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PROJECTIONS IN & AND ^-SPACES

C. A. MCCARTHY AND L. TZAFRIRI

This paper is devoted to the study of bounded Boolean
algebras of projections in the spaces L1 and Loo, or more
generally the spaces Jδ^i and Jίfoo, of Lindenstrauss and
Petczyήski.

Our results in ^ show that such algebras of projections are in
every way analogous to algebras of projections in Hubert space:
theorems concerning the common refinement of two (or more) com-
muting such algebras, or limits of scalar operators, are just as true
as in Hubert space. It is also shown that every cyclic subspace is
a direct summand isomorphic to an LΓspace and under the additional
assumption of finite multiplicity the Boolean algebra of projections is
isomorphic to a subalgebra of multiplications by characteristic functions
on some I^-space.

For .S^o-spaces, we show that strongly cr-complete bounded Boolean
algebras of projections are isomorphic to rather trivial algebras on c0

and under the additional assumption that the underlying space is a
^-space it is proved that such algebras of projections have a finite
number of elements.

1* Preliminaries* We will start by summarizing here some
notations, definitions and results which will be useful in what follows.
Most of the results in the subsequent sections are concerned with
Boolean algebras of projections. A Boolean algebra of projections g?
will be called complete if for every family (Ea) c g7 the projections
V Ea and A Ea exist in g7 and, moreover

(V Ea)X=clm{EaX}

A projection Ee& will be called countably decomposable if every
family of disjoint projections in g? bounded by E is at most countable.
Bade [2, Lemma 3.1] proved that for every Ee^ there is a family
of disjoint countably decomposable projections E3- e g7 such that E =
V E3: For each xeX the projection C(x) = A {E\ Ee g% Ex = x)
will be called the carrier projection of x. The cyclic subspace Ti{x)
spanned by a vector x is elm {Ex \ Ee g7}. Bade introduced in [2]
the multiplicity function m( ) for a complete Boolean abgebra (B.A.)
of projections as follows: if Ee^ is countably decomposable, the
multiplicity of E, m(E), is the smallest cardinal of a set A of vectors
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such that

EX = elm {Wl(x) I x e A} .

A projection E e g? is said to have uniform multiplicity n (not neces-
sarily finite) if m{F) = n whenever 0 Φ F ^ E.

Next, we shall introduct some definitions concerning the underly-
ing space X which mostly are due to J. Lindenstrauss and A.
Pelczyήski [16]. Two Banach spaces X and F a r e isomorphic if there
exists an invertible operator from X onto Y. The distance between
two Banach spaces X and Y is defined as follows:

d(X, Γ) = inf | |Γ | | . | |Γ- 1 H

where the infimum is taken over all invertible operators T mapping
X onto Y (operator means bounded linear operator) if such operators
exist; d(X, Y) = oo if X and Y are not isomorphic. d, which is not
a metric, is used instead of logd which is a metric.

We will often deal LP(Ω, Σ, μ) spaces, H p ^ +oo i.e., the spaces
of measurable functions / on some measure space (Ω, Σ, μ) with the
norm

\f(a>) \pμ(dω)JP , 1 ^ p < +oo ,

= ess sup I f(ω) | , p = + oo
ωeΩ

and with the spaces C(K) of all continuous functions on a compact
Hausdorίf topological space K. For an abstract set Γ, lp(Γ) will denote
the Banach space of all functions / defined on Γ for which

< + O O ; l ^ p < + o o

= sup
r

If Γ is countable we denote lp(Γ) by lp; 1 £ p < +oo and L(Γ)
by ico or m. When Γ consists of a finite number n of elements lp(Γ)
will be denoted by I*. An important subspace of IJJ7) is co(Γ) which
consists of those fe IJ^Γ) for which the set {7 | |/(7) | ^ ε} is finite for
every ε > 0. When Γ is countable co(Γ) will be denoted, as usual, by cQ.

A subspace Y of a Banach space X is called complemented if
there is a bounded projection from X onto Y. A Banach space is
said to be a & space if it is complemented in every Banach space
containing it. The following definition is due to Lindenstrauss and
Pelczyήski [16].

DEFINITION 1. A Banach space X is called an ^fViX space, 1 ^
p <z + o o ; l < ^ λ < +00; provided that for every finite-dimensional



PROJECTIONS IN &i AND -^-SPACES 531

subspace Y of X there is a finite-dimensional subspace ZZD Y such
that d(Z, Zj) ^ λ where n = dim Z. A Banach space X is called an

space 1 ^ p ^ oo if it is an ^ ^ space for some λ < oo.

It is known that every LP(Ω, Σ, μ) and in particular lp(Γ) and lp

are ^fPyλ spaces for every λ > 1 but there exist £fp spaces which are
not isomorphic to Lp(μ) spaces for 1 <, p ^ +00; p Φ 2 while ^f2

spaces coincide with the class of spaces isomorphic with Hubert spaces.
Furthermore, it was proved by A. Lazar and J. Lindenstrauss [14]
that every Banach space X whose dual X* is isometric to a space
Lx(ί3, Σ, μ) is an Jίf^χ space for every λ > 1. In particular every
C(K) space is an ^f^-space. It is not yet known whether a comple-
mented subspace of an ^ or .S^-space is of the same type.

Finally, we will make use of a result of J. Lindenstrauss and A.
Pelczyήski [16, Corollary 8 of Th. 6.1]. Stated in the form we need
it is:

THEOREM 2. Let X be a complemented subspace of an J^l-space
(resp. Sfo^) and & a bounded B.A. projections. Then there exists a
constant M1 (resp. M2) such that for every finite family of disjoint
projections Ek e if, k — 1, , n,

\ EΛx xeX .

resp.

2* Commuting B* A* of projections* A basic problem in
Dunford's theory of spectral operators (see [7]) is to find conditions,
which being fulfilled, insure that the sum and the product of two
commuting spectral operators are also spectral. N. Dunford [7, Th.
19] and S. R. Foguel [9, Th. 7] have proved that if the B.A. of
projections generated by the resolutions of the identity of two com-
muting spectral operators on a weakly complete Banach space is
bounded, then the sum and the product of these operators are spectral.
Therefore, it is important to determine conditions under which the
B.A. of projections generated by two bounded commuting B.A. of
projections is bounded. One of us has proved in [19] that it suffices
that the underlying space be a subspace of an LP(Ω, Σ, μ) space;
2 ^ p < +oo and W. Littman, C. McCarthy and N. Riviere [17, Th.
6.2 and Th. 6.8] have proved the same for 1 ^ p < 2.

The following theorem completes these results.

THEOREM 3. Let X be a complemented subspace of an ̂ fp-space;
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1 ^ P ^ +00, g7 and % two bounded commuting B.A. of projections
(\\E\\ ^ Lγ for Ee& and \\F\\ ^ L2 for Fe%). Then, the B.A. of
projections generated by %? and g is bounded.

Proof. For 1 <L p < +00, J. Lindenstrauss and A. Petczyήski
[16], Th. 7.1] have shown that X is isomorphic to a complemented
subspace of an LP(Ω, Σf μ) space. Thus, the proof follows from the
results mentioned above. In the case p = 1 we will give a direct
proof. Let us remark that it suffices to prove the existence of a
bound for the norm of every expression V£=1 EkFk which is independent
of n and the particular projections Eke& and Fke%. With no loss
of generality we can assume that Ek; 1 tί k ^ n are disjoint projec-
tions and Σ l U Ek = /. Then, by Theorem 2.

Σ EkFkx
k=i

Finally, when p = +00 same arguments show that

Σ Eό(± EkFkx) I

^ M " 2 m a x II E 5 F ό x \\ ^ M 2 L ί L 2 \ \ x \ \ \ x e X

Σ EkFkx

which completes the theorem.
Theorem 3 can be improved as follows:

THEOREM 4. Let X be a complemented subspace of an J^l or
J^ζo space and {g^} a sequence of bounded commuting B.A. of pro-
jections such that \\E\\ ^ Ln for Ee &n; n = 1, 2, . Suppose the
infinite product ΠT=; Ln converges to L. Then, the B.A. of projec-
tions generated by g^ is bounded.

Proof. Assume that X is a complemented subspace of an i^-space.
One can easily see that it is enough to prove the existence of a bound
for the norm of every expression

V {EίhE2i2 . . . ^ J U i ^ r U ^ n }

the bound independent of r and the choice of Ekik e i?fc. Again, with
no loss of generality we can suppose that E1U , Elr are disjoint
projections whose sum is /. Then by Theorem 2

II Σ Elh ... Enix II ^ Σ II Elh Enix \\
^ L 2 . . L . Σ I I ^ i ί ^ l l ^ l Ά Γ i l l s l l x e X .

A similar argument may be used when X is a complemented subspace
of an ^
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COROLLARY 5. Let {Sn} be a sequence of commuting spectral
operators of scalar type on an Lγ(Ω, Σ, μ) space converging weakly
to an operator S. If the resolutions of the identity for Sn satisfy
|| En( ) || <L Ln; n = 1, 2, and limw Ln = 1, then S is scalar. Fur-
thermore, if S is the strong limit of {Sn},E(-) its resolution of the
identity and Π*=i Ln converges then

E(δ)x = lim En(d)x
n-*oo

for every Borel set δ in the complex plane for which
E (boundary δ) x = 0.

Proof. First, observe that we can assume with no loss of gener-
ality that ΠΓ=i Ln < oo since every sequence converging to 1 contains
a subsequence whose infinite product is convergent. Let 23 be the
B.A. of projections generated by i?n which is bounded due to Theorem
4. Obviously S belongs to the algebra of operators generated by 33
in the weak operator topology. Since the underlying space is weakly
complete, it follows from Bade [1, Th. 4.5] that S belongs also the
algebra of operators generated by S3 in the uniform operator topology,
and then by a result of Dunford [7] it is a spectral operator of scalar
type. The second assertion follows from Foguel [11].

3* Structure of cyclic subspaces of an jSfr-space* Throughout
this section X will denote a complemented subspace of an ^-space,
|| || its norm and ί? a complete B.A. of projections on X. It is well-
known that g? can be considered as the range of a spectral measure
E( ) defined on the Borel sets of a compact Hausdorff topological space
A.

LEMMA 6. Let

\x\ = s u p Σ II E(δi)x|| xeX

where the supremum is taken over all finite partitions of A into
disjoint Borel sets δl9 •• ,S%. Then | | is a norm on X, equivalent
to || || and such that:

(a) \E\ ̂ 1 for # e g %
(b) I E( )x I is a σ-additive finite positive Borel measure on A

for every x e X,y ,

(c) I \f(X)E(dX)x
t l t

= j I /(λ) I I E(dX)x I
whenever at least one of the integrals exists.

Proof. Using Theorem 2 we have
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\x\ ^

so I I is an equivalent norm. Furthermore, for every partition

δu , $n and E(σ) e g 7 we have

Σ I E(δi)E(σ)x || ^ i Π σ)x || + || E(d, n *')« |

where σ' — A — σ. Thus | E(σ)x\ <L\x\ and (a) is proved. The finite
additivity of \E( )x\ is evident and σ-additivity follows from the fact
that if <?! ID σ2 ID ID σn ID and Π~=i σn = 0 then

E(σn)x I ^ Jlί*! || E(σn)x1 \\ —> 0 as % —> oo .

The last assertion (c) can be proved easily for simply functions as
follows:

Σ
i=i

E(σj) Σ α,

Σ
3=1

Σ
3=1

THEOREM 7. Every cyclic subspace (with respect to &) M(x);
xe X is complemented. Moreover, there exists a projection P of X
onto Έl{x) which commutes with g? and has norm 1 with respect to

Proof. First, assume that x0 e X has carrier projection C(x0) = /.
According to Bade [2, Th. 4.5] for every xe-iJJl(Xo) there is a Borel
function / (not necessarily bounded) such that

x = γ(X)E(d\)x0

and x0 belongs to the domain of the unbounded operator

In view of Lemma 6 part (c) define

θ(χ) = j/(λ) I E{dX)x01 xe

It is obvious that θ is a linear functional on Wl(x0) and

θ(x)\ ^ ^\f(X)\\E(dX)x0
f(X)E(dX)xQ

i.e., I θ I <; 1. By Hahn-Banach theorem it can be extended to a bounded
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linear functional on X, denoted x£, which satisfies | x* | ^ 1. We
remark that x£ is a Bade functional (see Bade [1, Th. 3.1]), in fact
it satisfies:

( i ) x*E(σ)xQ = I E(σ)xQ | ^ 0 f or E(σ) e gf',
(ii) if for any E{σ) e gf, xfE(σ)x0 = 0, then E(σ)x0 = 0.
Now suppose xeX. Since the measure x£E( )x is absolutely

continuous with respect to the measure xtE( )xQ (due to the fact that
the carrier projection of x0 is 7), there exists a function h e L^xξE^x^
such that

XQ E{σ)x = \ h(X)x£E(dX)x0 = \ h(K) \ E(dX)x
Jσ Jo

for every Borel set σ. Since \h(X)E(dX)x0 exists in view of Lemma

6 part (c) one can write

x = [h(X)E(dX)x0 + ϊx - [h(X)E(dX)xQ~\ .

Set 2W(£*) = clm{#*ίBo* \Eeϊ?} and notice that

[h(X)E(dX)xoe
<m(xo)

and

x -

since for every E(σ) e g 7 we have

[£r*(ί7)α;o*]Γx - U(λ)£;(dλ)a?0"j = x$E(σ)x - [ h(X)x*E(σ)xQ = 0 .

Thus

x = m(χ0) e wi(χ*y

which proves the existence of a projection P of X onto SD̂ av) com-
muting with g7. Using again Lemma 6 part (a) and (c) we have

\h(X)E(dX)x0 = \\h(X)\ \E(dX)xo\ = t o t . var. xϊE(-)x

^ to t . var. \E(-)x\ ^\x\

i.e., | P | ^ 1.
If α;0 has carrier projection C(xQ) Φ I then, the first part of the

proof insures the existence of a projection Q of C(xo)X onto Tl(x0)
and, hence QC(x0) will be a projection of X onto 27ϊ(ίBo) having all
wanted properties.
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REMARK. I — P has norm at most 2 and may have | |-norm as
great as 2. For instance, consider the two-dimensional space l\, g7 =
{0, /}, x0 = (1, 0) and #0* = (1,1). Then the projection I — P has norm
exactly 2.

COROLLARY 8. The second commutant (&c)c of gf coincides with
the algebra St(g") generated by i? in the uniform operator topology.

Proof. Let Te(if c) c Since every cyclic subspace Έi(x) admits
a projection Pe^c it follows that TWl(x)^m(x); x eX and further
Γ Γ g 7 for every subspace Y of X which is invariant under E.
Hence, by a well-known result to Bade [1, Th. 4.3] Te2ί(^).

REMARK. This is not true in general. J. Dieudonne [6] has
constructed an example of a B.A. of projections % of finite uniform
multiplicity (n = 2) for which 2ί(g) is a proper subalgebra of (§c)c

COROLLARY 9. If A is a scalar operator in a separable comple-
mented subspace of an j^-space, every operator T which commutes
with every operator commuting with A is a Borel function of A.

Proof. If the underlying space is separable the resolution of the
identity for A is a complete B.A. of projections and the proof follows
from Corollary 8.

THEOREM 10. For every cyclic subspace Ti(x); xeX there exists
a positive finite Borel measure space (A, 33, μ) such that Wl{x) is
isomorphic to LV{A, 35, μ). Moreover, the image of the restriction of
if to M(x) under this isomorphism is the B.A. of projections con-
sisting of multiplications by characteristic functions in L^Λ, 33, μ).

Proof. As we have already mentioned, for every x e Έi{xQ) there
is an Borel function / such that

x = [f(X)E(dX)x0 .

By Lemma 6 part (c) it follows that feL^Λ, 33, \E( )xo\) and

I a? I = I γ(X)E(dX)xo\ = J | /(λ) I | E(dX)xQ |

which implies that the correspondence x <-> f is an isometry between
Wl(x0) with the norm | | and L^A,®, \E( )xo\). Thus Wl(xQ) with the
original norm [| |[ is isomorphic to'L^A, 33, | E( )x0). The last assertion
is obvious.
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From Theorems 7 and 10 immediately follows:

COROLLARY 11. Assume & is a countably decomposable B.A. of
projections having finite uniform multiplicity N. Then there exist
N vectors xke X,k = 1, , N, such that

X = STCto) Θ Θ 2K(&tf) .

Furthermore, there is a positive finite Borel measure space (A, 33, μ)
such that X is isomorphic to L^A, S3, μ) and under this isomorphism
every Ee^ corresponds to a multiplication by a characteristic
function in L^A, S3, μ).

THEOREM 12. A complemented subspace X of an ^-space is
isomorphic to an L^-space if and only if there exists on X a
complete B.A. of projections % having multiplicity 1.

Proof. If X is isomorphic to an L1(^)-space then the image under
this isomorphism of the B.A. of projections in L^v) consisting of
multiplications by characteristic functions will be a complete B.A. of
projection in X having multiplicity 1.

Conversely, assume that % is a complete B.A. of projections on
X having multiplicity 1 and let | | be again the equivalent norm
whose existence is insured by Lemma 6. By Bade [2, Lemma 3.1],

/ = V F(σr)
r

where F(σr) are disjoint countably decomposable projections belong to
g. Further, by Bade [2, Th. 3.4],

F(σr)X = m(xr) , xγ e F(σr)X .

Then for every x e X we have x = X r F(σr)x where at most countably
many of the vectors F(σr)x are different from zero. Observe that

F(σr)x - ί fγ(X)F(d\)xr

for some Borel function fr e L^A, S3, | F( )xr |) (see Theorem 10). Now
define

/(λ)-/ ? (λ) xeσr.

Since I— \/rF(Dr),f is defined everywhere in A. For any Borel set
δ for which Σ r | F(δ)xr | converges let us put

v(δ) = Σ I F(δ)xr \ = Σ\F(δΠ σr)xr I
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otherwise, v(δ) = +00. Then

I x I = Σ I F(σγ)x I = Σ I ( frfr)F(d\)xr
ΐ ΐ I Joγ

= Σi\ l/(λ)l \F(dX)xr\ = \\f(X)\v(dX) , x e l ,

since v(δ) = F(δ)xr | for δ aσr and the infinite sum χ r |i<X0V)# | is in
fact countable. It follows that the correspondence &«->/ is an isometry
from X with the norm | | and L^A, 33, v). Thus X is isomorphic to
LX(Λ, 33, v).

Grothendieck [12] has proved that if a projection in an L^space
is contractive, i.e., it has norm ^ 1 , then its range is isometric to an
Lrspace. The following result is a necessary and sufficient condition
for the range to be isomorphic to an L^space.

COROLLARY 13. Let P be a projection in X. Then PX is iso-
morphic to an Lrspace if and only if P can be imbedded in a complete
B.A. of projections in X with respect to which P has multiplicity 1.

Proof. This corollary follows immediately from the preceding
theorem when applied to PX.

4* Structure of cyclic subspaces of an .S^space* Throughout
this section X will denote a complemented subspace of an ^S^-space;
|| || its norm and g7 a B.A. of projections in X. As in the previous
section g* will be considered as the range of a spectral measure E( )
defined on the Borel sets of a compact Hausdorff topological space A.

THEOERM 14. For every σ-complete B.A. of projections g7 in X
and xeX the vector valued measure E( )x is atomic, i.e., if Γ is the
set of all points Xr in A for which E({Xr}) φ 0 then for every Borel
set δ we have

E(δ)x= Σ E({Xr})x
λreδf)Γ

where at most countably many of the vectors E({Xr})x are different
from zero.

Proof. First, notice that by Bade [1, Lemma 2.6] the restriction
of gf to Wl(x) is a complete countably decomposable B.A. of projections
so at most countably many of the vectors E({Xr})x are different from
zero. If {Xn} is the sequence of all λr for which E({Xr})x φ 0 then

E(\J {Xn})x = £
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Now in order to prove the theorem observe that it is enough to show
that JEflJΪU {K})% = α. Set E(A0) = I - JEfljSU {K}) and assume that
E(A0)x Φ 0. Let x* be the Bade functional for E(A0)x whose existence
has been proved in [1, Th. 3.1]. Obviously, the measure E(>)E(AQ)x
is nonatomic and consequently the positive measure /*(•) = x*E( )E(Λ0)x
is nonatomic and its support is Ao. By a well-known result (see for
instance Halmos [13, Exercise 2 p. 174]), Λo can be decomposed for
each n into disjoint sets A{

k

n)k = 1, , 2n such that

!iw)) = 2-nμ(A0) , Aίtli U Άf = A£~l) .

By Theorem 2, for each n there exists at least one k{n) for which

|| E(An)x || ^ - J L | | #(Λ0)α || (An = Λft>) .

Let σn = UΓ=«+i A; then ^ D ^ D ^ and ^(tfj ^ 2~nμ(A0) and con-
sequently μ(Π?=i ^Λ) — 0- This implies, in view of the properties of
Bade functional that 2£(nSU σ J ^ — 0. But denoting by M the bound
of \\E\\,Ee%', we have

\\E(AQ)x\\^
M2

but by the σ-additivity of the vector valued measure E( )x,

n σn)x\\ ^ -J—\\E(A0)x\\ iέ 0 .
»=i / II MM*

0 =
MM2

which provides a contradiction.

COROLLARY 15. Let S be a spectral operator of scalar type on
X and {λr}; γ eΓ the set of its eigenvalues. Then

Sx = Σλr#({λr})& a e l

where at most countably many of the vectors E({Xr})x are different
from zero for every xeX.

Proof. It suffices to apply the preceding theorem to the resolution
of the identity for S, taking into account that by Foguel [10, Th.
1], ^({λ}) Φ 0 if and only if λ is an eigenvalue of S.

A particular ^L-space is cQ. In this space one can consider the
natural B.A. of projections generated by the following projections

E(n)(xlfxt, . .-/a*, •••) = «>, --- ,0 ,^0, . . . ) w = 1,2, . . . .

Obviously, this is a complete B.A. of projections bounded by 1 and
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having multiplicity 1, i.e.,

Co = Wl(u)

where u can be, for example, the sequence (1,1/2, , 1/w, •)•
We shall now that this is essentially the general case.

THEOREM 16. Every cyclic subspace 3K(α;); x e X is either finite-
dimensional or isomorphic to c0. Moreover, under this isomorphism
the restriction of gf to Wl{x) corresponds to the above mentioned
natural B.A. of projections in cQ.

Proof. Let xoeX and x = [f(X)E(dX)xQ e Wl(x0). Using Theorem

15 we have

E({Xr})x = f(Xr)E({Xr})x0 7 e Γ ,

and again denote by {Xn} the sequence of all λr, 7 e Γ, for which
E({Xr})xQ Φ 0. Then

which implies that

Now define

τx = (fix,) || E({Xn})xQ ||, , f(Xn) || E({Xn})x0 \\, ...) e c0 x e m(xQ)

(if this sequence is finite for every / one can see that Ti(xQ) is finite
dimensional). In view of Theorem 2 we have

|| x || ^ M2 sup || E({Xn})x || - M2 sup \f(Xn) |
n n

and if M denotes the bound of | | £ Ί | for Eeϊf

M\\x\\^ ||^({λw})^|| = \f(Xn)\\\E({Xn})x0\\ .

Thus

^ sup I /(λn) I 11 E({Xn})x011 ̂  11 x \ \ ̂  M2 sup | f(Xn) \ \ \ E({Xn})xQ \ \

and τ is an isomorphism from Tt(x0) into c0 under which the restriction
of g7 to $R(x0) corresponds to the natural B.A. of projections in c0.
To complete the proof we have to show that τ is onto c0. We consider
a sequence (au , an, "-)ec0 and prove that
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is a convergent series. Indeed

and then by Theorem 2

W

n=p

<̂  M2 max | αA | —> 0 as p —> oo .

If y is the sum of this series, evidently y e M(xQ) and τy = (αx, , αΛ, )
which completes the proof.

THEOREM 17. Every cyclic subspace Wl(x); x εX is complemented.
Moreover, there exists a projection P of X onto W{x) which commutes
with if.

Proof. We shall keep the notation introduced in the proof of
Theorem 16. Obviously, Wl(E({Xn})x0) is an one-dimensional subspace
of E({Xn})X. Hence it is complemented, i.e., there exists a subspace
mn of E({Xn})X such that

E({Xn})X = Wl(E({K})Xo) Θ 2K. , n - 1, 2, ,

and the projection of E({Xn})X onto Tl(E({\n})x0) has norm one. Then
for every x e X we have a decomposition

j ) 0 - anE({K})Xo + Vn, w = 1, 2, ,

where s/Λ e 3KΛ and

I an\ || ^ ( { λ J K || ^ || E({\n})x II , n = 1, 2, . . . .

Consequently,

l i m | α j \\E{{Xn})xQ\\ - 0
?l-»oo

and by arguments already used in the proof of the previous theorem
we see that Σ * βnj£({λn})α?o ^s a convergent series. It follows that
ΣnVn also converges and

Thus
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where SK = Q£» Θ 3K Jo is the direct sum of these spaces in the
Co-sense. Since E({Xn})Wl = 2KwgΞ9K, Wt(x0) and 2K are invariant under
every projection i?eg% which completes the proof.

REMARK. Sobczyk [20] has proved that a Banach space Y which
is isomorphic to cQ is complemented in every separable Banach space
containing it. This implies that a cyclic subspace Έi{x),xeX, is
complemented in X provided the carrier projection of x, C(x), has
separable range. But even in this case we do not know if the cor-
responding projection whose existence is insured by Sobczyk's result
commutes with g7.

Using the same arguments as in § 3 we are able to prove the
following three corollaries.

COROLLARY 18. The second commutant (&c)c of if coincides with
the algebra 2I(if) generated by if in the uniform operator topology.

COROLLARY 19. If A is a scalar operator in a separable comple-
mented subspace of an Jzf^-space, every operator T which commutes
with every operator commuting with A is a Borel function of A.

COROLLARY 20. Assume if is a complete countably decomposable
B.A. of projections having finite uniform multiplicity N. Then,
there exist N vectors xk e X; k = 1, , N such that

X = Wlfri) Θ θ SK(α*) .

Furthermore, X is isomorphic to c0 and under this isomorphism every
E e g7 corresponds to a natural projection in c0.

THEOREM 21. A complemented subspace X of an ^fL-space is
isomorphic to cQ(Γ) for a suitable set Γ if and only if there exists
on X a complete B.A. of projections g having multiplicity one.

Proof. For any σ czΓ and /( ) e co(Γ) define the projections
F(σ)f( ) = flf( ) where g(y) = f(y) whenever yeσ otherwise g(y) = 0.
Obviously F( ) form a complete B.A. of projections and | |JP(<7)| | ^ 1
for every subset σ c Γ. If σ is a countable subset of Γ, F(σ) is
countably decomposable and has multiplicity one. That proves that
if X is isomorphic to cQ(Γ) it admits a complete B.A. of projections
having multiplicity one. Conversely, suppose % is a complete B.A.
of projections in X having multiplicity one and let λr, 7 e Γ, be the
atoms of g whose existence and properties were discussed in Theorem
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14. Evidently, F({λ r}), γ e Γ , is countably decomposable and therefore,

by Bade [2, Th. 3.4], there exists xreX such t h a t | | β r | | = 1 and

Moreover, for any xeX we have

^({λ,})^ = aγxr

since yjl(xr) is an one-dimensional subspace. Then

= Σ ^(K})^ = Σ
Γ

Σ (K})̂  = Σ
γeΓ γeΓ

which implies that {xr}reΓ is an unconditional basis for X. Thus, by
J. Linderstrauss and A. Pelczyήski [16, Corollary 2 of Th. 6.1], X
is isomorphic to co(Γ') for a suitable set Γf. One can easily see that
Γr = Γ.

COROLLARY 22. Let P be a projection in X. Then PX is iso-
morphic to a co(Γ) space if and only if P can be imbedded in a
complete B.A. of projections in X with respect to which it has
multiplicity one.

C. Bessaga and A. Pelczyήski [4] have proved that for K an
infinite compact metric space, C(K) is isomorphic to c0 if and only if
K is homeomorphic to the space [a] of all ordinals ^a with the order
topology for some ordinal a satisfying ω <Ξ; a < ωω where ω denotes
the first infinite ordinal number. From this result and Theorem 21
immediately follows:

COROLLARY 23. There are no complete B.A. of projections having
multiplicity one in the space C(0,1) and C([o)ω]).

Using a theorem of Sobczyk mentioned previously we can conclude
that C(0,1) contains an isometric image of c0 which is complemented.
It follows that there are nonfinite complete B.A. of projections in
C(0,1). We shall see now that this property does not hold in
complemented subspaces of an .SίL-space which are ^-spaces or in
particular conjugate spaces.

THEOREM 24. A σ-complete B.A. of projections in X has a finite
number of elements provided X is a ^-space. Then any spectral
operator of scalar type in X can be written as a finite combination
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for some disjoint projections Eu 1 ̂  i ^ p whose sum is the identity
I.

Proof. Let © be a σ-complete B.A. of proiections in X. Accord-
ing to Bade [1, Th. 2.7], © can be imbedded in a complete B.A. of
projections in X, so with no loss of generality we may suppose that
© is complete. By Bade [2, Lemma 3.1],

=V Gr,
γeΓ

where Gr e © are disjoint countably decomposable projections each of
then being the carrier projection of a vector 0 Φ xre X. Assume
{GrJ is an infinite subsequence of the projections Gr and set

Σ

Obviously Wl(x) contains the vectors {xϊn} which are linearly independent
i.e., Wl(x) is infinite dimensional. Hence by Theorems 16 and 17, fΰl(x)
is a complemented subspace of X which is isomorphic to c0, which
contradicts the fact that X is a <^-space. Thus Γ is a finite set and
/ must be countably decomposable; consequently, there exists a vector
x0 e X whose carrier projections is C(x0) = /. By arguments already
used in this proof one can easily show that Ti(x0) must be a finite
dimensional subspace. It follows that the family of the vectors
{Gx01 G e ©} contains a maximal linearly independent system

{G&o, G2xQ, , GsxQ} .

By taking all possible intersections of projections Giy 1 ̂  i ^ s, we
can construct a new system of vectors (not necessarily linearly inde-
pendent)

{E&o, E2xQ, , Epx0}

where 0 Φ Eά e ©, 1 ̂  j ^ p, are disjoint projections and

{Gx01 G e ©} c span {E^x,, , Epx0} .

Then every Ge© yields

Gx0 = Σ ,

and further

GEiX0 = αr^iajo , i = 1, , p .

Now let us multiply both members by Et - GE{. We have
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0 - ««(#< -

If «< Φ 0 for some i, (Ei — GEi)x0 = 0 which implies α< = 1 since
j?.^ Φ 0 (the carrier projection of xQ is J and Et Φ 0). Suppose
^ = α2 = = αff = 1 and α g + 1 = = av = 0. Then

Gx0 = Σ #

and ^ = GEiyi = 1, " ,q. Since the carrier projection of #0 is
we obtain

i.e., every G e © is a partial sum of {Eu •• ,jEr

p} which completes the
proof.

REMARK. Theorem 24 is a particular case of a result proved by-
Dean [5] by quite different methods.

COROLLARY 27. Every σ-complete B.A. of projections in L<»{μ)
for some measure μ {and in particular in l^) has only a finite
number of elements and any spectral operator of scalar type in such
a space can be written as a finite combination

Moreover, every scalar operator in 1/̂ (0, 1) is similar to an operator
of the form Tf = / ^ / G L ^ O , 1) where g is a simple function.

Proof. The first part follows from Theorem 24 since L^iμ) is an
^-space. The second part is a consequence of a recent result of J.
Lindenstrauss [15] asserting that every complemented subspace of l^
(which is isomorphic to L^O, 1)) is isomorphic to L.
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