each countable a by Lemma 3.
Thus || & (X)|| = [®, ®,) by Lemma 4.

To prove that if X is a sum of 7 strictly a-order indecomposables
than || 7 (X)|| = [w, ®*(n + 1)), consider first the case » = 1. Since
X is not a-small there is, by Lemma 3, a full co-ordinal Y with field
X of order type w*. Let w*<B<w*-2. For some 7 < w* B =w*+.
Let Y=Y, +7Y, where |Y,|=7 and |Y,|=0w*—v=w*. Y'=
Y,+ Y, is a full co-ordinal with field X of type |Y,|+|Y,|=
w* + v = . This result, Lemma 5, and Lemma 1 show || & (X)|| =
[w, w*-2),

Finally consider the case in which X=X + .-« + X, n = 2,
and each X is strictly a-order indecomposable. Let

Belw*n, *(n + 1)) .

For some v < w*, 8= w*-n +v. Let Y; be a full co-ordinal with
field X, of order type w* for each 7 < n. Let Y, be a full co-ordinal
of order type w* + v with field X,. Y=Y, + .-+ 7Y, is a full
co-ordinal of type B8 with field X. This result, Lemma 4, and Lemma
1 show || 7 (X) || = [@, ©*(n + 1)).

It remains to show that if the RET X is not an isol then || # (X) || =
[0, ®)) and show the existence of ¢ isols such that || & (X)| =
[w, w,). For the former result it suffices to show that if X is not
an isol then X ¢ U.<., I. and hence it suffices to show that X ¢ U.<., P..
Let a be the least ordinal 8 such that some non-isol X is B-order
indecomposable. X = X, + X, where neither X, nor X, is an isol but
one of them, say X, is a finite sum of B-order indecomposables
for some B < a. Since B < a every pB-order indecomposable is an
isol. Since every finite sum of isols is an isol, X, must be an isol. This
contradiction shows that every nonisol is not in Ueca, La-

Examples of isols X such that || # (X)|| = [0, w,) are provided
by first-order highly decomposable isols in the sense of Manaster [4].
It will be shown, as in the preceding paragraph, that if X is first-
order highly decomposable then X¢ ..., P.. Let a be the least
ordinal B such that some first-order highly decomposable X is S-order
indecomposable. X = X, + X, where both X, and X, are infinite but
one, say X,, is a finite sum of S-order indecomposables for some B < a.
Since X, is infinite, there is an infinite X, < X, such that X, is G-
order indecomposable. Since X, < X, < X, X, is highly decomposable
contradicting the minimality of a. The existence of ¢ first-order
highly decomposable isols is shown in Dekker-Myhill [3, pp. 112-113]
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and Manaster [4]. Thus there are ¢ isols X such that || &% (X)| =
[0, w).
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