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ON A CHARACTERIZATION OF INFINITE COMPLEX
MATRICES MAPPING THE SPACE OF ANALYTIC

SEQUENCES INTO ITSELF

LOUISE A. RAPHAEL

Let S be the space of all complex sequences. An element
u = [un}n=o of S is called analytic if for some constant M > 0,
\un\ ^ Mn+ί for n = 0,1, 2, . By 4 denote the space of
all analytic sequences. Clearly A is the space of all complex
functions analytic at zero. 1. Heller has proved

Theorem 1. The transformation yn = Σm=ocnmum maps A
into A if and only if for every p > 0 there exists a q > 0
and a constant M > 0 such that | cnm I = Mpmjqn for m,n =
0,1, 2, and also if and only if the function G of two com-
plex variables (i.e., in E X E, where E is the complex plane)
respresented by the double power series G(z, y) = Σim,n^ocnmzmyn

be regular on E X 0.
The present paper provides an alternative proof for the

theorem in order to give insight into the structure of A as a
countable union of BK spaces, that is, Banach spaces with
coutinuous coordinates.

Let q > 0 be fixed and Aq = {u e S \ supw | qnnn | = | |u | | f f <oo,7& =

0 , 1 , 2 , . . . } .

THEOREM 2. (1) A = \J<Z=0Agn where qn j 0, and
( 2 ) for any q > 0, (Aq, || u \\q) is a BK space.

Proof. ( 1 ) A complex sequence u = {un}^=0 is analytic if and

only if the sup% | qnun \ <£ M for some q > 0, some constant M > 0

and n = 0, 1, 2, . It now follows that A = Uo«κoo -4g. The proof

is completed by a set theoretic argument showing that Uo«κoo Aq =

Un =o-4ffΛ after observing that if 0 < r < s, then As c ^4r.

( 2 ) It suffices to observe that (Aff, || u\\q) is isometrically isomorphic

with the Banach space of all bounded complex sequences

(m) = {ueS\\\u | U ) = s u p , \un\} .

The operator Eq from Aq into (m) establishing this isomorphism is
d e f i n e d b y E q : { u n } ~ = 0 — > { q n u n } n = 0 . F i n a l l y f o r e a c h n , \ u n \ ^ \ \ u \ \ g / q n .

Thus the coordinate functional Pn{n) = un is continuous, being a linear

operator on Aq. This proves that the space (Aq, \\u\\q) is a BK space.

By a mapping C of a sequence space X into a sequence space F

generated by an infinite complex matrix (cnm) m, n = 0,1, 2, is
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meant (y = C(u), ueX)iΐ and only if (yn = Σm=o cnmum, y = {yX=, e Y).

THEOREM 3. Let C be the transformation from A into A gen-
erated by an infinite complex matrix (cnm) n, m = 0,1, 2, . For
each p > 0 and q > 0 fixed let Apg = {u e Ap \ C(u) e Aq}. Then

( 1 ) Ap = |J?=o Apqn where qn J 0, and
( 2 ) for each p > 0 and q > 0 fixed,

(Apq,\\u\\pq = H u l l , + \\C(u)\\q)

is a BK space.

Proof. ( 1 )

Ap = \ueAp\ C(u) e A - U Λ n , gn j θ |

( 2 ) For each u = {un}"=0 belonging to the J?iΓ space Ap, (C(u))k =
Cjfc(t6) = Σ«=o cAn%n on A, is the limit of the sequence of continuous
linear operators Σ ΐ = 0 cknun j = 0, 1, 2, on A,. So CA is a continuous
linear operator on Ap for each k = 0,1, 2, by [2, Th. 17, p. 54].
This shows that C is a continuous linear operator from Ap into A.

The 5 J ί spaces (Ap, \\u\\p), (Aqj \\u\\q) and the continuous linear
map C:AP->A satisfy the conditions of [4, Th. 1, p. 226]. This
together with [4, Th. 3, p. 205] prove that Ap f] C~ι(Aq) = Apq is a
FK space (Frechet space with continuous coordinates) with the norm
I I ^ I I P + I|CMII<7 ( a s ^ e sup of two normed topologies is given by
the sum of the norms). That (Apg, \\u\\pq) is a BK space is now
immediate.

THEOREM 4. Let C be the transformation from A into A gen-
erated by an infinite complex matrix (cnm) n, m = 0,1, 2, . Then

( 1 ) for every p > 0 there exists a q > 0 such that C maps Ap

into Aq.
The transformation C from Ap into Aq generated by (cnm) for

fixed p > 0 and q > 0
( 2 ) is linear and continuous, and
( 3 ) its norm, \\C\\ = sup, Σ ϊ = o ί n l cnm \ p~m, n = 0 ,1 ,2 , . . . .

Proo/. (1) For any p > 0, C : A, — A = Uϊ=o Λ n , g, | 0. More-
over Ap = \Jn=oAPQn. And by defintion of the Banach norm \\u\\pq —
|| u \\p + || C(u) \\q on A M , the injective maps from Apq into Ap are
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continuous for any p > 0. Thus by [4, Corollary 6, p. 205] or [5,
Satz 4.6, p. 472], there exists an index k such that Ap = Apqk. This
qk is the desired q.

( 2 ) The lineary of C is clear. Continuity follows from [4,
Corollary 5, p. 204].

( 3 ) Map Ap into (m) by the operator Ep:u = {um}Z=o — {pmum}Z=o-
Define the operator B to be EqCE~\ Clearly B is an operator from
(m) into (m) which is generated by the infinite matrix

(bnm) = (qncnmp-m) .

A n d so B is l i n e a r a n d c o n t i n u o u s f r o m ( m ) i n t o ( m ) a n d \\B\\ =
Σ : = o qn\ cnm I p ~ w n = 0 , 1 , 2 , . . . . B u t | | C | | - | | B | | .

Proof of Theorem 1. By Theorem 4 (1) and (3) for every p > 0
there exists a q > 0 such that C maps Ap into A9 and

C || - sup. Σ ^w I C |P~m ^ M, w = 0, 1, 2, - -

respectively. Thus | cnm \ ^ Mpm/qn, m, w = 0,1, 2, . This proves
necessity.

Since A = Uo<ί><oo Ap, it suffices to show that the operator C is
well defined on Ap. Let 0 < r < 1. For the number pr there exists
a number g > 0 such that | cnm \ ^ M{pr)mq~n for all m and w and
some M, and so \cnmum\ ^ Mrmq~n \\ u \\p for all m and ??,. This im-
plies that the series Σm=o^m^m is convergent and

V
x J

m=-0

- r)-ιq-n\\u\ V

Thus the sequence y = C(u) belongs to the space Aq and therefore
also to the space A. This proves the sufficiency of the condition.

The functional analysis method employed herein has implications
beyond the proof of Theorem 1. It enables us to extend Heller's re-
sult to the space of Borel measurable functions bounded with respect
to a weight function. This will be the subject of a forthcoming
paper.

It is a pleasure to thank Professors W. Bogdanowicz, I. Heller
and the referee for their critical readings and valuable suggestions.
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