A COUNTER-EXAMPLE TO A FIXED POINT CONJECTURE

Earl J. Taft

Let A be a finite-dimentional commutative Jordan algebra over a field F of characteristic zero. Then we may write $A=S+N, S$ a semisimple subalgebra (Wedderburn factor), N the radical of A, [5], [6]. If G is a completely reducible group of automorphisms of A, then we may choose S to be invariant under G, [4]. If G is finite, then we showed in [10] that any two such G-invariant S were conjugate via an automorphism σ of A which centralizes G and which is a product of exponentials of nilpotent inner derivations of A of the form $\sum\left[R_{a_{i}}, R_{x_{i}}\right], x_{i}$ in N, a_{i} in A, where R_{a} is multiplication by a in A. It was conjectured in [10] that the various elements x_{i} and a_{i} which occur in the formulation of σ could be chosen as fixed points of G. This conjecture was based on analogous fixed point results proved for associative and Lie algebras, [7], [8], [9]. However, this conjecture is false, and we present in this note a simple counter-example.

We consider three-by-three matrices over F. Denoting by $e_{i j}$ the usual matrix units, set $e=e_{11}+e_{22}, f=e_{33}$ and $x=e_{31}$. Consider the Jordan algebra A with basis e, f, x and multiplication table

	e	f	x
e	$2 e$	0	x
f	0	$2 f$	x
x	x	x	0

Clearly A has a one-dimensional radical $N=F x$, and $S(0)=$ $F e+F f$ is a Wedderburn factor of A. By [2], all Wedderburn factors are isomorphic, so are spanned by two orthogonal idempotents. The only idempotents (nonzero) of A are ($e / 2$) $+\alpha x,(f / 2)+\beta x, \alpha, \beta$ in F. The only pairs of orthogonal idempotents are $(e / 2)+\alpha x,(f / 2)-\alpha x$, α in F. Hence the Wedderburn factors of A are of the form $S(\alpha)=$ $F(e+\alpha x)+F(f-\alpha x)$, and clearly $\alpha \rightarrow S(\alpha)$ is one-to-one.

A has two types of automorphisms, as can be seen by a direct check. The first type $A(\delta, \pi), \delta, \pi$ in $F, \pi \neq 0$, is given by:

$$
A(\delta, \pi)\left\{\begin{array}{l}
e \rightarrow f+\delta x \\
f \rightarrow e-\delta x \\
x \rightarrow \pi x
\end{array}\right.
$$

The second type $B(\delta, \pi), \delta, \pi$ in $F, \pi \neq 0$, is given by:

$$
B(\delta, \pi)\left\{\begin{array}{l}
e \rightarrow e+\delta x \\
f \rightarrow f-\delta x \\
x \rightarrow \pi x
\end{array}\right.
$$

A calculation shows that $S(\alpha) B(\delta, \pi)=S(\alpha \pi+\delta)$, so that if $\pi \neq 1$, $S\left((1-\pi)^{-1} \delta\right)$ is the only $B(\delta, \pi)$-invariant Wedderburn factor of A. If $\delta \neq 0$, then $B(\delta, 1)$ fixes no Wedderburn factor, and $B(0,1)=I$, the identity mapping of A.

Turning to $A(\delta, \pi)$, we have that $S(\alpha) A(\delta, \pi)=S(-\alpha \pi-\delta)$. Hence if $\pi \neq-1, S\left(-\delta(1+\pi)^{-1}\right)$ is the only $A(\delta, \pi)$-invariant Wedderburn factor of A. If $\delta \neq 0$, then $A(\delta,-1)$ fixes no Wedderburn factor, but $A(0,-1)$ fixes all Wedderburn factors $S(\alpha)$. Let G be the group of order two generated by $A(0,-1)$:

$$
A(0,-1)\left\{\begin{array}{l}
e \rightarrow f \\
f \rightarrow e \\
x \rightarrow-x
\end{array}\right.
$$

Note that $e-f$ and x are eigenvectors for the eigenvalue -1 of $A(0,-1)$, so that $F(e+f)$ is the fixed point space of $G . \quad R_{e+f}=2 I$, and N has no nonzero fixed points under G, which disproves the conjecture.

In checking the result of [10] in this example, let $D=\left[R_{e-f}, R_{x}\right]=$ $R_{e-f} R_{x}-R_{x} R_{e-f}$. Then one can check that

$$
\sigma=\exp \left(\left(\frac{\beta-\alpha}{2}\right) D\right)=I+\frac{\beta-\alpha}{2} D
$$

will map $S(\alpha)$ onto $S(\beta)$ for any α, β in F. Since $e-f$ and x are in the -1 - eigenspace of $A(0,-1)$, the rule $g^{-1} R_{a} g=R_{a g}$ for a in A, g an automorphism of A, shows that D commutes with $A(0,-1)$, so that σ centralizes G. This leads to the more complicated conjecture that one can formulate σ in terms of inner derivations $\left[R_{a}, R_{x}\right], a$ in A, x in N, such that for any g in G, a and x are eigenvectors of g corresponding to eigenvalues $\alpha(g)$ and $\beta(g)$ respectively, such that $\alpha(g) \beta(g)=1$. Such a σ will centralize G. We also note that this conjecture and the fixed point conjecture are still open for alternative algebras (see [10] for a precise formulation), although the fixed point conjecture now seems unlikely for alternative algebras, in view of the
above counter-example for Jordan algebras, due to the close relation between alternative and Jordan algebras, [3]. We also remark that for completely reducible G, the existence of a σ centralizing G is still an open question. If $N^{2}=0$, this is trivial (see [10], § 5), and the difficulty lies in the case $N^{2} \neq 0$. We also note that if F is any field of characteristic not two, then our example has A / N separable and $N^{2}=0$, in which case the Wedderburn-Malcev properties hold, [1], [2], [6], and any finite group G of order not divisible by the characteristic of F will fix a Wedderburn factor, [6]. So our example also shows that the fixed point conjecture is false for the case $N^{2}=0$, R / N separable.

We conclude with an example of an infinite group G which illustrates the conjecture for completely reducible G that σ can be chosen to centralize G, in a case where $N^{2} \neq 0$. Again considering three-by-three matrices over F, let $e=e_{11}+e_{33}, x=e_{12}, y=e_{23}, z=e_{13}$. Let A be the Jordan algebra with basis e, x, y, z and multiplication table

e	x	y	z	
e	$2 e$	x	y	$2 z$
x	x	0	z	0
y	y	z	0	0
z	$2 z$	0	0	0

Clearly the radical N of A is $N=F x+F y+F z, N^{2}=K z$ and $N^{3}=0$. Clearly $S(0,0)=K e$ is a Wedderburn factor, and if we calculate the elements f for which $f^{2}=2 f$, we find

$$
f=e+\alpha x+\beta y-\alpha \beta z, \alpha, \beta \in F
$$

Since all Wedderburn factors are isomorphic (we are assuming characteristic zero), the Wedderburn factors are of the form

$$
S(\alpha, \beta)=F(e+\alpha x+\beta y-\alpha \beta z),
$$

and the correspondence $(\alpha, \beta) \rightarrow S(\alpha, \beta)$ is one-to-one on $F \times F$.
Let $\delta \in F, \phi \in F, \phi \neq 0,1$. Let $A(\delta, \phi)$ be the automorphism of A given by:

$$
A(\delta, \phi)\left\{\begin{array}{l}
e \rightarrow e+\delta y \\
x \rightarrow x-\delta z \\
y \rightarrow \phi y \\
z \rightarrow \dot{\phi} z
\end{array}\right.
$$

$A(\delta, \phi)$ is completely reducible, since A has a basis of eigenvectors $y, z,(1-\phi) e+\delta y,(1-\phi) x-\delta z$, the latter two being fixed points of $A(\delta, \phi)$. One can check that $S(\alpha, \beta) A(\delta, \phi)=S(\alpha, \delta+\beta \phi)$, so that $S\left(\alpha, \delta(1-\phi)^{-1}\right)$ is fixed by G, the group generated by $A(\delta, \phi)$, for any α in F. For α, α^{\prime} in F, set

$$
D=\left(\alpha^{\prime}-\alpha\right)(1-\phi)^{-2}\left[R_{(1-\phi) e+\hat{\partial} y}, R_{(1-\phi) x-\bar{\delta} z}\right]
$$

Then one can calculate that $\sigma=\exp D=I+D+\left(D^{2} / 2\right)$ carries $S\left(\alpha, \delta(1-\phi)^{-1}\right)$ onto $S\left(\alpha^{\prime}, \delta(1-\phi)^{-1}\right)$, and centralizes G since the elements $(1-\phi) e+\delta y,(1-\phi) x-\delta z$ are fixed points of $A(\delta, \phi)$. Note that if ϕ is not a root of unity, then G is an infinite group.

Another automorphism $B(\delta, \tau)$ of A, for δ, τ in $F, \tau \neq 0$, is given by:

$$
B(\delta, \tau)\left\{\begin{array}{l}
e \rightarrow e-\delta \tau x+\delta y+\delta^{2} \tau z \\
x \rightarrow \tau^{-1} y+\delta z \\
y \rightarrow \tau x-\delta \tau z \\
z \rightarrow z
\end{array}\right.
$$

$B(\delta, \tau)$ has a three-dimensional fixed point space spanned by $e+\delta y$, z and $\tau x+y$, and an eigenvector $\tau x-y-\delta \tau z$ for the eigenvalue -1 , so that $B(\delta, \tau)$ is completely reducible. Actually $B(\delta, \tau)^{2}=I$, so G here is a group of order two. One calculates that $S(\alpha, \beta) B(\delta, \tau)=$ $S\left(-\delta \tau+\beta \tau, \delta+\alpha \tau^{-1}\right)$. Hence $S\left(\alpha, \delta+\alpha \tau^{-1}\right)$ is G-invariant for any $\alpha \in F$. Set $D^{\prime}=\tau^{-1}\left(\alpha^{\prime}-\alpha\right)\left[R_{e+\bar{\partial} y}, R_{x x+y}\right]$ for $\alpha, \alpha^{\prime} \in F$. Then

$$
\sigma=\exp D^{\prime}=I+D^{\prime}+\frac{\left(D^{\prime}\right)^{2}}{2}
$$

carries $S\left(\alpha, \delta+\alpha \tau^{-1}\right)$ onto $S\left(\alpha^{\prime}, \delta+\alpha^{\prime} \tau^{-1}\right)$, and centralizes G since $e+\delta y$ and $\tau x+y$ are fixed points of $B(\delta, \tau)$. Hence, in this case, the fixed point property holds, although, as we have seen in our first example, it does not hold for every finite group G.

References

1. B. Harris, Derivations of Jordan algebras, Pacific. J. Math. 9 (1959), 495-512.
2. N. Jacobson, General representation theory of Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 509-530.
3. -, Structure of alternative and Jordan bimodules, Osaka Math. J. 6 (1954), 1-71.
4. G. D. Mostow, Fully reducible subgroups of algebraic groups, Amer. J. Math. 78 (1956), 200-221.
5. A. J. Penico, The Wedderburn principal theorem for Jordan algebras, Trans. Amer. Math. Soc. 70 (1951), 404-421.
6. E. J. Taft, Invariant Wedderburn factors, Illinois J. Math. 1 (1957), 565-573.
7. -, Uniqueness of invariant Wedderburn factors, Illinois, J. Math. 6 (1962),

353-356.
8. -_, Invariant Levi factors, Michigan Math. J. 9 (1962), 65-68.
9. -, Orthogonal conjugacies in associative and Lie algebras, Trans. Amer. Math. Soc. 113 (1964), 18-29.
10. \qquad , Invariant splitting in Jordan and alternative algebras, Pacific J. Math. 15 (1965), 1421-1427.

Received August 2, 1967. Research supported by National Science Foundation Grant GP-7162.

Rutgers, The State University

