ON ABELIAN PSEUDO LATTICE ORDERED GROUPS

J. ROGER TELLER

Throughout this paper po-group will mean partially ordered abelian group. A subgroup H of a po-group G is an o-ideal if H is a convex, directed subgroup of G. A subgroup M of G is a value of $0 \neq g \in G$ if M is an o-ideal of G that is maximal without g. Let $\mathscr{M}(g) = \{M \subseteq G \mid M \text{ is a value of } g\}$ and $\mathscr{M}^*(g) = \bigcap \mathscr{M}(g)$. Two positive elements $a, b \in G$ are pseudo disjoint (p-disjoint) if $a \in \mathscr{M}^*(b)$ and $b \in \mathscr{M}^*(a)$, and G is a pseudo-lattice ordered group (pl-group) if each $g \in G$ can be written g = a - b where a and b are p-disjoint.

The main result of §2 shows that every pl-group G is a Riesz group. That is, G is semiclosed $(ng \ge 0 \text{ implies } g \ge 0 \text{ for all } g \in G$ and all positive integers n), and G satisfies the Riesz interpolation property; if, whenever $x_1, \dots, x_m, y_1, \dots, y_n$ are elements of G and $x_i \le y_j$ for $1 \le i \le m$, $1 \le j \le n$, then there is an element $z \in G$ such that $x_i \le z \le y_j$.

In §3, we determine which Riesz groups are also pl-groups. In the final section it is shown that each pair of p-disjoint elements a, b determines an o-ideal H(a, b) with the property that if a - b = x - y where x and y are also p-disjoint, then H(a, b) = H(x, y) and $a - x = b - y \in H(a, b)$.

The concept of a pl-group has been introduced by Conrad [1]. For each $g \in G$, $\mathscr{M}^*(g)$ exists by definition, and in particular, $\mathscr{M}^*(0) = G$. In §2 we list a number of properties of pl-groups that will be used. We adopt the notation a || b for $a \not\geq b$ and $b \not\geq a$. If S is a subset of a po-group G and $a \in G$, the notation a > S means a > s for all $s \in S$. If H is an o-ideal of a po-group G, a natural order is defined in G/H by setting $X \in G/H$ positive if X contains a positive element of G. All quotient structures will be ordered in this manner. Finally, $G^+ = \{x \in G | x \geq 0\}$.

2. Some properties of pl-groups. We first list a number of properties of pl-groups. The proofs of these may be found in [1]. If G is a pl-group, then

(1) G is semiclosed.

(2) G is directed.

(3) The intersection of o-ideals of G is an o-ideal.

(4) If $g \in G$ and $M \in \mathscr{M}(g)$ and M' is the intersection of all o-ideals of G that properly contain M, then $g \in M'$, M'/M is o-isomorphic to a naturally ordered subgroup of the real numbers and, if $M < X \in G/M \setminus M'/M$, then X > M'/M.

J. ROGER TELLER

(5) If K is an o-ideal of G, then K and G/K are pl-groups.

(6) If K is an o-ideal of G and $g \in G \setminus K$, then there is $M \in \mathcal{M}(g)$ such that $M \supseteq K$.

(7) If g = a - b where a and b are p-disjoint, then $\mathcal{M}(g) = \mathcal{M}(a) \cup \mathcal{M}(b)$.

(8) A nonzero element $g \in G$ is positive if and only if g+M > M for all $M \in \mathscr{M}(g)$.

(9) If a and b are p-disjoint and $g \leq a, g \leq b$, then $ng \leq a$ and $ng \leq b$ for all n > 0.

(10) If a and b are p-disjoint, then no value of a is comparable to a value of b.

The following set of propositions leads to the first theorem which states that every pl-group is a Riesz group.

(2.1) Let G be a po-group and $g \in G$. If g = a - b where a and b are p-disjoint and $z \in G^+$ such that $z \ge g$, then each value of a is contained in a value of z, and if $a \ge z$, then z and z - g are p-disjoint.

Proof. Let $M \in \mathscr{M}(a)$, then $b \in M$ and $z \ge g = a - b$ implies $z + b \ge a \ge 0$. Hence, $z \notin M$ and there is $M' \in \mathscr{M}(z)$ such that $M' \supseteq M$.

From $a \ge z \ge 0$ it follows that if $M \in \mathscr{M}(z)$, then $a \notin M$. By the above, $M \in \mathscr{M}(a)$ so $b \in M$. Now $a \ge z \ge g$ implies $a - g = b \ge z - g \ge 0$ so $z - g \in M$. Similarly, if $M \in \mathscr{M}(z - g)$, then $b \notin M$ so $M \in \mathscr{M}(b)$, $a \in M$ and hence, $z \in M$. Thus, z and z - g are p-disjoint.

(2.2) If G is a po-group and g = a - b = x - y where a and b are p-disjoint and x and y are positive, then for each

$$M \in \mathcal{M}(a)[M \in \mathcal{M}(b)]$$

there is $M' \in \mathscr{M}(x)[M' \in \mathscr{M}(y)]$ such that $M' \supseteq M$. In particular, if x and y are p-disjoint, $\mathscr{M}(a) = \mathscr{M}(x), \mathscr{M}(b) = \mathscr{M}(y)$ and $a - x = b - y \in \mathscr{M}^*(g)$.

Proof. Let $g \in G$ and g = a - b = x - y where a and b are pdisjoint and x and y are positive. Since $y \ge 0$, we have $x \ge g$ so for $M \in \mathscr{M}(a)$ there is, by (2.1), $M' \in \mathscr{M}(x)$ such that $M' \supseteq M$. Similarly for $M \in \mathscr{M}(b)$. If x and y are also p-disjoint then, by interchanging the roles of a and x, y and b we obtain $\mathscr{M}(a) = \mathscr{M}(x)$ and $\mathscr{M}(b) =$ $\mathscr{M}(y)$. Thus, $b, y \in \mathscr{M}^*(a)$ and $a, x \in \mathscr{M}^*(b)$ so

$$a - x = b - y \in \mathscr{M}^*(a) \cap \mathscr{M}^*(b)$$

which is equal to $\mathcal{M}^*(g)$ by property (7).

(2.3) Suppose G is a *pl*-group, $g \in G$, g = a - b where a and b are *p*-disjoint and $z \in G^+$ such that $z \ge g$. If $M \in \mathscr{M}(a-z)$, then either $M \in \mathscr{M}(z)$ and z + M > a + M or M is properly contained in a value of a.

Proof. If
$$M \in \mathcal{M}(a-z)$$
, then by (4),

$$a + M > z + M$$
 or $a + M < z + M$.

For $M \in \mathscr{M}(z)$ and $M \in \mathscr{M}(a)$, it follows that z + M > M and, from (2.1), that $a \in M$. Hence, z + M > M = a + M. For $M \in \mathscr{M}(z)$ and $M \in \mathscr{M}(a)$, we have $a + M = g + M \leq z + M$ so a + M < z + M. Now if $M \notin \mathscr{M}(z)$, then $a \notin M$ so there is $M' \in \mathscr{M}(a)$ such that $M' \supseteq M$. If M' = M, then M is properly contained in $M'' \in \mathscr{M}(z)$ so a and a - z are in M'' and $z \in M''$, a contradiction. Thus M' properly contains M.

LEMMA 2.1. If G is a pl-group, $g \in G$ and $z \in G^+$ such that $z \ge g$, then there is $x \in G^+$ such that $z \ge x$ and x, x - g are p-disjoint. Moreover, if g = a - b, with a and b p-disjoint, then there exists such an x with $a \ge x$.

Proof. Let G be a pl-group and $g \in G$. Then g = a - b where a and b are p-disjoint. If $z \in G^+$ and $g \leq z$, take x = a if $z \geq a$; and take x = z if z < a. The result follows from (2.1).

If $z - a \parallel 0$, then z - a = p - q where p and q are p-disjoint. We first show $\mathscr{M}(q) = \{M \in \mathscr{M}(z - a) \mid z + M < a + M\}$. Let $M \in \mathscr{M}(q)$, then $M \in \mathscr{M}(z - a)$ and (z - a) + M = -q + M < M so z + M < a + M. Conversely, if $M \in \mathscr{M}(z - a)$ and z + M < a + M, then $M \in \mathscr{M}(p)$ or $M \in \mathscr{M}(q)$. If $M \in \mathscr{M}(p)$, then $q \in M$ so (z - a) + M = p + M > M. This implies z + M > a + M, a contradiction. Thus, $M \in \mathscr{M}(q)$.

Now let x = a - q = z - p, then x < a and x < z. If $M \in \mathscr{M}(x)$, then $q \in M$. For if $q \notin M$, then $M \subseteq M' \in \mathscr{M}(q), M' \in \mathscr{M}(z - a)$ and z + M' < a + M'. By (2.3), M' is properly contained in $M'' \in \mathscr{M}(a)$. Thus, $x \in M'', q \in M''$ so $a \in M''$ a contradiction. Therefore, $q \in M$ and hence $a \notin M$. We now have $M \neq a + M = x + q + M$ so M < a + M =x + M for all $M \in \mathscr{M}(x)$. By (8), $x \ge 0$.

To complete the proof we need only show $x \ge g$, for then the result follows by (2.1). To accomplish this we show (b-q) + M > M for all $M \in \mathscr{M}(b-q)$. Thus, let $M \in \mathscr{M}(b-q)$. If $M \in \mathscr{M}(q)$, then $M \in \mathscr{M}(z-a)$ and z + M < a + M, so $b \notin M$. By (2.3) and (10) there must exist $M' \in \mathscr{M}(b)$ such that M' properly contains M. But M' properly containing M implies b-q, q and hence $b \in M'$, a contradiction. Thus, $M \notin \mathscr{M}(q)$.

Now since $b \in M$, there is $M'' \in \mathcal{M}(b)$ such that $M'' \supseteq M$. If

J. ROGER TELLER

 $M'' \neq M$, then $b - q \in M''$ so M'' < b + M'' = q + M'' and $q \notin M''$. By (2.3), every value of q is contained in a value of a so M'' is contained in a value of a, a contradiction. Thus $M'' = M \in \mathscr{M}(b)$, and as above, it follows that $q \in M$. Consequently, b - q + M = b + M > Mso by (8), b > q and x > g. This completes the proof.

With Lemma 2.1 we are now able to prove the following.

THEOREM 2.1. Every pl-group is a Riesz group.

Proof. Since by (1), a *pl*-group is semiclosed, we need only show a *pl*-group G satisfies the Riesz interpolation property. Without loss of generality, we may assume, $g, u, z \in G$ and $u \ge 0, z \ge 0, u \ge g, z \ge g$. There exists, by Lemma 2.1, an element $a \in G^+$ such that $u \ge a$ with a, a - g *p*-disjoint. Also, there is $x \in G^+$ such that $a \ge x, z \ge x$ with x, x - g *p*-disjoint. Hence, $u \ge x \ge 0, z \ge x \ge g$ and G is a Riesz group.

We note that the above theorem and Theorem 4.8 in [1] answer affirmitively the open question posed at the end of [2].

3. Sufficient conditions for pseudo-lattice ordering. As a consequence of §2 we have that every pl-group G is a Riesz group that satisfies

(*) for each $g \in G$, there is $a \in G^+$ such that $g \leq a$ and whenever $0 \leq x, g \leq x$ then $a \leq x + h$ for some $h \in \mathscr{M}^*(a) \cap \mathscr{M}^*(a - g)$.

To see this let $g \in G$, then g can be written g = a - b where aand b are p-disjoint, so $a \in G^+$ and $g \leq a$. If $x \in G^+$ and $x \geq g$, then, since G is a Riesz group, there is $u \in G$ such that $a \geq u \geq 0$ and $x \geq u \geq g$. By (2.1), u and u - g are p-disjoint and by (2.2) and (7), $a - u \in \mathscr{M}^*(a) \cap \mathscr{M}^*(a - g)$. By setting a - u = h we have u =a - h so $x \geq u = a - h$ which implies $x + h \geq a$.

In this section we show that every Riesz group that satisfies (*) is a *pl*-group. For the remainder of this section we assume G is a Riesz group that satisfies (*).

LEMMA 3.1. The intersection of o-ideals of G is again an o-ideal.

Proof. Let $M_{\alpha}, \alpha \in J$ be o-ideals of G and $M = \bigcap_{\alpha \in J} M_{\alpha}$. Clearly, M is a convex subgroup of G. To show M is directed let $g \in M$. By (*) there is $a \in G$ such that $0 \leq a, g \leq a$. Now for each $\alpha \in J, M_{\alpha}$ is directed so M_{α} is a Riesz group. Thus, there are elements $y_{\alpha} \in M_{\alpha}$, $x_{\alpha} \in G$ such that $y_{\alpha} \geq 0, y_{\alpha} \geq g, a \geq x_{\alpha} \geq g$ and $y_{\alpha} \geq x_{\alpha} \geq 0$. Thus, $x_{\alpha} \in M_{\alpha}$ and $a \leq x_{\alpha} + h_{\alpha}$ for some $h_{\alpha} \in \mathcal{M}^{*}(a) \cap \mathcal{M}^{*}(a - g)$.

Now $x_{\alpha} \in M_{\alpha}$ and $x_{\alpha} + h_{\alpha} \ge a \ge x_{\alpha}$ implies $a - x_{\alpha} \in \mathscr{M}^{*}(a)$. Thus, if $a \notin M_{\alpha}$ then there is $M' \in \mathscr{M}(a)$ such that $M' \supseteq M_{\alpha}$. But then x_{α} ,

 $a - x_{\alpha}$ and hence $a \in M'$, a contradiction. Thus $a \in M_{\alpha}$ for all α , M is directed and M is an o-ideal of G.

We note that in the above we have proved that if a satisfies (*) for g and $a \ge x \ge 0, x \ge g$ then $a - x \in \mathcal{M}^*(a) \cap \mathcal{M}^*(a - g)$.

LEMMA 3.2. If M is an o-ideal of G, then M and G/M are Riesz groups satisfying (*).

Proof. If M is an o-ideal of G, then M and G/M are Riesz groups by [2, p. 1393]. If $g \in M$, then let $a \in G$ such that a satisfies (*) for g. There then are elements $m \in M^+$ and $x \in G$ such that $m \ge g$, $a \ge x \ge g$ and $m \ge x \ge 0$, which implies $x \in M$ and $a - x \in \mathscr{M}^*(a)$. As a consequence of this latter part, $a \in M$. Now if $0 \le y \in M$ and $g \le y$ then there is $u \in M$ such that $y \ge u \ge 0$, $a \ge u \ge g$. Thus, by the remark preceding this lemma, u = a + h where

$$h \in \mathscr{M}^*(a) \cap \mathscr{M}^*(a-g)$$

and hence $u - a = h \in M$. By Lemma 3.1, every *o*-ideal M' of M that is maximal without a [a - g] can be written $M' = M \cap \overline{M}$ where $\overline{M} \in \mathcal{M}(a)[\overline{M} \in \mathcal{M}(a - g)]$. Thus, it follows that h belongs to every value of a and every value of a - g in M and M satisfies (*).

Now let $g + M \in G/M$, and let $a \in G$ such that a satisfies (*) for g. Then $a + M \ge M$ and $a + M \ge g + M$. If $M \le x + M \in G/M$ and $x + M \ge g + M$, then there are elements $m_1, m_2 \in M$ such that $x + m_1 \ge 0$ and $x + m_2 \ge g$. Since M is directed, there is $m \in M$ such that $m \ge m_1, m \ge m_2$.

By (*), $a \le (x + m) + h$ so $a + M \le (x + M) + (h + M)$ where

$$h \in \mathscr{M}^{*}(a) \cap \mathscr{M}^{*}(a - g)$$
.

Now let X be a value of a + M in G/M. Then X = M'/M where M' is an o-ideal of G and $a \in M'$. It follows that $M' \in \mathcal{M}(a)$ so $h \in M'$ and $h + M \in X$. In a similar manner, h + M belongs to every value of (a - g) + M in G/M. The proof is complete.

LEMMA 3.3. Let H be the intersection of all nonzero o-ideals of G. If $x \in H^+$, $g \in G \setminus H$ and g < x, then g < 0.

Proof. Suppose H is the intersection of all nonzero o-ideals of G. If $x \in H^+$, $g \in G \setminus H$ and g < x, then $a \leq x + h$ where a satisfies (*) for g and $h \in \mathscr{M}^*(a) \cap \mathscr{M}^*(a-g)$. If $a \neq 0$ and $M \in \mathscr{M}(a)$, then $M \neq 0$ so $H \subseteq M$ and $x + h \in M$. This implies $a \in M$ since $0 \leq a \leq x + h$, a contradiction. Thus, a = 0 and g < 0.

415

J. ROGER TELLER

COROLLARY. If H is the intersection of all nonzero o-ideals of G, then every positive element of $G \setminus H$ exceeds every element of H.

Proof. Let $0 < g \in G \setminus H$ and $h \in H$. By Lemma 3.1, H is an oideal of G so there is $h' \in H^+$ such that $h' \ge h$. Now $h' - g \in G \setminus H$ and h' - g < h' so h' - g < 0, $h \le h' < g$ and the corollary follows.

As a final observation before we turn to the main proof of this section, we note that if G has no proper *o*-ideals then G is a subgroup of the naturally ordered real numbers. This is a special case of 4.6 in [1].

THEOREM 3.1. A Riesz group G is a pl-group if and only if G satisfies.

(*) for each $g \in G$, there is $a \in G^+$ such that $g \leq a$ and whenever $0 \leq x, g \leq x$ then $a \leq x + h$ for some $h \in \mathcal{M}^*(a) \cap \mathcal{M}^*(a-g)$.

Proof. Let $g \in G$ and a satisfy (*) for g. We show a and a - g are p-disjoint. If a = 0 or a = g, the result easily follows so we assume $g \parallel 0$. Let $M \in \mathcal{M}(a)$ and let M' be the intersection of all o-ideals of G that properly contain M. Then M' is an o-ideal of G, $a \in M', M'/M$ is o-isomorphic to a subgroup of the naturally ordered real numbers and if $M < X \in (G/M) \setminus (M'/M)$, then X > M'/M.

If $(a - g) + M \ge a + M$, then there is $m \in M^+$ such that $a - g + m \ge a$, so $m \ge g$. By (*), $0 < a \le m + h$ where $h \in \mathscr{M}^*(a) \cap \mathscr{M}^*(a - g)$.

Thus, $m + h \in M$ and $a \in M$, a contradiction. Since (a - g) + M is comparable to a + M, we must have (a - g) + M < a + M, so there is $m \in M$ such that a > (a - g) + m. Let $m' \in M$ such that m' < m, m' < 0, then g - m' > g and g - m' > 0. Thus, by (*), $a \leq (g - m') + h'$ where $h' \in \mathscr{M}^*(a) \cap \mathscr{M}(a - g)$, and $0 < a - g \leq -m' + h' \in M$. By convexity $a - g \in M$ so $a - g \in \mathscr{M}^*(a)$.

By interchanging the roles of a and a - g in the above we are led to the conclusion that a + M < (a - g) + M where $M \in \mathcal{M}(a - g)$. There then is $m \in M^+$ such that a < (a - g) + m so g < m. As always, $a \leq m + h$ with $h \in \mathcal{M}^*(a) \cap \mathcal{M}^*(a - g)$ so $a \in M$. Thus, a and a - gare p-disjoint and G is a pl-group.

The necessity follows from the remarks at the beginning of this section.

4. Pseudo-disjoint elements. Throughout this section we assume G is a *pl*-group. We have shown if $g \in G$ and g = a - b = x - y where a, b and x, y are pairs of p-disjoint elements then

$$a - x = b - y \in \mathscr{M}^{*}(a) \cap \mathscr{M}^{*}(b)$$
.

However, the converse of this is not true. For if $K = R_1 + R_2 + R_3$ (the cardinal sum) where each R_i is the real numbers, i = 1, 2, 3; then K is an *l*-group so, of course, a *pl*-group. Clearly, (1, -1, 0) =(1, 0, 0) - (0, 1, 0) where (1, 0, 0), (0, 1, 0) are *p*-disjoint. Now (1, 0, 0)has exactly one value namely $M_1 = R_2 + R_3$ and (0, 1, 0) has the value $M_2 = R_1 + R_3$. Thus, $R_3 = M_1 \cap M_2$ and if $0 \neq h \in R_3$ it is clear that (1, 0, 0) + (0, 0, h) = (1, 0, h) and (0, 1, 0) + (0, 0, h) = (0, 1, h) are not *p*-disjoint but (1, -1, 0) = (1, 0, h) - (0, 1, h).

We now show how pairs of p-disjoint elements a, b and x, y are related, when g = a - b = x - y. Assume a and b are p-disjoint and let $K = \{0 \le m \in G \mid m \le a, m \le b\}$. Clearly, K is convex. If $m_1, m_2 \in K$, then by the Riesz interpolation property, there is an element $m \in G$ such that $m_1 \le m \le a$ and $m_2 \le m \le b$. Moreover, $2m \ge m_1 + m_2 \ge 0$ and by (9), $2m \le a$, $2m \le b$ since a and b are p-disjoint. Thus, $2m \in K$ so $m_1 + m_2 \in K$ and K is a convex subsemigroup of G^+ that contains 0. Let H be the o-ideal of G that is generated by K. It is well known that $H^+ = K$ and any $x \in H$ can be written $x = h_1 - h_2$ where $h_1, h_2 \in K$. Thus H < a and H < b. We denote by H(a, b) the o-ideal generated by $\{0 \le m \in G \mid m \le a, m \le b\}$ for p-disjoint elements a, b.

LEMMA 4.1. If a and b are p-disjoint and $m \in H(a, b)$, then $\mathcal{M}(a) = \mathcal{M}(a + m)$ and $\mathcal{M}(b) = \mathcal{M}(b + m)$.

Proof. We first consider $0 \leq m \in H(a, b)$. Since $a \geq a - m \geq 0$ and $a - m \geq a - b$ (2.1) implies a - m and b - m are *p*-disjoint, so $\mathcal{M}(a) = \mathcal{M}(a - m), \ \mathcal{M}(b) = \mathcal{M}(b - m)$ by (2.2).

If $M \in \mathscr{M}(a + m)$, then $a - m \notin M$ so there is $M' \supseteq M$ such that $M' \in \mathscr{M}(a - m) = \mathscr{M}(a)$. Since $0 \leq m \leq b \in M'$, $m \in M'$ so $M = M' \in \mathscr{M}(a)$. Conversely, if $M \in \mathscr{M}(a)$ then $0 \leq m \leq b \in M$ implies $m \in M$ so $a + m \notin M$ and $M \in \mathscr{M}(a + m)$. Hence, $\mathscr{M}(a) = \mathscr{M}(a + m)$. Similarly, $\mathscr{M}(b) = \mathscr{M}(b + m)$.

For an arbitrary element $m \in H(a, b)$ there are elements m_1 , $m_2 \in H(a, b)$ such that $m_1 \leq 0$ and $m_1 \leq m$, $0 \leq m_2 \leq a$, $m \leq m_2 \leq b$. Hence, $0 \leq a + m_1 \leq a + m$ and $0 \leq a + m \leq a + m_2$. By the above, $\mathscr{M}(a) = \mathscr{M}(a + m_1) = \mathscr{M}(a + m_2)$. If $M \in \mathscr{M}(a + m)$, then $a + m_2 \notin M$ so $M \in \mathscr{M}(a + m_2) = \mathscr{M}(a)$. Conversely, if $M \in \mathscr{M}(a)$, then $m \in M$ and $M \in \mathscr{M}(a + m_1)$ so $a + m \notin M$ and $M \in \mathscr{M}(a + m)$. Thus, for any $m \in H(a, b)$, $\mathscr{M}(a) = \mathscr{M}(a + m)$. In a similar manner $\mathscr{M}(b) =$ $\mathscr{M}(b + m)$.

We note at this point that if $0 \leq m \in H(a, b)$, then $0 \leq m \leq a$ implies $m \in \mathcal{M}^*(b)$ and $0 \leq m \leq b$ implies $m \in \mathcal{M}^*(a)$. Consequently, $H(a, b) \subset \mathcal{M}^*(a) \cap \mathcal{M}^*(b)$.

LEMMA 4.2. If a and b are p-disjoint in G, then a + m and

b + m are p-disjoint if and only if $m \in H(a, b)$.

Proof. Let a and b be p-disjoint and $m \in H(a, b)$, since $\mathscr{M}(a) = \mathscr{M}(a + m)$, b, m and hence $b + m \in \mathscr{M}^*(a + m)$. Dually, $a + m \in \mathscr{M}^*(b + m)$ so a + m and b + m are p-disjoint.

Conversely, if a + m and b + m are p-disjoint, then $a \ge -m$, $b \ge -m$ so there is $h \in G$ such that $a \ge h \ge 0$ and $b \ge h \ge -m$. This implies $h \in H(a, b)$. Since $\mathscr{M}(a) = \mathscr{M}(a + m)$ and $\mathscr{M}(b) = \mathscr{M}(b + m)$ we have $m \in \mathscr{M}^*(a) \cap \mathscr{M}^*(b)$. Now if $M \in \mathscr{M}(a - m)$ and $a + m \in M$, then $a \notin M$, so $M \in \mathscr{M}(a) = \mathscr{M}(a + m)$ and $a + m \notin M$, a contradiction. Thus, $a + m \notin M$ so $M \in \mathscr{M}(a + m) = \mathscr{M}(a)$, $a \notin M$, $b \in M$. Therefore M < a + M = (a - m) + M. By (8), a - m > 0. A similar argument shows b > m. Finally, by the Riesz interpolation property, there is an element $h' \in G$ such that $a \ge h' \ge 0$ and $b \ge h' \ge m$. Thus, $h' \in H(a, b)$ and we have $h' \ge m \ge -h$ so $m \in H(a, b)$.

COROLLARY. If a and b are p-disjoint in G, then $a \wedge b = 0$ if and only if H(a, b) = 0.

As a consequence of Lemma 4.2 we can associate with g = a - b, a and b p-disjoint, the o-ideal H(a, b). Moreover, H(a, b) depends only on g and is independent of the representation of g as the difference of p-disjoint elements. To show this, let g = x - y where x and y are also p-disjoint. Then by (2.2) $\mathscr{M}(a) = \mathscr{M}(x)$ and $\mathscr{M}(b) = \mathscr{M}(y)$. If $0 \leq k \in H(x, y)$ then $k \in \mathscr{M}^*(a) \cap \mathscr{M}^*(b)$ and a + k, b + k are pdisjoint so $k \in H(a, b)$ and $H(x, y) \subseteq H(a, b)$. Dually, we can show $H(a, b) \subseteq H(x, y)$ so H(a, b) = H(x, y).

Using the above we can easily show a pl-group G satisfies

(**) for each $g \in G$, there is $a \in G^+$ such that $g \leq a$ and whenever

 $0 \leq x$, and $g \leq x$, then $a \leq x + h$ for some $h \in H(a, a - g)$.

To see this, let $g \in G$ and a satisfy (*) for g. If $0 \leq x, g \leq x$ there is $z \in G$ such that $a \geq z \geq 0$ and $x \geq z \geq g$ since every pl-group is a Riesz group. By (2.1), z and z - g are p-disjoint and since a = z + (a - z) and a - g = (z - g) + (a - z) we have $a - z \in H(z, z - g) = H(a, a - g)$. Therefore, $x \geq z = a - (a - z)$ so $x + (a - z) \geq a$.

We have shown, that in a *pl*-group G, H(a, b) is the *o*-ideal generated by $K = \{0 \le m \in G \mid m \le a, m \le b\}$ for *a* and *b p*-disjoint, and $H(a, b)^+ = K$. If we now let H(x, y) be the *o*-ideal generated by $K = \{0 \le m \in G \mid m \le x, m \le y\}$ for arbitrary positive elements *x* and *y*, it may happen that $H(x, y)^+ \ne K$ and the following example shows $(^{**})$ is not sufficient for a Riesz group *G* to be a *pl*-group.

Let R be the naturally ordered real numbers and G = R + R. Let $(u, v) \in G$ be positive if v > 0 or v = 0 and u = 0. Then G is a Riesz group but G is not a *pl*-group. If $g = (g_1, g_2) \in G$ and $g_2 > 0$ let a = g; if $g_2 < 0$ let a = 0. In either case H(a, a - g) = 0 and a satisfies (**) for g. If $g_2 = 0$ and $g_1 = 0$ take a = 0. If $g_2 = 0$ and $g_1 \neq 0$ let $a = (a_1, a_2)$ where $a_2 > 0$. Then a > 0, a > g and H(a, a - g) = G. For any $b = (b_1, b_2) \ge (0, 0)$ and $(b_1, b_2) \ge (g_1, g_2)$ we must have $b_2 > 0$. If $h = (0, a_2)$, then $(a_1, a_2) < (b_1, b_2) + (0, a_2)$ and $h \in H(a, a - g)$. Thus (**) holds.

REFERENCES

1. P. Conrad, Representations of partially ordered abelian groups as groups of realvalued functions, Acta. Math. 116 (1966), 199-221.

2. J. R. Teller, On partially ordered groups satisfying the Riesz interpolation property, Proc. Amer. Math. Soc. 16 (1965), 1392-1400.

Received July 3, 1967.

GEORGETOWN UNIVERSITY WASHINGTON, D. C.