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ON THE VARIATION OF THE BERNSTEIN
POLYNOMIALS OF A FUNCTION OF

UNBOUNDED VARIATION

MARTIN PRICE

The behavior of the ordinary Bernstein polynomials, Bnf,
for discontinuous functions / can be quite erratic. The purpose
of this note is to give an example of a function / which is
quite irregular on the rationale but such that the total varia-
tion, VBnf of Bnf tends to zero with n.

It is known that if / is of bounded variation, then VBnf tends
to the variation of / taken over its points of continuity, [2 p. 25].
In [3] we consider arbitrary /, and give sufficient conditions for VBnf
to tend to zero in terms of the sums Σ"=o I f(r/n) |. It is shown in
[2 p. 28] that Bnf, for unbounded /, can behave unusually in terms of
point wise convergence to / . Here we construct a function, unbounded
on the rationals in every subinterval of [0,1], and which has the
property that Bnf converges in variation (and uniformly) to zero.

2* Preliminaries* The n-th. Bernstein polynomial of the real
function / o n [0, 1] is

(2.1) B /

where

Since Bnf depends only on rational values of /, we restrict ourselves
to " skeletons," i.e., functions defined only on the rationals in [0, 1],
in the manner of [1], We need the following facts:

(A) If r = 1, , n — 1, then for all n,

(2.2) P(n, r) = Max pnr(x) < Cn\r{n - r)]~h

L0,i]

where C is an absolute constant [1].
(B) If a is a positive integer, then

(2.3) P(an, ar) < 2a~hP(n, r)

for each n ^ 2 and r = 1, , n — 1. ((A) and (B) are applications of
Stirling's formula.)

(C) For all n and /
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(2.4) VBJ^2±

(D) If ΣΓ=i/i is a pointwise convergent series of functions
(skeletons) on [0,1] then,

where the right side may be + oo.

3* Construction* We define a sequence of skeletons /; such
that each skeleton tends to + oo on a set of rationals tending to a
limit rational r{. The r, will be dense in [0,1]. It is shown that the
skeleton / = Σ£=i/» has the following properties:

(1) / is unbounded on the rationals in every subinterval of [0, 1];
(2) VBJ-+0 as n->oo.

(Since / will satisfy /(0) - /(I) = 0, and since Bnf(0) = /(0) and
Bnf(l) = /(I) for a l l/ and n, (2) implies BJ-+0 uniformly on [0,1].)

For all ΐ = 1, 2, , pick r{ ~ pjq, such that qt is prime, 0 < p{ < qif

Qi < qi+u and r4 6 7if where /x - [0, 1/2], J2 = [1/2,1], /, = [0, 1/4], . . . 7β =
[3/4,1], 77 - [0,1/8], . . . . Thus the r< are dense in [0, 1]. Define

where for each i, a(i, I) is a strictly increasing sequence of positive
integers to be determined later. For all other rationals in [0,1], put
fi == 0, and then set / == ΣS=i/< Since the supports of the ft are
disjoint, / is well defined at all rationals, and satisfies (1) by con-
struction. We have

(3.2) VBJ ^ Σ VBJ, ^ Σ H(i, n)

by 2 (C) and (D), where we have put

(3.3) H(i, n) = 2 f

L E M M A (3.1). For fixed i, it is possible to choose a(i, I), l = l,2,

such that

(3.4) H(i, qf '•») < 4 r

Proof. To simplify matters, let pt = p, qi = q and a(i, I) = at.
When n = qf*'^ = q"k, there are only k, nonzero terms on the right
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in (3.3), and these correspond to the points

r p i pqak~ι + gα/c~^ ,. 1 7 *

Since the value of ft at the j-th point is j , (3.3) becomes

(3.5) Σ 2JP(qak, pqak~ι + g^~αi) .

By applying (2.2), one gets each term in (3.5) less than

o -rf ad P V2 2p , 1 1 \Ί"i
= ΔjL>\ q k\ — — —— — —— + — —— 1

\_ \ q q2 qa3+ι qaj g 2 αi/J

Thus, for k — j — 1, aγ may be chosen so large that (3.6), hence (3.5),
is less than 1/g2. (We pick aγ ^ 2 so that p/q + l/gαi < 1.) Now
suppose akf k = 1, -, I — 1 have been chosen so that ak > ak_u and
so that (3.5) is less than l/g2fc. When k = I, (3.6) shows that aι can
be chosen so that each term, j — 1, I is less than 1/qΨ. Thus
(3.5) is less than l-(ql)~2 = l/g2ί.

We can factor every integer n uniquely as:

T

(o./) n = a \ \ n Ί , n Ί = q { i y q% ^ q%^

The g,. are those g€ which appear in ^ to a power greater than or
equal a(ίj91), and Lj is the largest index I of the exponents a(ij9 I)
such that q^3Λ) divides n. For any n,

(3.8) Σ fl"(ί»n) = Σ fl"(ίi» ^) ^ Σ 2 (—y-ff(ίy» %)

where the inequality follows from (2. B) with a = n/Uj. If we apply
the lemma to each term, we get the last sum less than

where the decomposition applies if T > 1. In this case, the sum on
the right is dominated by Σ V m 2 a n ( i i s thus bounded. (If T = 1,
the assertion is that (3.9) holds if the sum is regarded as vacuous,
and a similar remark holds for (3.11) below.) Therefore if the largest
of the q{., qiτ is as large as, let us say, gί+, nτ will also be large, and
(3.9) can be made less than ε.

Now suppose n is such that every q{. < q^. As before
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(3.10) Σ (h ) ±
i=j i = i \ n q l j

Let k be the first index where Max^^Ly occurs. Then (3.10)
becomes

+ - ί - <
y q\Lk -

( 3 Λ 1 ) Γ

since qί]c ^ 2 and appears in every njjn for j Φ k. As in (3.9), the
sum is bounded. Thus if Lk is large enough, say Lk J> L, oc(ίk, Lk)
is also large, and (3.10) is less than ε.
Now suppose every ĝ  in n is less than q^ and all the indices Lβ are
less than L. There are only a finite number of such combinations

Πi-i%> a n d we denote them C8, s = 1 S. If n ~ dΌs1 we get by
(2.B)

(312) y1 -HYί %) < ŷ  ίffί c )

However only a finite number of q{ appear in any Cs so that the sum
is bounded by, say Ms > 0. Therefore (3.12) is less 2Msjd

ιl\ and we
can pick ds large enough so that d ^ ds implies (3.12) is less than ε.

Thus if n > Max [q£{i*Λ\ gf(1'L), dγcγ - - - dscs], ΣΓ^i H{i, n) < ε, im-

plying VBJ<ε by (3.2).
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