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ON RINGS WITH PROPER INVOLUTION

W. E. BAXTER

A topological ring is said to have property (Y) if, and only
if, 2A = A; A has a proper continuous involution (with sym-
metric elements S) such that whenever the net {2xa} tends
to zero, so also does {xa}; Az is dense in A; and the left an-
nihilator of a closed Jordan ideal, U, of S is zero if, and only
if, U is S.

One shows that for such rings and for annihilator rings
with the first two properties above that every closed Jordan
ideal of S is the intersection of S with a closed two-sided
ideal. Also shown is the fact that SoS is dense in S.

A study is made of relations between the socle and Jordan
ideals of S for topological rings. Finally, a new proof of
Herstein's result for S in simple associative rings is given.

The purpose of this paper is twofold. The literature on rings
with involution contains little about a Jordan ideal U of S, the set
of symmetric elements; in fact, Herstein's work [2] on such ideals in
a simple ring is one of the few results in this area. Therefore, we
attempt in the first part of this paper to make an algebraic beginning
into such a study for rings with proper involution, and with the
properties: 2x = θ implies x = θ and 2A = A.

We introduce the notion of topological rings with property (Y),
these being the analog of the semiprime rings of [1] with the property
that for a closed proper two-sided ideal, 7, J*f(I) Φ (0). We show
that for these rings and for annihilator rings (with certain conditions
on convergence) that a closed Jordan ideal, U, of S is the intersection
of S with a closed two-sided ideal of A.

We then apply these results to (i) a reproof of Herstein's result
(for simple rings with proper involution) making use of the fact that
the subring generated by S is A; (ii) showing that in the annihilator
rings under discussion as well as for topological rings with property
(Y) that SoS is dense in S (these results are related to results on
the positive cone in Banach algebras); and (iii) considering relation-
ships between minimal Jordan ideals of S and two-sided ideals of
A, as well as relations concerning minimal idempotents and Jordan
ideals.

2* Pure algebra* We define for each pair (a, b) of elements of
A(a, b)j = ab + bJaJ and (α, b)L — ab — ¥aJ. Let U be a Jordan ideal
of S, then
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LEMMA 1. (i) s e S implies that t = (l/2s) such that 2t = s is
in S; (ϋ) u2 e U for all ue U; (iii) usu and sus e U for all ue U,
se S, and (iv) (u2, a)j e U for all aeA, ue U.

(i) is immediate, (ii) is immediate after the observation that
uv = vu where v = l/2u. But, [u, v] = x implies that 2x = θ and so
the desired conclusion. Now

usu — uo(uot) — u2ot and

sus = 2{to(tou) — uo t2} ,

yielding (iii), and if a = s + k, se S, ke K then

(u2, a)j = u2 os + uo[u, k]

completing the argument.
Now define B = {b I b e A, (6, a)j e U for all a e A}. The key to

what follows is the following lemma.

LEMMA 2. Uo UCLB, B is a right ideal and SBaB.

U°UcB by the last statement in Lemma 1, and the fact that
u o v = (u + v)2 — u2 — v2.

It readily follows that B is a right ideal, while se S, beB, and
aeA implies that ((sb), a)j = s°(ί>, a)j + (&, -as)j the last assertion.

An involution, J, on A is proper if, and only if, xxJ — θ xe A
implies x = θ. Henceforth, our involution is proper. We note that
this implies that there exists no nilpotent ideals, and thus by Herstein
[2] no nil right or left ideals of bounded index of nilpotency. Thus
the first part of the following lemma is immediate. The second
follows since the involution is proper but we give a proof valid for
semi-prime rings and independent of proper involution.

LEMMA 3. If xe S and xSx = (θ) then x = θ. Also, if W is a
Jordan ideal of S and w2 = θ for all w eW then W = (θ).

For all w e W, w2 = θ implies that Wo W = (θ). Thus, w o (w o s) =
2wsw = θ for all se S, and so by the first statement we are done.

If C is a subset of A then &{C) = {b e A \ be = θ for all c e C}.

LEMMA 4. W= £f(B) Π B n S = (θ).

Now w e W then sw eB and ws e j5f(B) by Lemma 2 for all
se S. Also, B and ^(-B) are respectively right and left ideals.
Thus wseB and sw e ^f(B). So, ws + sw e W; that is W is a Jordan
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ideal of S with property of Lemma 3 and so the desired conclusion.

LEMMA 5. Sf(B) n U = (θ).

Let u e £?{B) Π Ϊ7 then by Lemma 1, u2eB Γ) S. Thus, u2 e W,
of Lemma 4, or u2 = (9 for all ue£f{B)Γ\ U. Now, if seS then
(w o 8)b = u(sb) + s(wδ) = θ for all 6 e B and so ^ ( B ) Π U is Jordan
ideal of S and by Lemma 3, J*f(B) f) U = (θ). We are now in a
position to prove our first theorem.

THEOREM 1. Sfiβ) = ^(U) = £f(B n U).

The following remarks are immediate. ^f'(B) c j^f{B Π U) and
^ ( [ / ) c i ^ ( 5 n P ) . Suppose we show that & (B) c ^?{U) and
^^(J5 Π ί7) c cŜ CB), then we see that we are done. Now, since
SBaB then £f(B)SS c i^(£) . Thus let % e U, x e S^(B) then x(xJx)
uejίf(B), a left ideal. Hence,

u(xJx)(xJx)u = ( u ^ a ? ) ^ ^ ) 7 6 £?(B) Π ί7 ,

the latter by Lemma 1 (iii). Thus, by Lemma 5 and fact that in-
volution is proper we conclude that uxJx = θ or (xu)J{xu) — θ for
each xe^(B), ueU. Thus, xu = 6 and so ^ ( β ) c ^ ( ί / ) , Now
let α G ^ ( # Π 17) and b e B, observing that (δ, l/2δJ)J = δδ 7 e 17, we
conclude that a δδ'7 = 0. Thus, (^(a*)"7 = (θ) and so x e ^ ( B ) , finishing
the argument.

Now let ueB f] U, ye £f(B Π U), keK. Then

(yk)u = 2/(u, -yfc),/ + 2/̂ Λ .

As ueB then (%, -fc)/G ?7 and so, by Theorem 1, we conclude that
yk e ^{B Π U). Therefore, we have proved the first statement in
the following.

THEOREM 2. J5?(B) is a two-sided ideal of A andj^(B) f] B = (θ).

To see that J^{B) Π B = (β) all we need note is that J*f(B) Π B
is a right ideal with the property that x2 = θ for all x e J*f(B) Π B.

3* Annihilator rings* Up to this point everything that has
been done, has been done algebraically. Henceforth we assume that
A is also a topological annihilator ring with continuous involution
and the property that if {2xa} is a net convergent to θ eA then {xa}
is also a net converging to θ. This latter remark guarantees that
if {aa = sa + ka\ sae S, kae K} converges to an element in S then {sa}
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also converges to that element, and that if C £ S, B ϋ K and C + B
is dense in A then C is dense in S and B is dense in K.

The definition of an annihilator ring says that for any closed
right (left) ideal R, (L) of A, £?(R) = (θ) (.^?(L) = (θ)) if, and only
if, R = A(L = A).

Now Theorem 2 has shown that J*f(B) + B = H is a right ideal
and it is immediate that x e £f(H) implies x2 = θ, and so by our
previous reasoning with regards to nil left ideals we have that H is
dense in A.

We make good use of the following lemma.

LEMMA 6. If U is a closed Jordan ideal of S then B is a closed
right ideal in A.

Let ba be a net in B, ba —> b. Then (ba — 6, a)j = (ba, a)j — (6, a)j.
Thus

Each (6α, α)j- e C/, and ί7 is closed. Thus, (6, α)j e U or 6 G B. Hence-
forth, in this section U is a closed Jordan ideal in S.

THEOREM 3. B is a two-sided ideal of A.

H = Bφ J*f(B) is dense in A. Thus given aeA there exists a
net aae H such that αα —> a. Write αα = 6α + da, ba e B, da e Sfiβ)
then for any b e B,

aab > ab .

But aab = bab + rfα6 = bab e B. Thus, bab — aab —> α6 and the latter is
in B, since J3 is closed.

Now B is a two-sided ideal and so BJ is two-sided also. Thus,
and similarly for β . Thus the following is immediate.

LEMMA 7. j ^

Thus, HJ = (B + £f(B))J = J5J + =S^(SJ) is dense in A.

THEOREM 4. B = BJ and ϋ7c.B.

Let αα —> α, aa a net in i ί J . Then, aa — bJ

a + dj where 6J e J57

and dJ

a = .SfίB7). Thus, 5 α e 5 and dae^(B) (the latter by using
Lemma 7). Let ¥eBJ then (6J, α ^ = (&', 6J + d ^ = (¥, biheU.
Therefore, (¥, aa)j —> {¥, a)j e Z7, as i7 is closed, or 6J e JB.

Also, for any ue U, (u, aa)j = (ba, u)j + (daj u)j as above. But
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dae£?(B) = £f(U) and so (u, aa)j = (6α, u)j e U. As before, this
means that (u, a)jβ U for arbitrary aeA, or UczB.

THEOREM 5. U = C Π S for C a closed two-sided ideal of A,
and a sufficient condition for U = B n S is that BA be dense in B.

Let V be the additive group generated by {(u, a)L\ueU, aeA}.
Using UdB observe that for all α, c e A and ue U:

auc + cJuaJ = ((a, u)J9 c)j + (u, { — aJc))j e U and

auc — cJuaJ — ((α, u)Jf c)L + (u, { — aJc))L e V .

Thus, ueU, a, ceA then %(2c) = (u, c) 7 + (u, c)L or Z7A c U + F .

Also,

(u, a)L(2c) = (u, ac)L + (u, ac)j + {αJ^(-c)

+ (- c)Jua) + {cJua — aJuc} e U + V,

or VAczU + V. Similarly, A(U + F) c F + F. Therefore, J7 + F
is an ideal of A and is dense in its closure C, a closed ideal of A.
Thus, U is dense in C ί l S . But U is closed and so C = U + F, the
latter is the closure of F.

Now if BA is dense in B then given b e B there exists a net
baaa-+b and so 6β(l/2)αβ —1/26 and (l/2)aJ

a¥a->l/2bJ. Thus,

6β(l/2)αβ + (l/2)aίbJ

a —1/2(6 + 6J) .

Hence, 1/2(6 + ¥) e U, or if 6 e B Π S then beU.

We define

ί/j- = {x I xo% = θ for all ue U}

and prove

L E M M A 8. £7, = £f(U), and ίfae£?(U), a = s + k, se S, keK
then s and k are in

If xe Uj then by Lemma 1, ux + xu = θ and xu2 + u2x = θ for
each ueU. Thus, 2xu2 = θ; that is xe^f(U). So, UjCZ^f(U).
Now by [1], J^(B) = Bd. Therefore, using Theorem 1, we have
UJCLBJ. But, since by Theorem 4, UaB we have, B^c [7j. Thus

Now if α = s + k e Jzf(U) then α e J^(B) and so for beB,
(s + k)b = θ and also ¥(s + k) = θ, the latter since &(β) = £f(B).
Now the conclusion is immediate.

4* Topological rings with property (Y). Given and Yood, [1],
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assume as a hypothesis in part of their work that -Sf (/) Φ (0) for
any closed proper two-sided ideal / of A, A a semi-prime ring. We
note that this implies that A3 is dense in A. For letting I =~AF, we
have x e J*f(I) implies that x4 — θ, a contradiction to semi-primeness.

We define an analogous condition for Jordan ideals of S.

PROPERTY (Y). A, a topological ring, has property (Y) if,
and only if, (i) 2A = A; (ii) A has a proper continuous involution such
that whenever the net {2xa} —> 0 then {xa} —> 0; (iii) A3 is dense in A;
and (iv) a closed Jordan ideal, U, of S has J2?(U) ='(θ) if, and only
if, U = S.

We now show that for such rings the main theorems of § 3 hold.

THEOREM 6. Let A be a topological ring with property (F).
Then for any closed Jordan ideal UczS, £/\B) + B is dense in A
(B as defined in § 1).

Consider (^f(B) + B) Π S = W. By Lemma 2, If is a Jordan
ideal of S and as before ^f(W) Π S = (θ). Thus, yJy = θ for all
ye^f(W) or £f(W) = (θ). Now, ^f(W) = mSf(W) and so, by
hypothesis, W = S. Now, by Theorem 2, H = B + ^(J5) is a right
ideal and H Π S = W = S. Thus, given α e i then α + αJ and α^αG Jϊ.
Thus, (α + aJ)a e H. Now, let a e A, b e B then ba + da —• α6 + 6α
where δ α e ΰ and daej?:'(B). Therefore,

(&α — 6α) + da > ah .

But, ba — ba e B and so ab e H. Since, J*f(B) is a (two-sided) ideal
we conclude that H is an ideal with Ao A Q H. It is well-known
that this implies that A3 £ 5 or that H is dense in A.

COROLLARY 1. Let A be a topological ring with property (Y).
Then I, a closed two-sided ideal of A, with Sf(I) — (#), implies that
1= A.

Note that in the last proof if one replaces H by / one concludes
that J*f(I) = {θ) implies that i 3 g / and hence the desired conclusion.

Observing that this last corollary is the basis for much of the
argument in § 3, we conclude that

COROLLARY 2. Let A be a topological ring with property (Y)
then the conclusions of Theorem 3 and Theorem 5 hold.

5* Applications* We reprove Herstein's result for Jordan ideals
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of S in a simple ring with involution. It is that theorem which
motivates this paper.

THEOREM 7. [Herstein] Let A be a simple ring with involution
and with characteristic different than 2. Let Z, the center of A, be
zero or [A : Z] > 4 then S is simple Jordan.

By Lemma 2, B is a right ideal and SBczB. By Herstein [2],
under these hypothesis, the subring generated by S is A and so B
is a two-sided ideal. Now if B = (θ) then, by Lemma 2, £/Ό Z7 = (0)
and so uS^ = (0) for each ue U. Now, as stated before, we have
[/ = (θ). So, let J5 = A. Then for all α, 6 e A we have (α, 6)7 e U.
Thus in particular if s e S then (as, b)j = As A Π S c Ϊ7 and so U = S.

In the literature on algebras there is interest as to when the
cone P, generated in b¥, b e A, is such that P-P is dense in S. Here,
we have not interested ourselves in algebras but rather in annihilator
rings and we prove several results related to additive subgroups con-
tained in P-P, the subgroup generated by the elements bbJ, b e A.
Note, that SoS, [S, K] and KoR are all subsets of P-P.

THEOREM 8. Let A be a topological ring with property (Y) or
an annihilator ring with proper continuous involution, 2A = A, and
the property that whenever the net 2xa —* 0 then xa —> 0, then we con-
clude that So S is dense in S.

We note that Sj = (θ). For, by Lemma 8, Sj = £f(S), and
x e JSf (S) implies that xs = θ for any s e S o r xJxxJx — θ which yields
the conclusion. Now, let te^f(SoS)Γ\S. Then, since SoS is a
Jordan ideal of S, by Theorem 2, we have that Jίf(SoS) is a two-
sided ideal. Thus, for every s e S

ts + ste(SoS) n ̂ f{SoS) ,

which is (θ) by Lemma 5 and Theorem 1. Thus, teSj = (θ) or
^T(SoS) Π S = (0), and so ^ ( S o S ) = (0). Therefore

is a two-sided ideal of A and £f(C) = £f(C) c ^ ( S ° S ) = ̂ ( S o S ) =
(θ). Thus, C is dense in A. So, the symmetric part of C; namely,
SoS — S and we are done.

One might also consider the Jordan ideal KoK + [S, K] = W.
If te^f(W)f]K then since

ία + aJtJ eKoK+[S, K]aW
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we have t e J*f(W) Γ) B^ = (0), by Theorems 1 and 2. Using Lemma
6, we have ^f(W)czS. ^f(W) being a two-sided ideal, implies that
for all a, be A, ce £f(W) that ca — α/c = θ and so cαδ — (ab)Jc —
c(ab — ba) = 0. Thus, in particular, c(kl — Ik) = θ for all k, leK.
Hence, 2cftί = c(H - Ik) + c(fcί + Zfc) = 0 or c&2 = θ for all & e K,
ce^(W); that is, cϋΓ = θ. Thus, ceZ, the center of A and if the
latter is (0) we conclude that W is dense in S. Thus we have proved

THEOREM 9. Let A be as in Theorem 8 and with zero center
then Ko K + [S, K] is dense in S.

We are interested next in results concerning both minimal and
minimal closed Jordan ideals of S for rings A of the previous sections.

THEOREM 10. Let U be a minimal Jordan ideal of S in a ring
A of § 2. Then U is the intersection of S with a simple two-sided
ideal.

Consider T = {t e U | [ί, K\ c U}. As U Φ (θ) by assumption we
are guaranteed by Lemmas 1 and 2 that T Φ (θ). NOW, te T then
t o s e T f o r a l l s e S a s t o s e U a n d [ t o 8 , K \ = t<>[s, K ] + [ t , K] o s ;
that is, T is a Jordan ideal of S. By minimality, T = Z7 or
[Z7, JSΓJ c i7. Thus, forming F, the additive subgroup generated by
the set {(u, a)L\ue U, aeA} we have U + F = C is a two-sided ideal
of A. The latter is the same argument as in Theorem 5. Now, let
/ Φ (θ) be a two-sided ideal of C Then, H = CIC is a nonzero two-
sided ideal of A, Hal (the latter uses the fact that the involution
is proper). Thus, H Π S = U. Therefore, for all u e U, a e A we have
(u, a)Le H or C c H, completing the argument.

DEFINITION. A nonzero closed Jordan ideal Uf of S is called
minimal closed if, and only if, H a closed Jordan ideal of S, H S U,
implies H = U or H = (θ).

THEOREM 11. Let A be a topological ring with property (Y) or
an annihilator ring of § 3, then there exists a one-to-one correspond-
ence between the minimal closed Jordan ideals of S, and the minimal
closed (hence topologically simple) two-sided ideals of A.

Let U be a minimal closed Jordan ideal of S. Theorem 5 says
that I — U + V is a closed two sided ideal of A. Let H Φ (θ) be a
closed ideal of A, H a /. Then Hf] S = U. Thus, ua - aJueH for
all u e U, a e A. That is Vcz H and hence U + V = I Q H; that is;
/ is minimal closed two-sided. However, A is semi-prime and so



ON RINGS WITH PROPER INVOLUTION S

minimal-closed is equivalent to topologically simple. Thus, if we begin
with I topologically simple (/ = F since the involution is proper) then
we are interested in I f) S. Let U Φ (θ) be a closed Jordan ideal of
S, U Sin S. Then U + V is a closed ideal of A, contained in /.
Thus, U + V — /, or I n S = U implying minimality. The one-to-one
correspondence is clear.

We observe next that a topological sum of minimal closed Jordan
ideals is a direct topological sum in the sense of Richart, [4] p. 46,
(the generalization to Jordan ideals being the obvious). Let Ulf and
U2 be minimal closed Jordan ideals. Uι Φ U2 implies that Uxn U2 = (θ).
Thus U,o U2 = (θ) or UzβiUJj = £f(Ux) = &(UX). Thus, U,U2 -
U2ϋΊ = (θ). Now, let UQ be a minimal closed Jordan ideal and W the
algebraic sum of the other minimal closed Jordan ideals. Then x e W
implies x = uλ + + un, u{ e J7« where U0Ui = (θ). Thus, U0W = (θ)
and so, U0W = (θ). Now, UQ Π W is a closed Jordan ideal contained
in Uo. If not zero, then Uo e W ΓΊ ̂ f(W) = (61), the latter by Theorem
1 and Lemma 5. This is not possible. Thus, Uo Π W = (θ).

We make use of this to say something about the decomposition
of A.

THEOREM 12. Let A be a ring as described in paragraph 4.
Assume that S is a topological direct sum of its minimal closed Jordan
ideals {Ua} then A is a topological direct sum of minimal closed two-
sided ideals {Ia} where Ia = Ua + [Uaί Ua\ + (Ua<>Ka), Ka = Ia Π K.

Let x e A then xxJ and x + xJ e S, and hence by Theorem 10, are
in the topological direct sum, T, of the minimal closed ideals. Thus,
x2 e T for all x e A, and so A3 c T. Therefore, A — A3 implies that
A=T.

Now, A = φ ΣA la, where Ia = Ua + Va, Ua = S Π I« and Fα =
iΓ Π /«. Let α ̂ s —* α, ^ = Σ ^ e Σ Λ Then, uαα — αJ^α e Fα, ̂ α e ί7c

is such that

Therefore, uaa — aJua e [Ua, Ua\ + Ua°Ka which yields the desired
conclusion.

COROLLARY 3. Hypothesis of Theorem 12, then every closed Jordan
ideal U Φ (θ) contains a minimal closed Jordan ideal. Moreover, ij
Ua is a minimal closed Jordan ideal then either Ua^U or Uae

We see that for each Ua, Ua Π U is either (θ) or Ua. If the
former, then xeUa implies that xeUj = ^f(U). However, ii
UanU= (θ) for all a, then Se^f(U) and so U = (θ), a contradic-
tion.
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We are interested in saying something about idempotents; in
particular, minimal symmetric idempotents (as defined in Rickart [4],
Chapter II). If I is a minimal left ideal in a ring with proper involu-
tion then I— Ae, where e = e2eS (Rickart [4], p. 261).

LEMMA 7. Let U be a Jordan ideal in a ring A of § 2. Let e Φ θ
be a minimal symmetric idempotent then either eeUΠBoree Jέf(U).

Let U Φ (θ) be given and let B be as defined in § 2. Then,
eBdB and eB c eA. Therefore, if e $ ̂ f(B) = £?(U) then eB = eA.
However, ee eA and thus, eeeBaB. So, (e, 1/2 e)j = ee U.

THEOREM 13. Let A be as in § 2. Then, if U is a Jordan ideal
of S and ifeφθ,e = e2eU then the homogeneous component contain-
ing e (for definition see Jacobson [3], chapter 4) interected with S is
contained in U.

We note that if ee U then by Lemma 5, eeB. Also (xe, y)j =
(xe2, y)j = ((x, e)j, y)j + (e, -xJey)j. Hence, (xe, y)j = xey + yJexJ e Uy

or AeA n SaU. But, the homogeneous component of A containing e
is simple and so the desired result.

COROLLARY 4. Let Abe a primitive ring with proper involution,
2A = A, 2x = θ implies x = θ, and with nonzero socle, ζ, then every
nonzero Jordan ideal U c S contains ζ f l S .

Let U Φ (θ) be given. Then, B Φ (θ) and £f(B) is a two-sided
ideal. Now, primitive implies prime and thus J^f(B) — (θ). Thus,
every symmetric idempotent of Lemma 7 is in B. Let xeζ Π S x =
Σ?=i βi^ = Σ?=i at*. Thus, x = Σ? = 1 (ei9 (l/2)α i)J G U.

COROLLARY 5. Let A be a topological ring which is primitive
and has dense socle. Let A have properties (i) and (ii) of property
(Y). Then, S is minimal closed.

Let U Φ (θ) be a closed Jordan ideal of S. Then, by Corollary 5,
U contains ζ Π S and hence its closure which is S.

THEOREM 14. Let A be a topological ring with properties (i)
and (ii) (of property (Y)) and suppose that A has dense socle than
if U is a maximal closed Jordan ideal of S, U is the intersection of
S with a closed two-sided ideal, I.

Let U be as given. If [U, K] c U then as before U + V = C has
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the desired property. Now, if e e U for all minimal symmetric idem-
potents then eeB as ea + aJe = e(ea + aJe)e + e( — a — aJ)e e U for all

aeA. Thus, ζπSaU and hence S c Z7, a contradiction. Therefore
there exists a minimal symmetric idempotent / such that f$U. By
Lemma 7, fe^f(U). Now, J7 + [£7, # ] is a Jordan ideal of S, and
so by the previous remarks, we assume that U + [U, K] is dense in
S. Therefore, there exists a net xae U + [U, K] such that xa-+f-
Now, £α = ua + Σ?=i *>* A* - ka.va. and so /αα = fua + Σ?=i (fvai)ka. -
(fka.)va. = θ. Therefore, fχa->f2 = θ, a contradiction. Hence, [[/, JSΓ]c ?7,
and we are done.

6. An example. In § 2 we showed that B is a right ideal. We
now construct an example of a ring with proper involution (indeed
the ring is an integral domain) in which B is not a two-sided ideal.
Let R be the set consisting of the polynomials in two commuting
indeterminates over the complex numbers of the form

iφY + xV) + u(x2y° + x°y2) + cx'y1 + Σ α ^ V

where τ and w are real, and where c and α^ are complex numbers.
Assume the usual addition and multiplication defined by

K2.J °rsά V )\2-l CklX V ) — 2-J °rsCkl Λ U

where c{n) denotes conjugation n times. One verifies that R is a ring

and that the mapping X brsx
rys • X b(

r

r

s

+s)xsyr is an involution with

Letting

U = ίt

S = [u(x2
y° + x\f) -f cxιyι + Σ dij^Ψ

- ί)(x^yλ + xιyz) + Fx2

• 1

real; ί7, ui5 complex; and u{jfj) = u

we see that if ue U, s e S then us + su has each term of degree at
least 5 and so U is a Jordan ideal of S. Now let b = (1 + i)#V then
δα + a V is in U for all aeR. Thus, 6 e £>. Setting k = i(αjV4-a?V)
then one verifies that

(fcδ)fc + kJ{kb)J = 2Λ6fc = 2(1 - i)(xY + a?V) + 4(1 - i)x2y2

is not in U. Thus 5 is not two-sided.
We note that if B = BJ then B is a two-sided ideal. Further-

more if B is two-sided then
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(aJb, cJ)j = (c¥, a)j e U

for all a, ceA and b eB. Therefore, AbJ eB. Thus, for example if
A has an identity then B = BJ. We now show that B being two-
sided does not guarantee that B = BJ. Consider A1 — {λ(#V — x*yι) +
Cx2y° + Dx°y2 + Fx'y1 + Σi+j^ oί^xψ | λ is real, C, D, F and ai5 com-
plex}; U = {σ(l + i)(α;Y - xψ) + σ(l - i)(x°y* - xY) + Σ ί + i S 4 &y«V I ̂
is real, Ŝ̂  = /5^+i)} and & = (1 + i)x2y°. Assuming the previously
defined multiplication one verifies that B is two-sided, b e B but ¥ $ B.
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ment of Mathematics, University of Oregon, for the cordiality shown
him during his stay there at which time this manuscript was prepared,
and particularly to Professor Bertram Yood for his many suggestions
and kindness.
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