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ON SUPPORTS OF REGULAR BOREL MEASURES

D. J. HEBERT AND H. ELTON LACEY

The existence of a regular Borel measure whose support
is a given compact Hausdorff space X imposes definite struc-
tures on X, C(X), and C(X)*. In this paper a necessary and
sufficient condition is given to insure that X is the support
of a regular Borel measure. This involves the intersection
number of a collection of open sets in X, Measures which
vanish on a sigma ideal of a sigma field of subsets of X which
contains a basis for the topology of X are also considered.
In particular, for a certain class of compact Hausdorff spacs
X, necessary and sufficient conditions are given to insure the
existence of a nonatomic regular Borel measure whose support
is X. The final section of the paper is devoted to a study
of normal measures; i.e., measures which vanish on meager
Borel sets, Normal measures on X are shown to be related
to normal measures on the projective resolution of X.

NoTATION AND TERMINOLOGY. Set theoretical and topological
terminology is that of [12], the terminology of linear topological
spaces is that of [14], and measure theory terminology follows [11].
All spaces considered are taken to be nonempty and all measures
considered are finite. If X is a compact Hausdorff space, C(X) denotes
the space of continuous real-valued functions on X in the supremum
norm, C(X)* denotes the space of all continuous linear functionals on
C(X), or, equivalently, the space of all signed regular Borel measures,
and B(X) denotes the space of all bounded real-valued functions on
X in the supremum norm.

1. Intersection numbers. The following definitions are moti-
vated by the concept of an intersection number as given in [13]. Let
X be a compact Hausdorff space and B be a Boolean algebra.

1.1, If S=(f, -+, f.) is a finite sequence in B(X), i(S) =
Om) | e fill. If ASC(X), then I(A) =inf{i(S):S is a finite
sequence in A}.

1.2. If S=(4, ---,A,) is a finite sequence of subsets of X,

#(S) = max {(k/n): there is a subsequence (4,, ---, 4;,) of S such that

kLA, #@}). If His a collection of subsets of X, then I(H) =
inf {1(S): S is a finite sequence in H}.

13, If S=(E, ---, E,) is a finite sequence in B, then (S) =
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max {(k/n): there is a subsequence (E;,---,E;) of S such that

t_ E;, #0} and I(H) = inf {i(S): S is a finite sequence in H}.

The relationship between the above concepts is the following: if
Y is the Stone space of B (see [10] or [18]), then for HE B, I(H) =
IE). Ec HY = [{Cyy): E € H}, where i is the isomorphism of B onto
the clopen (i.e., closed and open) sets of Y and C,, is the charac-
teristic function of A(E) (this notation for the characteristic function
is used throughout).

The numbers I(4) and I(H) above are called the intersection
numbers of the collections A and H respectively.

LEMMA 1.4. Let X be a compact HausdorfF space and let F and
G be nonempty subsets of the positive cone of C(X). If a >0 s
such that, for each feF, there is a geG with a g < f, then a

I(G) = I(F).

Proof. Let S = (f, ---,f,) be a finite sequence in F. For each
7,1 <1 <mn, there is a g, in G such that ag; < f;. Thus

Oéia9i§i.ﬂ' and iagi = ifz
If T:(gly..'yg*rz)’ t’hen
1y = al VS ol = (NS goll < (L) s £l = 5
aI(G)gaz(T)—a(n) S0 -(n) 3 ag, g(n) Sfi| = i) .

Hence al(G) < I(F).

DEFINITION 1.5. Let B be a Boolean algebra and let H be a
nonempty subset of B. Then H is said to be positive if and only if
I(H) > 0. Similarly, if H is a nonempty collection of nonempty subsets
of a given set, then H is said to be a positive collection whenever

I(H) > 0.

THEOREM 1.6. If X is a compact Hausdorff space with topology
G, then there is a regular Borel measure whose support is X if and
only if G\{¢} 1s the union of a countable family of positive collections.
(See [13], Th. 4)

Proof. Suppose G\{g} is the union of a countable family {G,} of
positive collections. For each f in C(X) and each u, let

A, = {xeX: Fl@) > %}
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and F, = {feCX):f=0,||fll =1, and A, is in G,}, and denote the
convex hull of F, by Q.. It is a matter of computation to show that
[|fIl = I(F,) for each fe@, and that for each feF,, (1/2)C,, = f.
By Lemma 1.4, 0 < (1/2)I(G,) < I(F,), and by the above, || f||=I(F,)>0
for all fe@,. There is a positive linear functional ¢, on C(X) such
that ¢,(f) = I(F',) forall feQ,. For, if U={geCX):||gl < I(F,)},
then @, - U is open and convex and (@, + U)N —P = @, where
P=feC(X)|f=0}. By [14], p. 118, there is a continuous linear
functional ¢, on C(X) such that ¢,(—f) < ¢.(9 + k) for each fe P,
9€Q,, and he U. Since 0 is in —P,0 < ¢,(g + h) for all g€ @,, and
he U. Thus ¢, is a positive linear functional and, without loss of
generality, it is assumed that || ¢, || = 1. Suppose g€ Q,, I(F,) >¢> 0,
and let 1 denote the constant function 1 on X. Then (¢ — I(F,))1
is in U, and 0 =9,[g9 + (¢ — I(F,)1] = ¢.(9) — I(F,)$.(1) + ep,(1) =
¢.(9) — I(F,) + ¢ and hence, ¢,(9) = I(F,) —e. Let ¢ = 37.,(1/2,)¢,.
Then ¢ is a positive linear functional on C(X) and ||¢|| = 1. Now,
suppose F'e P and f+# 0. Then ¢g = f/||f|] has norm 1 and thus,
ge F, for some n. Hence, ¢(9) = ¢,(9) = I(F,) > 0. It follows im-
mediately that the regular Borel measure that corresponds to ¢ has
support all of X.

Conversely, suppose X has a regular Borel measure whose support
is X. Then there is a positive normalized linear functional ¢ on X
such that ¢(f) > 0if f =0, -0. Let F={feC(X)|f=0,|fll=1}
and F, = {fe F|s(f) > (1/n)}. By computation if follows that

it {o()): fe P} < I(F,) -

For each feF and each n, let B, ={reX:f(x) >0} and H, =
{B;: fe F,}. From Urysohn’s lemma it follows that for each open
subset U of X there is an fe F' such that f(x) =0 for x¢ U and
f(@) =1 for some xe U and thus, f=C, =Cy. If G,={TeG:U
contains a member of H,}, then for each U in G, there is an fe F,
such that f < C;, = Cy. By Lemma 1.4, 0 < I(F,) < I(H,) < I(G,).
Clearly G\{¢} = U;-. G..

CoROLLARY 1.7. If X is a compact Hausdorff space and B is a
basts for the topology G of X, then there is a regular Borel measure
whose support 1s X if and only if B\{¢} s the union of A countable
family of positive collections.

2. Nonatomic measures. In this section, certain conditions are
shown to be sufficient for the existence of a nonatomic regular Borel
measure whose support is a given compact Hausdorff space. The
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study of supports of nonatomic regular Borel measures is shown to
be related to the study of perfect separable compact Hausdorff spaces.

If m is a regular Borel measure on a compact Hausdorff space
X, then m is called nonatomic if for each z in X, m({x}) = 0.

ProrosITION 2.1. [17] If X is a compact Hausdorff space, then
there is a nonzero, nonatomic regular Borel measure on X if and only
if X has a nonempty perfect subset.

A well-known topological lemma is also needed.

LEmMMmA 2.2. If C is a closed subset of a topological space X,
then int C = int el int C.

THEOREM 2.3. If X is a perfect compact Hausdorff space such
that there exists a regular Borel measure m on X whose support is
X, then there are perfect subsets X, and X, of X such that

(i) either X, is empty or there is a monatomic regular Borel
measure whose support is X,,

(ii) either X, is empty or X, is separable,

(iii) X = X, U X,,

(iv) int X, contains X\X, and int X, contains X\X,.

Proof. Suppose C = {x,, &, ---} = {& in X:m({x}) > 0} and m =
m, + m, where m, is nonatomic and m, = 3.7, m({x,})e,,. Let X, =
Supp (m,) and let X, = clint Supp (m,). Since m,(X\Supp (m,)) = 0 and
m,| X\Supp (m,)] = 0, if A = X\Supp (m,) N X\Supp (m,), then

0 = m(A) = my(4) = m(4) .

Since the complement of the support of a regular Borel measure is
open and since the m-measure of a nonempty open set is positive, A
is open; therefore empty. It follows that Supp (m,) contains the open
set X\Supp (m,): hence, int Supp (m,) contains X\X,, and X, contains
X\X,. Therefore, X, U X, = X. Also, cl X, contains cl X\X,, and
hence int X, = X\cl X\X, contains X\cl X, = X\X,. Since int X, is
int el int Supp (m,), by 2.2 int X, = int Supp (m,). Hence, int X, con-
tains X\X,. Suppose that « is in X, and U is an open set subset of
X containing x. Since X, = clint Supp (m,), U N int Supp (m,) is non-
empty. It is easy to see that Supp (m,) = cl C; hence, there is a
member y of C such that y is also an element of the open set
U n int Supp (m,). This implies that X, is separable, (CN X, is a
countable dense subset). If x is not in int Supp (m,), then y = x. If
2 is in int Supp (m,), then since X is perfect, there is a member of
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U N int Supp (m,) which is distinct from x. Hence, X, is perfect.

COROLLARY 2.4, If X is a compact Hausdorff space on which
there is a regular Borel measure whose support is X, and such that
each countable subset of X is nowhere dense, then there is a nonatomic
regular Borel measure on X whose support is X.

Proof. First note that since each singleton is nowhere dense, X
is perfect. Continuing the notation of the preceding theorem, since
Supp (m,) = el C, and C is nowhere dense, int Supp (m,) is empty, and
hence X, is empty. This implies that X = X,, and the proof is
finished.

According to Theorem 2.3, the problem of the existence of a
nonatomic regular Borel measure whose support is a given compact
Hausdorff space X, which has a measure whose support is X, may
be reduced to the same problem for a separable perfect compact
Hausdorff space. The theorem also makes possible the development
of other sufficient conditions on such spaces via the following corollary.

COROLLARY 2.5. If X s a perfect compact Hausdorff space with
a regular Borel measure whose support is X, and such that each
point of X is contained in the support of a monatomic regular Borel
measure, then there is a monatomic regular Borel measure whose
support is X.

Proof. Suppose that X,, X,, and m, are chosen as in the theorem.
If X, is nonempty, let {x,, x,, ---} be a countable dense subset of X,.
For each k, let v, be a nonatomic regular Borel measure whose support
contains «,. Then vy = Y7  (1/2¥)y, is a nonatomic regular Borel
measure whose support is X, and m, + v is a nonatomic regular
regular Borel measure whose support is X,

LemMa 2.6, If X is a perfect compact Hausdorff space, and x
is an element of X such that there is a countable base of open
netghborhoods of x, then there is a monatomic regular Borel measure
whose support contains x.

Proof. Let {U, U, ---} be a countable base of open neighborhoods
of z. For each k, U, contains a perfect subset P,, which by (2.1)
contains the support of a nonatomic regular Borel measure y,. Let
y == (1/2%y,. If U is an open set containing x, then U contains
U, for some k; hence, U contains P,, and v, (U) > 0.
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THEOREM 2.7. If X is a perfect compact Hausdorff space which
satisfies the first axiom of countability, and there is a regular Borel
measure whose support is X, them there is a monatomic regular
Borel measure whose support is X.

Proof. It follows immediately from the preceding results.

COROLLARY 2.8. If X is a perfect compact metrizable Hausdorf
space, then there is a monatomic regular Borel measure whose support
1s X.

3. J-null measures. Let B be a Boolean sigma-algebra, J be
a sigma-ideal in B, and G be a subset of B. Using some of the
methods in [13], conditions may be obtained for the existence of a
measure on B which vanishes on J and which is bounded away from
zero on G. A set G which satisfies such conditions is called J-sigma-
positive. Let B be a sigma-field of subsets of a topological space,
and let J be a sigma-ideal in B containing no open sets. If B contains
a basis G of open sets, then there is a measure on B, which vanishes
on J and is positive on nonempty open sets if and only if G\{¢} is
contained in a countable union of J-sigma-positive collections. This
result is used along with results of § 2 to give necessary and sufficient
conditions for the existence of a nonatomic regular Borel measure on
a class of compact Hausdorff spaces X whose support is all of X.

Let B be a Boolean algebra and let % be the natural isomorphism
of B onto the Boolean algebra of clopen subsets of the Stone space
Y of B. The following lemma are basic results in [13].

Lemma 3.1. If G is a positive subset of B, them there is a
finitely additive measure m on B such that m(E) = I(G) for each E
n G.

LeMMA 3.2. If m is a finitely additive measure on B and G is
a subset of B, thewn inf {m(E): E is in G} < I(G).

DeriNiTION 3.3. If B is a Boolean sigma-algebra and C is a
subset of B, then C is said to be a monotone class whenever for
each monotone sequence E, < K, < --. of elements of C; Vi, E, is
an element of C.

DEFINITION 3.4. Let B be a Boolean sigma-algebra, G be a subset
of B, and G = {F in B: D £ E for some D in G}. The collection G
is said to be sigma-positive if and only if G is positive and B\@ is a
monotone class.
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The following construction of a measure on a sigma-algebra is
based on an idea of Ryll-Nardzewski (see [13]).

LEMMA 3.5. If B is a stgma-algebra and G is a sigma-positive
subset of B, then there is a measure m on B such that m(E) = I(G)
for each E in G.

Proof. By 3.1, there is a finitely additive measure m’ on B such
that m'(E) = I(G) for each E in G. For each E in B, let m(F) =
inf {3 m'(A,): A, A,, --- is a pairwise disjoint sequence such that

w.A,=FE}. C(Clearly, 0 < m(E)<m'(E) for each £ in B. Let
A, A, --- be a pairwise disjoint sequence in B. If ¢ is a positive
number, then for each =, there is a pairwise disjoint sequence
Cr, Cr, --- such that 4, = V7., C? and

m(4,) = 3, m'(C1) < m(4.) + (/2") -

Hence,
g‘lmA éz:g '(Ck)<2m(A)+c.

Since Vi, A4, = V.. V.. C:, by the definition of m,m(Yi_, 4,) <
Seom(4,). If m(Vio, A,) < Dz, m(A,), then there is a pairwise
disjoint sequence K, E,, --- of elements of B such that VYV, A4, =
Vie, Ep and m(V7., A,) = 32, m/(B)) < 337.,m(A4,). Since for each

3

n, V B, A A, _An/\SZLE’k:An,

(see [10], p. 28), m(4,) =< dv..m/(E, N\ A,). Hence,

S m(4,) <

HM3

g'mAmy

However, since for each 7 and . N\ A, < E,, it follows that

k, V-
S m/(E, A A,) <z (B A ALl) = m/(B,) .
Thus,
S, (B, A A) £ m(B)

and

S m(E, N A) ST m(E) < S mA) S35 m(B A A4

1 k=1

M3

n
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which is a contradiction. It has been shown then that m is countably
additive. Suppose now that m(F) < I(G) for some E in G. There
is a monotone sequence E, < E, < ... such that V., E, = E, and
{sup {m'(E,): n = 0} < I(G), (this is a trivial alteration of the definition
of m). Thus, for each n, m'(E,) < I(G). This implies that for each
n, E, is not in the set G = {E in B: D < E for some D in G}. Since
B\G‘- is a monotone class, F is B\G, which is a contradiction.

DEFINITION 3.6. Let B be a Boolean sigma-algebra, J be a sigma-
ideal in B, and G be a subset of B. For each E in B, let E denote
the equivalence class modulo J to which E belongs. The collection
G is said to be J-sigma-positive whenever {E: E is in G} is a sigma-
positive subset of B/J.

ProrosiTION 3.7. Let B be a sigma-algebra and let J be a sigma-
ideal in B. Let E denote the equivalence class modulo J of E for
each F in B. If m is a measure on B such that m(F) = 0 for each
E in J, and m(E) = m(E) for each E in B, then  is a measure on
B/J. Conversely, if 7 is a measure on BJJ, and m(E) = m(E) for
each E in B, then m is a measure on B such that m(E) = 0 for each
E in J.

The above proposition is well known. The proof is a trivial
alteration of a proof in [10], p. 65.

DeFINITION 3.8. If B is a Boolean sigma-algebra, J is a sigma-
ideal in B and m is a measure on B, then m is called J-null whenever
m(E) = 0 for each E in J.

COROLLARY 3-9. If B is a sigma-algebra, J is a stgma-ideal in
B and G is a J-sigma-positive subset of B, then there is a J-null
measure on B and a positive real number a such that m(A) = a for
each A wn G.

Proof. Let G = {E: E isin G}. Then G is a sigma-positive subset
of B/J. By 8.5, there is a measure 7w on B/J such that m(E) = I(G)
for each E in G. Let A = I(G) and let m(E) = m(E) for each E in
B. By 3.6, m is a measure on B which vanishes on J. If E is in
G, then £ is in G and m(E) = m(E) = a.

THEOREM 3.10. Let X be a topological space, B be a sigma-field
of subsets of X which contains a basis G of the topology of X, and
J be a sigma-ideal tn B which contains mo open sets. Then there is
a J-null measure m on B such that m(U) > 0 for each nonemptly
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open subsets U of X if and only tf G\{¢} s contained in the union
of a countable family of J-sigma-positive sub-collections of B.

Proof. Suppose that m is a J-null measure on B which is positive
on G\{¢}. For each n, let B, = {E in B: m(E) > (1/n)}. For each E
in B, let E denote the equivalence class modulo J of Z. Let B, =
{E: E is in B,}. By 3.7, if m(E) = m(E) for each E in B, then m
is a measure on B/I. By 3.2, (1/n) < inf m(E): E is in B, < I(B,).
Thus, B, is positive. Let E, < E, < ... be a monotone sequence of
elements of B/I such that for each k, and for each E in B,, it is not
true that £ < E,. Then for each k, m(E,) < (1/n), which implies

w3 B) = am

and hence it is not true that £ < s, E, for some E in B,. There-
fore, B, is sigma-positive, and B, is J-sigma-positive.

Conversely, if g, B, contains G\{¢} where for each n, B, is J-
sigma-positive, then for each =, there is a measure m, on B/J such
that m,(E) = I(B,) >0 for each £ in B,. Let m = S, (1/2"),.
Then for each U in G\{0}, m(T) > 0. If m(E) = #(E) for each E in
B, then m vanishes on J and m is a positive on G\{¢}.

COROLLARY 3.11, Let X be a compact Hausdorff space, B be the
stgma-field of Baire subsets of X, and J be a sigma-ideal in B which
contains no open sets. There is a regular Borel measure with support
X such that m(E) = 0 for each E in J if and only if the collection
G of nonempty open Baive subsets of X is contained in the wunion
of a countable family of J-sigma-positive collections of Baire sets.

Proof. According to 3.10, G is contained in the union of a
countable family of J-sigma-positive subcollection if and only if there
is a Baire measure m on X such that m(U) > 0 for each open Baire
set U and m(K) = 0 for each E in J. The regular Borel extension
of m is the regular Borel measure required.

The final theorem of this section combines the preceding results
with those of § 2.

THEOREM 3.13. Let X be a perfect compact Hausdorff space with
topology G and with the property that each point contained in an
open separable subset of X is a Gy-point. Let J be the sigma-ideal
of Borel sets which contains no nonempty pverjfect subsets. There is
a nonatomic regular Borel measure whose support is X if and only
if G 1s contained in a countable union of J-sigma-positive collections
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of Borel sets.

Proof. Suppose that G is contained in a countable union of J-
sigma-positive collections. By 3.10, there is a J-null Borel measure
m’ on X such that m/(U) > 0 for each nonempty open subset U of
X. Let m” be the restriction of m’ to the Baire sets, and let m be
the regular Borel extension of m”. Then m is a regular Borel measure
which vanishes on Baire sets which contain no nonempty perfect
subsets. Let X, X,, m,, m, be as in 2.3, Suppose that X, is nonempty.
Then X, is separable and since X, = cl int Supp (m,), int X, is nonempty.
It is clear then that int X, is separable and locally compact in the
relative topology. Thus, {x} is a G, for each x in int X,, and hence
{«} is a Baire set for each z in int X,. Therefore, m({z}) = 0 for each
x in int X,. If U is an open subset of X\X,, then since int X, contains
X\X,, int X, contains U. Since m({x}) = 0 for each z in U, m,(U) = 0.
Since U N Suppm, is empty, m(U) = 0. Thus, m(U) = 0, which
contradicts the fact that m is positive on nonempty open Baire sets.
Therefore, X, is empty, and X, = Supp (m,) = X.

Conversely, if m is a nonatomic regular Borel measure whose
support is X, then m is a J-null Borel measure which is positive on
nonempty open Borel sets. By 3.10, G\{¢} is contained in the union
of a countable family of J-sigma-positive subcollections.

4. Normal measures and the projective resolution. This sec-
tion develops relationships between the regular Borel measures on a
compact Hausdorff space X and the regular Borel measures on the
projective resolution of X.

In [8], Gleason introduces the concept of the projective resolution
of a compact Hausdorff space. If P is a compact Hausdorff space,
then P is extremally disconnected if and only if the closure of each
open subset of P is open. If X and Y are compact Hausdorff spaces,
then a continuous irreducible map of X onto Y is a continuous
function f from X onto Y such that Y is not the image under f of
a proper closed subset of X. Gleason’s result states: If X is a
compact Hausdorff space, then there is an extremally disconnected
compact Hausdorff space P (called the projective resolution of X) and
a continuous irreducible map ¢ (called the Gleason map) of P onto
X, and if P’ is an extremally disconnected compact Hausdorff space
such that X is the image of P’ under a continuous irreducible map
g’, then there is a homeomorphism % of P onto P’ such that ¢'h = g.

If X is a topological space and U is an open subset of X, then
U is called a regular open subset of X if and only if U = intel U.

NoTATION. In this section, if Y is a compact Hausdorff space,
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then R(Y) denotes the collection of regular open subsets of Y, By(Y)
denotes the sigma-algebra of Borel subsets of Y, and I(Y) denote
the sigma-ideal of meager (i.e., contained in a countable union of
nowhere dense sets) Borel subsets of Y.

If Y is a compact Hausdorff space, then the collection R(Y) is a
Boolean algebra with the following operations: If U and V are in
R(X), then UV V =intel(UUV),UANV =UNYV, and the comple-
ment of U is Y\el U;0 = ¢ and 1 = X (for a proof, see [10]). It is
useful to note that each Borel subset of Y is equivalent modulo I(Y)
to a unique regular open set, and indeed R(Y) is isomorphic to
By(Y)/I(Y), (see [10], p. 58).

In Gleason’s construction, the projective resolution P of a compact
Hausdorff space X turns out to be the Stone space of R(X). The
following sequence of lemmas throws some light upon the relationships
involved.

Lemma 4.1. If P and X are compact Hausdorff spaces and g
18 a continuous irreducible map of P onto X, then for each nonempty
open subset U of P, g(U) has nonempty interior.

Proof. Since U is nonempty, P\U is a proper closed subset of
P and by the irreducibility of g, g(P\U) is a proper closed subset of
X. If zis in X\g(P\U), p is in P, and g(p) = «, then p is not in
P\U; hence p is in U and z is in g(U). Therefore, g(U) contains
the nonempty open set X\g(P\U).

In the remainder of this section, X is a compact Hausdorff space,
P is the projective resolution of X, and g is the Gleason map of P
onto X.

LEMMA 4.2. If C is a nonempty clopen subset of P, then
int g7[g(C)] = C and clgintg(C)] =C.

Proof. Since P is extremally disconnected and g¢g(C) is closed,
int g7[g(C)] is clopen. If D = int ¢~[(C)\C is nonempty, then P\D
is a proper clopen subset of P containing C, and g¢g(P\D) = X, con-
tradicting the irreducibility of g. Further, g~'[¢g(C)] contains the open
set ¢g7'[int g(C)], and hence, C = int g~*[(C)] contains g~'[int g(C)].
Since C is closed, C contains the clopen set cl g~'[int g(C)]. If D =
C\cl g7[int g(C)] is nonempty, then it is clopen, and by (9.1), g(D)
nonempty interior. But since D is disjoint from g~[int g(C)], (D) is
contained in ¢g(C)\int g(C).
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LEmMA 4.3. If U is a regular open subset of X, then cl g~ (U)=
int g7 (cl U) and cl g7'(U) Ncl g7'(X\cl U) is empty.

Proof. Since g *(U) is a subset of g¢g~'(cl U), the clopen set
el g7Y(U) is a subset of the closed set g—*(cl U), hence, cl g~(U) is a
subset of int g~'(cl U). Let

D =int g7*(cl U)\cl g=(U) .

If D is nonempty, then g(D) is contained in cl(U)\U which is a
nowhere dense set, that g(D) has nonempty interior by 4.1. Suppose

clg (U) nelg(X\cl U) = int g~[cl (U)] Nint g7l (X\cl U)] = A

is nonempty. Since A is clopen, g(A4) has nonempty interior, and since
glint g~*(cl U)] is a subset of g[g~'(cl U)] = cl U and

glint g~(cl (X\cl U))]

is a subset of cl(X\cl U), g(4) is a subset of cl(U)nel(X\clU), a
nowhere dense set.

LEmMMA 4.4, If A is a subset of X, then A is nowhere dense if
and only if g~(A) is nowhere dense.

Proof. If A is nowhere dense, then so is ¢l A. If g~'(cl A) has
nonempty interior, then by (4.1), g[g~'(cl A)] = cl A has nonempty
interior. Hence, ¢g~'(cl A) is nowhere dense and contains g~'(4).
Conversely, if D is a nowhere dense subset of P, then so is cl D.
Suppose that el g(D) contains a nonempty open set V. Then ¢g=(V)
is a nonempty open subset of g7'[cl g(D)] which is contained in
9~ g(cl D)]. Since cl D contains no nonempty open set, g~ (V)\cl D
contains a nonempty clopen set C. Since g(cl D) contains V which
contains ¢(C), P\g(C) maps onto X, which is a contradiction. Hence,
cl g(D) is nowhere dense, and ¢g(D) is nowhere dense.

LEmMMA 4.5. If for each regular open subset U of X, W(U) =
clg~(U), then h is an isomorphism of the Boolean algebra R(X) onto
the Boolean algebra of clopen subsets of P.

Proof. Since P is extremally disconnected and ¢~*(U) is open,
clg7(U) is clopen. If C is a nonempty clopen subset of P, then ¢g(C)
is closed, and by 2.2, int g(C) is a regular open set. By 4.2,

hlint g(C)] = el g7'[int g(C)] = C .

Thus, & is an onto map. If U and V are nonempty regular open
subsets of X such that A(U) = h(V), then suppose that U = V. Then
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either UN (X\el V) or VN (X\el U) is nonempty (otherwise, cl U
contains V, el U contains ¢l V, U = intcl U contains intcl V = V, and
likewise V contains U). Suppose W = Un (X\cl V) is nonempty.
Then W is a regular open set, and A(W) is a nonempty subset of
both A(U) and A(X\cl V). But W(U) = k(V), and by 4.3,

V)N X\l V)

is empty, which is contradictory. Therefore, h(U) = (V) and & is
one-to-one. To show that % preserves complementation, it is necessary
only to show that for each regular open set V, i(V) U A(X\cl V)=P.
If V is a nonempty regular open proper subset of X, then

clg(V)Uelg™(X\el V) =cllg7(V) U g7'(X\cl V)]
=cllg (VU X\cl V)].

Since X\(V U X\cl V) is nowhere dense,
g (X\[VU X\l V)]) = P\g7[V U (X\el V)]

is nowhere dense, and the desired result follows. Suppose that U
and V are nonempty regular open subsets of X, If

A=rUNV)=clg(UnV)=cllg(U)Ng(V)],

then clearly both A(U) and 2(V) contain A. Let D be a clopen subset
of both A(U) and k(V). Then A*(D) is contained in both A~ [A(U)]
and A~ [K(V)]. Thus U N V contains A~(D) and A = k(U N V) contains
D. Therefore, A = h(U)N (V). Therefore, h is one-to-one, onto,
and % perserves complementation and intersection; thus, % is an iso-
morphism.

THEOREM 4.6. There is a regular Borel measure whose support
18 X t1f and only if there is a regular Borel measure whose support
is P.

Proof. If p is a regular Borel measure whose support is P, then
v(A) = p(g7'(A)) defines a regular Borel measure whose support is X,
where ¢ is the continuous irreducible map of P onto X.

Suppose v is a regular Borel measure whose support is X. Let
¢ be the positive linear functional on {fog: fe C(X)} defined by
#(fog) = v(f). Then by [14], p. 20, ¢ has a positive extension 4 to
all of C(P). Let p denote the regular Borel measure that corresponds
to 4. Then for each Borel set A in X, v(A) = p(97'(A)). Let U be
a nonempty open set on P. The proof of Lemma 4.1 shows that
9 (X\g(P\U))S U and if U+ P, then V = X\g(P\U) is nonempty.
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Hence, p(g=(V)) = »(V) > 0. It follows that the support of p is all
of P.

REMARK. Suppose # and v are related by v(4) = p(¢g—'(4)) for
all Borel sets A in X, If v is nonatomic and p is in P, then y(g(p))=0,
and, thus, 0 =< p(p) = (97'(9(p))) = ¥(g9(p)) = 0 and ¢ is nonatomic.

DEFINITION 4.7. If Y is a compact Hausdorff space and m is a
regular Borel measure on Y, then m is called a mormal measure on
Y if and only if for each meager Borel subset A of Y, m(4) = 0.

This concept applied to extremally disconnected spaces is equivalent
to Dixmier’s notation of normal measure (see [3]).

LEmMA 4.8. If m ts a normal measure on X, then m restricted
to R(X) is a measure on R(X).

Proof. It suffices to show that m is countably additive on R(X).
If U, U, --- is a pairwise disjoint sequence of regular open sets,
the least upper bound of this sequence in R(X) is intecl(Up, U.,).
Since the boundary of an open set is nowhere dense,

m(Ql Un) = m(cl Ql Un> ,

and it follows from 2.2 that m(intecl U, U,) = m(cl Y., U,). Thus,
the countable additivity on R(X) follows from the countable additivity
on the sigma-algebra of Borel sets.

THEOREM 4.9. If m is a normal measure on X, then there is a
wunique normal measure m’' on P such that for each Borel subset E
of X, m(E) = m'(¢7'[E]).

Proof. By 4.8, m defines a measure on R(X). Let & be the
isomorphism in 4.5 of R(X) onto R(P), let © be the isomorphism of
R(P) onto By(P)/I(P), and let j be the natural homomorphism of
B,(P) onto By(P)/I(P). For each Borel subset F' or P, let m/(F) =
m(h~*2"9)(F'). Clearly, m/(F) =0 whenever F is a meager Borel
subset of P. For each Borel subset £ of X, let f(E) = ¢g~'(&). By
elementary properties of functions (see [12], p. 11), f is an isomorphism
of By(X) onto B,(P). If Eis a Borel subset of X, then E is equivalent
modulo I(X) to a regular open subset U of X. Since the symmetric
difference U + E is in I(X), by (4.4), f(E + U) = f(F) + f(U) is in
I(P), and since h(U) = cl f(U), (U) is equivalent to f(E) modulo
I(P). Hence, j[f(&)] is the equivalence class of i(U) and
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m/[f(E)] = m(h"i7 3 )(E) = m(U) = m(E) .

It remains to show that m' is a regular Borel measure. Suppose e
is a positive real number and F' is a Borel subset of P. There is a
clopen set C such that the symmetric difference C + F is meager.
Hence, F' C is meager, and there are nowhere dense Borel sets D,, D,,- -«
such that F\C = U;., D,. Now clearly,

s(cugep,)=9C)uU gD, = E

is a Borel subset of X, and m(E) = m[int g(C)] = m/(C). Since m is
a regular Borel measure, there is an open set U containing FE such
that m(U) < m(E) + e. Thus,

m/(F) = m'(CUF\C) = m/(CuU d D) £ mlg(B)] = m(B)
= m/(C) = m(U) = m[g~(U)] < m(E) + ¢ = m'(E) +¢.
Since U contains
9(C) U g(F\C) = g(C U F\C) = g(C U F)

g~} (U) contain F. The uniqueness follows from the fact that the
sigma-algebra of Baire subsets of P is generated by clopen subsets
(see [12], p. 999). If m/[¢g~*(E)] = m(&) for each Borel set E, then
m'" agrees with m’ on the clopen subsets of P, and hence on the
Baire subsets of P. By |11], p. 239, the regular Borel extension of
m' restricted to the Baire subsets is unique.

CorROLLARY 4.10. There is a one-to-one, order and norm preserv-
g correspondence between the collection N(X) of mnormal measures
on X and the collection N(P) of mormal measures on P.

Proof. The mapping g of P onto X defines a continuous linear
norm decreasing mapping § of M(P) onto M(X) such that for each
Borel subset E of X, Gg(m)(E) = mlg~"(E)] (see [15], p. 180). If g is
restricted to N(P), then the correspondence of the preceding theorem
shows that § maps N(P) one-to-one, onto N(X). The preservation of
order and norm is immediate.

COROLLARY 4.11. There is a one-to-one, order and norm preserv-
ing correspondence between the collection of normal measures whose
support 1s X and the collection of mormal measures whose support

s P.

Proof. Let § be the mapping defined in the previous corollary.
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If m is a normal measure whose support is P, then g(m) is a normal
measure. If U is a nonempty open subset of X, then ¢(U) is a
nonempty open subset of P and g(m)(U) = m[g~(U)] > 0. If m is a
normal measure on X and U is a nonempty open subset of P, then U
contains a nonempty clopen set C and by (4.2), clg~[int g(C)] = C.
Thus, g7'(m)(U) = ¢g7'(m)(C) = g~'(m)[g™" int {g(C)}] = m[int g(C)] > 0.
Recall that each signed regular Borel measure m on a compact
Hausdorff space Y may be written as m =m* —m~. If Y is a
compact Hausdorff space and m, and m, are normal measures on Y,
then m = m, — m, is a signed regular Borel measure on Y, and since
m, =m* =0 and m, = m~ = 0, m* and m~ are also normal measures
on Y. Thus, {m: m is a signed regular Borel measure on Y such
that m* and m~ are normal} = {m: m = m, — m, where m, and m,
are normal measures on Y. This collection is called the collection of
signed normal measures on Y and is denoted by M'(Y). It is easy
to show that M’(Y) is a closed linear subspace M(Y) for each compact
Hausdorff space Y. It also follows easily from 4.10 that M'(X) and
M'(P) are linearly isometric. For a different proof of this, see [2].

The following theorem summarizes some of the results in this

section in combination with some results from the theory of measure
algebras.

THEOREM 4.12. The following statements are equivalent.

(1) There is a normal measure whose support is X.

(ii) There is a normal measure whose support is P.

(iii) There is a strictly positive (countably additive) measure
of R(X) (resp. R(P)).

(iv) There is a regular Borel measure on P whose support is
P and every meager set in P is nowhere dense.

(v) There is a regular Borel measure on X whose support is
X and every meager set in X is nowhere dense.

Proof. Theorem 4.6 and 4.9 yield that (i) is equivalent to (ii).
Since R(P), R(X), B(X)/I(X), and B,(P)/I(P) are all isomorphic under
an isomorphism that preserves countable operations, (i) equivalent to
(iii) and (ii) is equivalent to (iii). Suppose there is a normal measure
¢ on P with support P. Let BC P be a meager set. Then p(B) =
m(int ¢l B) and hence B is nowhere dense (see [3], p. 158). Thus (ii)
implies (iv).

Suppose (iv) is true. Then by Theorem 4.6 there is a regular
Borel measure whose support is X. If Bc X is meager, then by
Lemma 4.4 ¢g~'(B) is meager and thus ¢~*(B) is nowhere dense. Hence,
by Lemma 4.4 again, B is nowhere dense and (iv) implies (v). A
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similar argument shows that (v) implies (iv). For, by Theorem 4.6
again, if there is a regular Borel measure whose support is X, then
there is one whose support is P. Suppose B c P is closed and nowhere
dense. Then g¢(B) is closed and nowhere dense. Thus, if BC P is
meager, then ¢g(B) is meager. It follows that if each meager set in
X is nowhere dense, then each meager set in P is nowhere dense.
Finally, (iv) implies (iii). For, in [13] Kelley shows that if a complete
Boolean algebra A has a strictly positive finitely additive measure
and if each meager set in the Stone space of A in nowhere dense,
then A has a strictly positive countably additive measure. Thus, if
/¢ is a regular Borel measure whose support is P and each meager
set in P is nowhere dense, then g induces a finitely additive strictly
positive measure on R(P), R(P) is a complete Boolean algebra, the
Stone space of R(P) is P, and by the above cited result, R(P) has a
countably additive strictly positive measure.
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