MAXIMAL NONNORMAL CHAINS IN FINITE GROUPS

Armond E. Spencer

In a finite group G, knowledge of the distribution of the subnormal subgroups of G can be used, to some extent, to describe the structure of G. Here we show that if G is a finite nonnilpotent, solvable group such that every upper chain of length n in G contains a proper subnormal entry then:
(1) the nilpotent length of G is less than or equal to n.
(2) $|G|$ has at most n distinct prime divisors, furthermore if $|G|$ has n distinct prime divisors, then G has abelian Sylow subgroups.
(3) if $|G|$ has at least $(n-1)$ distinct prime divisors, then G is a Sylow Tower Group, for some ordering of the primes.
(4) $r(G) \leq n$, where $r(G)$ denotes the minimal number of generators for G.

Before proving these results it is necessary to have a few lemmas concerning upper chains and subnormal subgroups. All groups are assumed to be finite.

An upper chain of length r in G is a sequence of subgroups, $G=G_{0} \supset G_{1} \supset \cdots \supset G_{r}$ where for each i, G_{i} is maximal in G_{i-1}. Janko [4] has described the finite groups in which every upper chain of length four terminates in a normal subgroup. We define the function $h(G)$ as follows:

Definition 1. $h(G)=n$ if every upper chain in G of length n contains a proper $(\neq G)$ subnormal entry and there exists at least one upper chain of length ($n-1$) which contains no proper subnormal entry.

Note that since a subnormal maximal subgroup is normal, $h(G)=1$ if and only if G is nilpotent. From the definition it is clear that if $h(G)=n$ then there exists an upper chain of length n such that only the terminal entry is subnormal in G. Such a chain is called an h chain for G. The following two lemmas are simple modifications of Lemmas 2, 3 [2].

Lemma 1. If H is a nonnormal maximal subgroup of G, then $h(H) \leqq h(G)-1$.

Lemma 2. If N is a normal subgroup of G, then $h(G / N) \leqq h(G)$.
Lemma 3. If $G=H \times K$, where $h(H) \geqq 2$, then $h(G) \geqq h(H)+m$,
where m is the length of the longest chain in K.

Proof. Let $H=H_{0} \supset H_{1} \supset \cdots \supset H_{r}$ be an h-chain for H and $K=K_{0} \supset K_{1} \supset \cdots \supset K_{m}=\langle 1\rangle$ be the longest chain in K. Then in $H \times K$ the upper chain:

$$
\begin{aligned}
& H_{0} \times K_{0} \supset H_{1} \times K_{0} \supset H_{1} \times K_{1} \supset H_{1} \times K_{2} \supset \cdots \supset H_{1} \times K_{n} \\
& \quad=H_{1} \supset H_{2} \cdots \supset H_{r},
\end{aligned}
$$

has $(r+m)$ entries. If one of these entries is subnormal in G, then its projection on H is subnormal in H. However these projections are simply $H_{1}, H_{2}, \cdots, H_{r}$, and of these, only H_{r} is subnormal in H. Thus $h(H \times K) \geqq r+m$.

For reference it is convenient to note here the notion of a Saturated Formation as defined by Gaschutz [3].

Definition 2. A Formation \mathscr{F} is a collection of finite solvable groups satisfying:
(1) $\langle 1\rangle \in \mathscr{F}$.
(2) If $G \in \mathscr{F}$, and $N \triangleleft G$, then $G / N \in \mathscr{F}$.
(3) If $G / N_{i} \in \mathscr{F}, i=1,2$, then $G /\left(N_{1} \cap N_{2}\right) \in \mathscr{F}$.

A formation \mathscr{F} is called saturated if given a group G which does not belong to \mathscr{F}, if M is a minimal normal subgroup of G, such that $G / M \in \mathscr{F}$, then M has a complement in G, and all such complements are conjugate. Gaschütz showed later that conjugacy follows from existence and furthermore saturation can be characterized as follows:

A formation \mathscr{F} is saturated if whenever $G / \phi(G)$ belongs to \mathscr{F} then G also belongs to \mathscr{F}, where $\phi(G)$ denotes the Frattini subgroup of G. The collection of all finite solvable groups constitutes a formation, as does the collection of all finite nilpotent groups. This can be extended in a natural way to a theorem on all groups having a given bound on nilpotent length. By the nilpotent length (denoted by $l(G)$) of a solvable group we mean the length of the shortest normal chain with nilpotent factors. Example 4.5 [3] shows that the set, \mathscr{F}_{n}, of all solvable groups G such that the nilpotent length of G is less than or equal to n is a saturated formation for each n.

Theorem 1 shows the relation between $h(G)$ and $l(G)$.
Theorem 1. If G is a solvable group then $l(G) \leqq h(G)$.

Proof. The proof is by induction on $h(G)$, the theorem being trivially true if $h(G)=1$. So suppose the theorem is true for all groups K such that $h(K) \leqq(n-1)$ and is false for some group K where $h(K)=n$. Among such groups let G be one of minimal order. We show that such a group G cannot exist. Let M be a minimal normal subgroup of G. By Lemma $2, h(G / M) \leqq h(G)=n$ so that by the minimality of $G, l(G / M) \leqq n$. If N is another minimal normal subgroup of G, then by the same argument $l(G / N) \leqq n$. By the saturated formation property $l(G /(M \cap N)) \leqq n$. Since $M \cap N=\langle 1\rangle$, this is impossible, so M is the unique minimal normal subgroup of G. By the saturated formation property and minimality of G, M has a complement L in G. $G=M L, M \cap L=\langle 1\rangle$. Since M is the unique minimal normal subgroup of G, L is a nonnormal, maximal subgroup. By Lemma $1 h(L) \leqq(n-1)$. Hence by the induction hypothesis, $l(L) \leqq(n-1)$. Since $L \cong G / M$ and M is abelian $l(G) \leqq n$. This is a contradiction, therefore G does not exist.

By looking at the holomorph of a group of prime order p where $p=2^{n} k+1$ we see that no converse to Theorem 1 is possible, i.e., it is possible to have $l(G)=2$ and $h(G)$ arbitrarily large.

For notation purposes let $\pi(G: K)$ denote the number of distinct prime divisors of $[G: K]$, with $\pi(G:\langle 1\rangle)$ denoted simply by $\pi(G)$. Then there is a relationship between $h(G)$ and $\pi(G)$.

Theorem 2. If G is a solvable group such that $h(G)<\pi(G)$ then $h(G)=1$, i.e., G is nilpotent.

Proof. Suppose the theorem is false and let G be a counterexample. Let P be a nonnormal Sylow subgroup of G. Consider an upper chain from G through $N_{G}(P)$ to P. Since G is solvable this chain is at least $(\pi(G)-1)$ entries long. Thus by hypothesis this chain must contain a subnormal entry. However $N_{G}(P)$ is not contained in a proper subnormal subgroup, and if $N_{G}(P)$ contains a subnormal subgroup containing P, P is subnormal. But a subnormal Sylow subgroup is normal. Thus we have a contradiction so G cannot exist.
S_{3}, the symmetric group on three symbols, has: $h\left(S_{3}\right)=\pi\left(S_{3}\right)=2$, showing that the arithmetic condition of Theorem 2 cannot be relaxed. However this does suggest the question of what structure follows from the hypothesis that $h(G)-\pi(G)$ is small. G is called a Sylow Tower Group (STG) if G has a normal Sylow subgroup, and every homomorphic image of G has a normal Sylow subgroup.

Theorem 3. If G is solvable and $h(G)-\pi(G) \leqq 1$, then G is a Sylow Tower Group for some ordering of the prime divisors of G.

Proof. The proof is by induction on $h(G)$, the theorem being trivially true if $h(G)=1$. Suppose the theorem is true for all groups K for which $h(K)<n$, and is false for some group K for which $h(K)=n$. Among such groups let G be one of minimal order. We will show that G cannot exist thereby proving the theorem. G must satisfy the following:
(1) Every nonnormal maximal subgroup of G is STG.

Let H be a nonnormal maximal subgroup of $G . \pi(G: H)=1$ so $\pi(H) \geqq(n-2)$. By Lemma $1, h(H) \leqq(n-1)$. Thus by the induction hypothesis H is STG.
(2) G does not possess a normal Sylow subgroup.

Suppose P is a normal Sylow subgroup of G. Let K be a subgroup maximal with respect to the properties: $K \supseteqq P, K \triangleleft G, K$ is a Hall subgroup of G, K is STG. Then $\langle 1\rangle \subset K \subset G$, and G / K does not possess a normal Sylow subgroup since K is maximal with respect to the property of being STG. K is a normal Hall subgroup so K has a complement $L . \quad L \cong G / K$ so L is not STG. L is Hall so $N(L)$ is abnormal, so if $N(L) \neq G, N(L)$ is contained in an abnormal maximal subgroup whence by (1) is STG. This contradicts the fact that L is not STG, so $N(L)=G$, and $G=H \times L$. Suppose $\pi(K)=m$, then $\pi(L)=\pi(G)-m$ so $h(L) \geqq \pi(G)-m+2$ by induction. Hence by Lemma $3, h(G) \geqq(\pi(G)-m+2)+m=\pi(G)+2$ which is a contradiction, so P does not exist.
(3) G possesses a unique minimal normal subgroup M; furthermore G / M is supersolvable.

Let M be a minimal normal subgroup of G. By (2), M is not a Sylow subgroup. Thus $\pi(G / M)=\pi(G) . \quad h(G / M) \leqq h(G)$ so by the minimality of the order of $G, G / M$ is STG. Now the groups having a Sylow tower for a given ordering of the primes constitute a saturated formation [1]. Thus M has a complement L in G, and L is STG. Let $L=L_{1} \triangleright L_{2} \triangleright \cdots \triangleright L_{n-1} \triangleright L_{n} \triangleright \cdots \triangleright\langle 1\rangle$ be a Sylow tower for L. We refine this chain and adjoin G to obtain an upper chain. If for any $i<n, L_{i-1} / L_{i}$ is not simple, L_{n} is subnormal in G. However this will give rise to a normal Sylow subgroup in G, contradicting (2). Hence each $L_{(i-1)} / L_{i}$ is of prime order and L_{n} is cyclic. Hence L is supersolvable. We have shown that the factor group to a minimal normal subgroup is supersolvable. Therefore if G has two distinct minimal normal subgroups N_{1} and N_{2}, then G / N_{i} is supersolvable $i=1,2$, so that $G /\left(N_{1} \cap N_{2}\right)$ is supersolvable. Since $N_{1} \cap N_{2}=\langle 1\rangle$ this implies that G is supersolvable. However supersolvable groups are STG, so M is unique.

Using the same notation as in (3), since L does not contain a nontrivial normal subgroup, L does not contain a nontrivial subnormal subgroup thus from the chain obtained above we see that $|L|$ is square free.

Since L is supersolvable we may assume that the Sylow subgroup for the largest prime is normal in L. Let $|M|=p^{\alpha}, p$ prime. Suppose Q is a Sylow q-subgroup of G where q is the largest prime divisor of $|G|$. We may assume $p \neq q, Q<L$, in fact $N(Q)=L$.
(4) $|G|=24, h(G)=3$.

Let P be a Sylow p-subgroup of G. Then since $|L|$ is square free, $|P|=|M| \cdot p$.

We may assume that P contains a Sylow p-subgroup T of L. Then since T is not subnormal, P contains a maximal (in P) nonsubnormal (in G) subgroup $J . ~ P=M J,[P: M \cap J]=p^{2}$. Now J is ($n-1$)-th maximal and not subnormal, and $h(G)=n$, thus each maximal subgroup of J is subnormal in G. Hence J has just one maximal subgroup, and so J is cyclic. However M is elementary abelian, therefore $|M \cap J|=1$ or $|M \cap J|=p$. Thus $|M|=p$ or p^{2}. However $|M|=[G: L] \equiv 1(\bmod q)$, by the Sylow theorems. Now $p<q$ so $|M|=p^{2}$. Since $q \mid\left(p^{2}-1\right), q=p+1$, so that $q=3, p=2$, and $|G|=24, h(G)=3$.
(5) The final contradiction.

Note that G is not S_{4} since $h\left(S_{4}\right)=4$. Now in G the subgroups of order 2 are subnormal. Thus the normalizer of the Sylow 3-subgroup is cyclic. By Burnside's theorem the 3-Sylow subgroup has a normal complement contrary to (2). Thus G does not exist.

Note that $h\left(S_{4}\right)=4, \pi\left(S_{4}\right)=2$ and S_{4} is not STG.
In the special case where $h(G)=\pi(G)$, even more can be said.
Theorem 4. If G is solvable and $h(G)=\pi(G) \geqq 2$, then the Sylow subgroups of G are cyclic or elementary abelian. Furthermore if there exist at least two nonisomorphic nonnormal Sylow subgroups of G, then all nonnormal Sylow subgroups of G are of prime order.

Proof. Let $\pi(G)=h(G)=n$. Let P be a nonnormal Sylow subgroup of G. As in Theorem $2, \pi(G: P)=(n-1)$ so that P is at least ($n-1$)-th maximal in G.

Considering a chain through $N(P)$ to P, as in the proof of Theorem 2 we see that this chain can have at most ($n-1$) entries, hence exactly ($n-1$) entries. Therefore P is cyclic, since every maximal subgroup of P is subnormal in G, and P is not. In this chain we have $(n-1)$ distinct primes and $(n-1)$ entries. Therefore each entry
is a Sylow complement in its predecessor. However this implies that the Sylow subgroup is elementary abelian. If there were two nonnormal Sylow subgroups, then by this same argument P is elementary abelian. However P is cyclic so that P is of prime order.

Note that under the hypothesis of Theorem 4, if we let K denote the product of all the normal Sylow subgroups in G, then K is abelian and G / K has cyclic Sylow subgroups, so that $l(G) \leqq 3$. Also we should note that an extension of the Quaternion group of order 8 by an automorphism which permutes the subgroups of order 4 will yield a non- A-group G having $h(G)=3$ and $\pi(G)=2$.

To see how these theorems restrict the structure of a solvable group in a particular case, consider the groups G having $h(G)=2$.

Theorem 5. Suppose $h(G)=2$. Then $G=P Q ; P$ and Q are Sylow subgroups of $G ; P$ is a minimal normal subgroup; Q is cyclic; Q_{1}, the maximal subgroup of Q, is normal in G, in fact, $Q_{1}=\phi(G)=$ $Z(G)$.

Note that a theorem due to Rose [5] shows that $h(G)=2$ implies solvability for G. More generally, we can effectively duplicate the proofs of the theorems in [2] to prove:

Theorem 6. If G is a finite group, and $h(G) \leqq 3$, then G is solvable. Moreover if $h(G) \leqq 4$ and $(|G|, 3)=1$, then G is solvable.

Note that A_{5}, the simple group of order sixty, has $h\left(A_{5}\right)=4$.
The groups described in Theorem 5 have the property that they can be generated by two elements. This can be extended to a more general theorem.

Let $r(G)$ denote the minimal number of generators for G.
THEOREM 7. If $h(G) \geqq 2$, then $r(G) \leqq h(G)$.
Proof. The condition $h(G) \geqq 2$ is certainly necessary since we can find abelian groups K with $r(K)$ large. To prove Theorem 7 we only need to note that the next to last entry in an h-chain for G is $(h(G)-1)$-th maximal in G and is cyclic.

References

1. R. Baer, Sylowturmgruppen II, Math. Zeit. 92 (1966), 256-268.
2. W.E. Deskins, A condition for the solvability of a finite group, Illinois J. Math. 2 (1961), 306-313.
3. W. Gaschütz, Zur Theorie der endlichen auflosbaren Gruppen, Math. Zeit. 80 (1963), 300-305.
4. Z. Janko, Finite groups with invariant fourth maximal subgroups, Math. Zeit. 82 (1963), 82-89.
5. J. Rose, The influence on a finite group of its proper abnormal structure, J. London Math. Soc. 40 (1965), 348-361.

Received October 27, 1967. This research was done while the author was an NSF Cooperative Fellow at Michigan State University and represents a portion of a Ph. D. thesis written under the direction of Professor W.E. Deskins.

University of Kentucky

