UNCOUNTABLY MANY ALMOST POLYHEDRAL
 WILD ($k-2$)-CELLS IN E ${ }^{k}$ FOR $k \geqq 4$

Leslie C. Glaser

In [1] infinitely many almost polyhedral wild ares were constructed in E^{3} so as to have an end point as the "bad' point. In [5] uncountably many almost polyhedral wild ares were constructed in E^{3} with an interior point as the "bad" point. In [4] Doyle and Hocking constructed an almost polyhedral wild disk in E^{4} with the property that the proof of the nontameness is perhaps the most elementary possible. They state that essentially the same construction yields a wild ($n-2$)-disk in E^{n} for $n \geqq 4$. Here, making use of the construction given in [4], we prove that for each $k \geqq 4$, there exist uncountably many almost polyhedral wild ($k-2$)-cells in E^{k}. To obtain the above result we also prove that for each $k \geqq 3$, there exist countably many polyhedral locally flat ($k-2$)-spheres in E^{k} so that the fundamental groups of the complements of these spheres are all distinct and given any two of these groups, one is not the surjective image of the other.

A set S in E^{k} is polyhedral if it can be covered by a finite rectilinear subcomplex of E^{k}. A $(k-2)$-cell D in E^{k} is almost polyhedral if for some point $q \in D, D-\{q\}$ can be covered by an infinite locally finite rectilinear subcomplex of $E^{k}-\{q\}$. The ($k-2$)-cells constructed here all have $q \in \operatorname{Bd} D . \quad D$ is wild if there does not exist a homeomorphism h of E^{k} onto itself such that $h(D)$ is a finite rectilinear subcomplex of E^{k}. An n-manifold $M^{n} \subset E^{k}$ is locally flat if each $p \in \operatorname{int} M(p \in \operatorname{Bd} M)$ has a neighborhood U in E^{k} such that the pair ($U, U \cap M$) is homeomorphic as pairs to $\left(E^{k}, E^{n}\right)$ (to $\left(E^{k}, E_{+}^{n}\right)$).

Theorem 1. There exist countably many polyhedral simple closed curves $\left\{J_{n}\right\}(n=1,2,3, \cdots)$ in E^{3} so that if $G_{n} \cong \pi_{1}\left(E^{3}-J_{n}\right)$, then for all positive integers n and $m(n \neq m), G_{n} \not \equiv Z$ and $G_{n} \not \equiv G_{m}$. Furthermore, if $m>n$, then there is no surjection of G_{m} onto G_{n}.

Proof. Expressing points of E^{3} in terms of cylindrical coordinates (θ, r, z), let T be the "unknotted" torus $(r-2)^{2}+z^{2}=1$. Let $K_{p, q}$ denote the torus knot of type p, q, where p and q are relatively prime nonnegative integers and $K_{p, q}$ is a curve on the surface T that cuts a merdian in p points and a longitude in q points. More precisely, $K_{p, q}$ is defined by the equations $r=2+\cos (q \theta / p)$ and $z=\sin (q \theta / p)$.

A presentation for $\pi_{1}\left(E^{3}-K_{p, q}\right)$ is $P_{p, q}=\left\{x, y \mid x^{p}=y^{q}\right\}$ [3].
Suppose q is an odd integer $>1, p$ is a prime $>q$, and $G_{p, q}$ denotes a group having presentation $P_{p, q}$. Then $G_{p, q}$ has a nontrivial representation in the symmetric group S_{p} by sending $x \rightarrow(1,2,3, \cdots, p)$ and $y \rightarrow(1,2,3, \cdots, q)$. Let \widehat{S}_{p} denote the subgroup of S_{p} generated by $(1,2,3, \cdots, p)$ and $(1,2,3, \cdots, q)$. Then we have a surjection $\varphi_{p, q}: G_{p, q} \rightarrow \hat{S}_{p}$.

Since

$$
\begin{aligned}
& (1,2,3, \cdots, q)(1,2,3, \cdots, q, \cdots, p) \\
& \quad=(1,3, \cdots, q-2, q, 2,4, \cdots, q-1, q+1, q+2, \cdots, p)
\end{aligned}
$$

and

$$
\begin{aligned}
& (1,2,3, \cdots, q, \cdots, p)(1,2,3, \cdots, q) \\
& \quad=(1,3, \cdots, q-2, q, q+1, q+2, \cdots, p, 2,4, \cdots, q-3, q-1)
\end{aligned}
$$

\hat{S}_{p} is not commutative and hence $G_{p, q} \nexists Z$.
Let $\left\{\left(p_{n}, q_{n}\right)\right\}(n=1,2,3, \cdots)$ be a sequence of pairs of positive odd integers, where

$$
\begin{aligned}
q_{1}=3<p_{1}<q_{2} & =p_{1}!+1<p_{2}<\cdots<p_{n-1}<q_{n} \\
& =p_{n-1}!+1<p_{n}<\cdots
\end{aligned}
$$

and the p_{n} 's are all distinct primes. Let $\left\{J_{n}\right\}(n=1,2,3, \cdots)$ be a sequence of polyhedral simple closed curves in E^{3}, so that for each n, we have a homeomorphism h_{n} of E^{3} onto itself carrying J_{n} onto $K_{p_{n}, q_{n}}$. Then $\pi_{1}\left(E^{3}-J_{n}\right) \cong G_{n} \cong G_{p_{n}, q_{n}} \not \approx Z$. Suppose for some $m>n$ there is a surjection ψ carrying G_{m} onto G_{n}. Since $G_{m} \cong G_{p_{m}, q_{m}}$ and $G_{n} \cong G_{p_{n}, q_{n}}$ we can suppose we have a surjection, which we also denote by ψ, carrying $G_{p_{m}, q_{n}}$ onto $G_{p_{n}, q_{n}}$. Then $\rho=\phi \circ \psi$ is a surjection carrying $G_{p_{m}, q_{m}}$ onto $\widehat{S}_{p_{n}}$. Since x and y generate $G_{p_{m}, q_{m}}, u=\rho(x)$ and $v=\rho(y)$ generate $\hat{S}_{p_{n}}$. But in considering the relation defining $G_{p_{m}, q_{m}}$ we get that $u^{p_{m}}=v^{q_{m}}$. Since the order of $S_{p_{n}}$ is p_{n} ! and since $q_{m}=p_{m-1}!+1$ and $p_{m-1} \geqq p_{n}$, it follows that $v^{q_{m}}=v$ and hence $u^{p_{m}}=v$. This gives the contradiction that the noncommutative group $\widehat{S}_{p_{n}}$ is generated by two commuting elements u and y. Therefore, for all $m>n$ there is no surjection of G_{m} onto G_{n} and hence $G_{m} \not \equiv G_{n}$.

Theorem 2. For each $k \geqq 3$, there exist countably many polyhedral locally flat ($k-2$)-spheres $\left\{S_{n}^{k-2}\right\}(n=1,2,3, \cdots)$ in E^{k} so that if $G_{n} \cong \pi_{1}\left(E^{k}-S_{n}^{k-2}\right)$, then for all positive integers n and $m(n \neq m)$, $G_{n} \not \approx Z$ and $G_{n} \not \equiv G_{m}$. Furthermore, if $m>n$, then there is no surjection of G_{m} onto G_{n}.

Proof. We could easily obtain the desired result if we omit the local flatness from the conclusion by taking repeated suspensions of the sequence $\left\{J_{n}\right\}$ of Theorem 1. This follows since the fundamental group of the complement of a ($k-2$)-sphere S^{k-2} in E^{k} is isomorphic to the fundamental group of the complement of the suspension of S^{k-2} in E^{k+1}.

The proof will be by induction on k. For $k=3$ the result follows by taking the sequence of polyhedral locally flat 1 -spheres $\left\{S_{n}^{1}\right\}$ to be the $\left\{J_{n}\right\}$ of Theorem 1. Suppose inductively for each $k, 3 \leqq k \leqq m$, there exist countably many polyhedral locally flat $(k-2)$-spheres $\left\{S_{n}^{k-2}\right\}(n=1,2,3, \cdots)$ in E^{k} having the desired properties.

We now consider the collection $\left\{S_{n}^{m-2}\right\}$ of polyhedral locally flat ($m-2$)-spheres in E^{m}. Let $S \in\left\{S_{n}^{m-2}\right\}$ be an arbitrary ($m-2$)-sphere from our given collection. Since S is polyhedral we can assume that S lies in $E^{m} \subset E^{m+1}$ so that we have

$$
S \subset E_{+}^{m}=\left\{\left(x_{1}, x_{2}, \cdots, x_{m}, x_{m+1}\right) \in E^{m+1} \mid x_{m} \geqq 0, x_{m+1}=0\right\}
$$

and so the $S \cap E^{m-1}$ is a ($m-2$)-simplex $\Delta \in S$, where

$$
E^{m-1}=\left\{\left(x_{1}, x_{2}, \cdots, x_{m}, x_{m+1}\right) \mid x_{m}=0=x_{m+1}\right\}=\operatorname{Bd} E_{+}^{m}
$$

Let D be the closure of $S-\Delta$. Let $\alpha_{t}: E_{+}^{m} \rightarrow E^{m+1}$ be the rigid rotation in $E^{m+1}=\left\{\left(y_{1}, y_{2}, \cdots, y_{m}, y_{m+1}\right)\right\}$ of $E_{+}^{m}=\left\{\left(x_{1}, \cdots, x_{m}, 0\right)\right\}$ defined by the equations

$$
\begin{array}{ll}
y_{i}=x_{i} & i \leqq m-1 \\
y_{m}=x_{m} \cos t \\
y_{m+1}=x_{m} \sin t &
\end{array}
$$

Then the set $\hat{K}=\left\{\alpha_{t}(r) \in E^{m+1} \mid r \in D\right.$ and $\left.t \in[0,2 \pi]\right\}$ is clearly an ($m-1$)-sphere in E^{m+1}. By the proof given in [2], if follows that $\pi_{1}\left(E^{m+1}-\hat{K}\right) \cong \pi_{1}\left(E^{m}-S\right)$. Since S is locally flat in E^{m}, it follows that \hat{K} is locally flat in E^{m+1}. Hence using the sequence $\left\{S_{n}^{m-2}\right\}$ and constructing a \hat{K}_{n} as above for each S_{n}, we obtain countably many locally flat ($m-1$)-spheres in E^{m+1} having all the desired properties except that of being polyhedral.

Now for each $S \in\left\{S_{n}^{m-2}\right\}$ we have a continuous family of functions $\left\{\alpha_{t}: E_{+}^{m} \rightarrow E^{m+1} \mid t \in[0,2 \pi]\right\}$ and a locally flat ($m-1$)-sphere \widehat{K} containing $D=\overline{S-\Delta}$ so that

$$
\pi_{1}\left(E^{m+1}-\hat{K}\right) \cong \pi_{1}\left(E^{m}-S\right)
$$

For each $r \in E_{+}^{m}-E^{m-1}$, let \widehat{C}_{r} be the circle in E^{m+1} determined by the point set $\left\{\alpha_{t}(r) \in E^{m+1} \mid t \in[0,2 \pi]\right\}$ and let C_{r} be the polyhedral simple closed curve in E^{m+1} consisting of the union of the four seg-
ments $\left[\alpha_{0}(r), \alpha_{\pi / 2}(r)\right],\left[\alpha_{\pi / 2}(r), \alpha_{\pi}(r)\right],\left[\alpha_{\pi}(r), \alpha_{(3 \pi) / 2}(r)\right]$, and $\left[\alpha_{(3 \pi) / 2}(r), \alpha_{2 \pi}(r)\right]$. Let K denote the point set $\mathrm{U}_{r}\left\{C_{r} \mid r \in D-E^{m-1}\right\} \cup D \cap E^{m-1}$. Then K is a polyhedral ($m-1$)-sphere containing $D=\overline{S-\Delta} \subset E_{+}^{m}$. The claim is that there is a homeomorphism h carrying E^{m+1} onto itself so that $h(\hat{K})=K$. It would follow then that K is also locally flat and $\pi_{1}\left(E^{m+1}-K\right) \cong \pi_{1}\left(E^{m+1}-\widehat{K}\right)$ and hence we could obtain the desired result.

To see that such an h exists, let E_{+t}^{m} denote $\alpha_{t}\left(E_{+}^{m}\right)$. For each $r \in E_{+}^{m}-E^{m+1}$ we define h sending E_{+t}^{m} onto itself by defining

$$
h\left(\alpha_{t}(r)\right)=h\left(\widehat{C}_{r} \cap E_{+t}^{m}\right)
$$

to be the point $C_{r} \cap E_{+t}^{m}$ and for $r \in E_{+t}^{m} \cap E^{m-1}=E^{m-1}$ we let $h(r)=r$. It is clear then that $h(\hat{K})=K . \quad h$ can also be defined explicitly as follows. Let $s:[0,2 \pi] \rightarrow[0,1]$ be defined as follows.

$$
s(t)= \begin{cases}\sqrt{2} / 2 \sin \left(\frac{3 \pi}{4}-t\right) ; & 0 \leqq t \leqq \pi / 2 \\ \sqrt{2} / 2 \sin \left(t-\frac{\pi}{4}\right) ; & \pi / 2 \leqq t \leqq \pi \\ \sqrt{2} / 2 \sin \left(\frac{7 \pi}{4}-t\right) ; & \pi \leqq t \leqq \frac{3 \pi}{2} \\ \sqrt{2} / 2 \sin \left(t-\frac{5 \pi}{4}\right), & \frac{3 \pi}{2} \leqq t \leqq 2 \pi\end{cases}
$$

If $r_{0}=\left(x_{1}, x_{2}, \cdots, x_{m-1}, 1,0\right) \in E_{+}^{m}$, then $s(t)$ is merely the distance of the point $C_{r_{0}} \cap E_{+t}^{m}$ to the origin of E^{m+1}. h is then defined by sending $\left(x_{1}, x_{2}, \cdots, x_{m-1}, x_{m} \cos t, x_{m} \sin t\right)$ to

$$
\left(x_{1}, x_{2}, \cdots, x_{m-1}, s(t) x_{m} \cos t, s(t) x_{m} \sin t\right)
$$

Suppose S_{1} and S_{2} are two polyhedral $(k-2)$-spheres in E^{k} with $G_{i} \cong \pi_{1}\left(E^{k}-S_{i}\right)(i=1,2)$ so that there exists no surjection $\varphi: G_{1} \rightarrow$ G_{2}. Let D_{1} be the polyhedral $(k-1)$-cell in E^{k+1} obtained by taking the cone over S_{1}. That is,

$$
D_{1}=p_{1} * S_{1} \subset E_{+}^{k+1} \subset E^{k+1}
$$

where $p_{1} \in E_{+}^{k+1}-E^{k}$ "above" S_{1}. Similarly let $D_{2}=p_{2} * S_{2} \subset E_{+}^{k+1} \subset E^{k+1}$. Let $x_{i k+1}(i=1,2)$ denote the $(k+1)$-coordinate of p_{i} and $P_{i j}$ denote the horizontal k-plane in E_{+}^{k+1} parallel to E^{k} given by

$$
x_{i j k+1}=x_{i k+1}-\frac{1}{j} x_{i k+1}, \quad j=1,2,3, \cdots ; i=1,2 .
$$

We note each $P_{i j}$ lies below $p_{i}(i=1,2)$ and $P_{11}=E^{k}=P_{21}$. Let
$\left\{N_{i j}\right\}(i=1,2 ; j=1,2,3, \cdots)$ denote two sequences of $(k+1)$-cells obtained as follows. Each $N_{i j}$ is to be "centered" at p_{i} having its "bottom" face $B_{i j}$ in $P_{i j}$ so that int $B_{i j} \supset P_{i j} \cup D_{i}$, so that the part of D_{i} lying on or above $P_{i j}$ lies in (int $N_{i j}$) $\cup B_{i j}$, and so that the following properties hold for $i=1,2$:
(a) $N_{i 1} \supset \operatorname{int} N_{i 1} \supset N_{i 2} \supset \operatorname{int} N_{i 2} \supset N_{i 3} \supset \cdots$,
(b) $\bigcap_{j=1}^{\infty} N_{i j}=p_{i}$,
(c) $\pi_{1}\left(N_{i 1}-D_{i}\right)$ is isomorphic to $\pi_{1}\left(E^{k}-S_{i}\right)$, and
(d) the injection $\pi_{1}\left(N_{i j}-D_{i}\right) \rightarrow \pi_{1}\left(N_{i 1}-D_{i}\right)$ is an isomorphism onto for each j.

Theorem 3. Suppose F_{1} and F_{2} are two ($k-1$)-cells in E^{k+1} so that if D_{1} and D_{2} are the polyhedral $(k-1)$-cells as given above, then there exist homeomorphisms f_{1}, f_{2} taking E^{k+1} onto itself so that $f_{1}\left(D_{1}\right) \subset F_{1}$ and $f_{2}\left(D_{2}\right) \subset F_{2}$. Let $q_{1}=f_{1}\left(p_{1}\right) \in F_{1} \quad$ and $\quad q_{2}=f_{2}\left(p_{2}\right) \in F_{2}$. Then there exists no homeomorphism $h: E^{k+1} \rightarrow E^{k+1}$ carrying F_{1} onto F_{2} with $h\left(q_{1}\right)=q_{2}$.

Proof. Suppose there exists a homeomorphism h taking E^{k+1} onto itself carrying F_{1} onto F_{2} with $h\left(q_{1}\right)=q_{2}$. We now consider the sequences $\left\{N_{1 j}\right\},\left\{N_{2 j}\right\}$ given above. There exists an $N_{2 m}$ so that

$$
f_{2}\left(N_{2 m}\right) \cap F_{2}=f_{2}\left(N_{2 m}\right) \cap f_{2}\left(D_{2}\right)
$$

Let $N_{1 n}$ be chosen so that $f_{1}\left(N_{1 n}\right) \cap f_{1}\left(D_{1}\right)=f_{1}\left(N_{1 n}\right) \cap F_{1}$ and

$$
h f_{1}\left(N_{1 n}\right) \subset \operatorname{int} f_{2}\left(N_{2 m}\right)
$$

Finally, let $N_{2 r}$ be chosen so that $f_{2}\left(N_{2 r}\right) \subset \operatorname{int} h f_{1}\left(N_{1 n}\right)$. Since

$$
f_{2}\left(N_{2 r}\right) \subset \operatorname{int} f_{2}\left(N_{2 m}\right), f_{2}\left(N_{2 r}\right) \cap f_{2}\left(D_{2}\right)=f_{2}\left(N_{2 r}\right) \cap F_{2}
$$

The commutativity of the inclusion diagram

implies the commutativity of the induced injection diagram

Since i_{*} is onto, j_{*} must be onto. But

$$
\pi_{1}\left(h f\left(N_{1 n}-D_{1}\right)\right) \cong \pi_{1}\left(N_{1 n}-D_{1}\right) \cong \pi_{1}\left(N_{11}-D_{1}\right) \cong \pi_{1}\left(E^{k}-S_{1}\right) \cong G_{1}
$$

and

$$
\pi_{1}\left(f_{2}\left(N_{2 m}-D_{2}\right)\right) \cong \pi_{1}\left(N_{2 m}^{\prime}-D_{2}\right) \cong \pi_{1}\left(N_{21}-D_{1}\right) \cong \pi_{1}\left(E^{k}-S_{2}\right) \cong G_{2}
$$

It follows then that there would be a surjection φ of G_{1} onto G_{2}, which by assumption is impossible and hence the result follows.

Given any fixed integer $k \geqq 3$, let $\left\{S_{n}\right\}(n=1,2,3, \cdots)$ be the countable collection of polyhedral locally flat ($k-2$)-sheres in E^{k} given by Theorem 2. For any subsequence $\alpha=\left(n_{1}, n_{2}, n_{3}, \cdots\right)$ of positive integers we will define an almost polyhedral wild $(k-1)$-cell in E^{k+1} using the construction given in [4]. That is, in E^{k} let $\left\{B_{i}\right\}$ be a sequence of disjoint k-balls converging to a point q. For each $i=$ $1,2,3, \cdots$, we suppose that $S_{n_{i}}$ is embedded in int B_{i} by "shrinking" and translating each $S_{n_{i}}$ in an appropriate manner. In E_{+}^{k+1}, let $\left\{p_{i}\right\}$ be the sequence of distinct points converging to q where p_{i} lies above the "center" of B_{i} and is a distance $1 / i$ from E^{k}. If $p_{i} * S_{n_{i}}$ is the cone over $S_{n_{i}}$ with vertex p_{i}, then the polyhedral ($k-1$)-cells $\left\{p_{i} * S_{n_{i}}\right\}$ are disjoint in pairs and each $p_{i} * S_{n_{i}}$ is locally flat except for p_{i}. The fact that $p_{i} * S_{n_{i}}$ is locally flat at points other than p_{i} follows since $S_{n_{i}}$ is locally flat in E^{k}. The fact that $p_{i} * S_{n_{i}}$ is not locally flat at p_{i} follows in a manner similar to that used in the proof of Theorem 3. That is, there are arbitrarily small neighborhoods N about p_{i} in E^{k+1} such that $\pi_{1}\left(N-\left(p_{i} * S_{n_{i}}\right)\right) \cong G_{n_{i}}$. If $p_{i} * S_{n_{i}}$ were locally flat at p_{i} then there would be arbitrarily small neighborhoods M about p_{i} such that $\pi_{1}\left(M-\left(p_{i} * S_{n_{i}}\right)\right) \cong Z$. Hence we would be able to obtain a surjection of Z onto $G_{n_{i}}$, which would allow us to obtain a surjection of Z onto $\widehat{S}_{n_{i}}$ which is noncommutative.

Now in E^{k} join $p_{1} * S_{n_{1}}$ and $p_{2} * S_{n_{2}}$ by a polyhedral ($k-1$)-cell D_{1} so that $p_{1} * S_{n_{1}} \cup D_{1} \cup p_{2} * S_{n_{2}}$ is a polyhedral $(k-1)$-cell disjoint from $\left(\bigcup_{i=3}^{\infty} p_{i} * S_{n_{i}}\right) \cup q$ that is locally flat except at p_{1} and p_{2}. Next we join $p_{2} * S_{n_{2}}$ and $p_{3} * S_{n_{3}}$ by a polyhedral ($k-1$)-cell D_{2} in E^{k} so that $p_{1} * S_{n_{1}} \cup D_{1} \cup p_{2} * S_{n_{2}} \cup D_{2} \cup p_{3} * S_{n_{3}}$ is a polyhedral ($k-1$)-cell disjoint from $\left(\bigcup_{i=4}^{\infty} p_{i} * S_{n_{i}}\right) \cup q$ that is locally flat except at p_{1}, p_{2} and p_{3}. This process is continued so that as $i \rightarrow \infty$ the diameter of D_{i} tends to zero and the desired $(k-1)$-cell D_{α} is $\left(\bigcup_{i=1}^{\infty} p_{i} * S_{n_{i}} \cup D_{i}\right) \cup q$. As a subset of E^{k+1}, D_{α} is almost polyhedral except perhaps at q. Also D_{α} is locally flat except at the points q and $p_{i}(i=1,2,3, \cdots)$. By [4], D_{α} is wild. That is, if there is a homeomorphism h of E^{k+1} onto itself such that $h\left(D_{\alpha}\right)$ is the union of a finite number of $(k-1)$-simplexes, then some point of $\left\{h\left(p_{j}\right)\right\}$ lies in the interior of a $(k-1)$-cell formed by the union of two ($k-1$)-simplexes of $h\left(D_{\alpha}\right)$. Then by rotating one of these ($k-1$)-simplexes (if necessary) keeping the other fixed so that the union of the two lies in a ($k-1$)-plane in E^{k}, it
would follow that $h\left(D_{\alpha}\right)$ is locally flat at this point. This contradicts the fact that D_{α} is not locally flat at the preimage of the given point.

Theorem 4. For each $k \geqq 4$, there exist uncountably many almost polyhedral wild ($k-2$)-cells in E^{k}.

Proof. Let $\{\alpha\}$ be an uncountable collection of sequences of positive integers such that in two different ones some integer occurs more in one than in the other. For any fixed integer $k \geqq 3$, let $\left\{D_{\alpha}\right\}$ be the corresponding uncountable sequence of almost polyhedral wild ($k-1$)-cells in E^{k+1} constructed as above. Suppose for some

$$
\alpha=\left\{n_{1}, n_{2}, n_{3}, \cdots\right\} \neq \alpha^{\prime}=\left\{n_{1}^{\prime}, n_{2}^{\prime}, n_{2}^{\prime}, \cdots\right\}
$$

there exists a homeomorphism h of E^{k+1} onto itself such that $h\left(D_{\alpha}\right)=$ $D_{\alpha^{\prime}}$. Since each of D_{α} and $D_{\alpha^{\prime}}$ is locally flat except at $\left\{q_{\alpha} \cup \bigcup p_{n_{i}}\right\}$ and $\left\{q_{\alpha^{\prime}} \cup \bigcup p_{n^{\prime} i}\right\}$, respectively, and q_{α} and $q_{\alpha^{\prime}}$ are limit points of the nonlocally flat points, it follows that $h\left(q_{\alpha}\right)=q_{\alpha^{\prime}}$ and for each $i=$ $1,2,3, \cdots, h\left(p_{n_{i}}\right)=p_{n^{\prime} j}$ for some j. Since some integer in α occurs more in α than it does in α^{\prime}, there is an integer n_{i} such that $h\left(p_{n_{i}}\right)=$ $p_{n^{\prime} j}$ and $n_{i} \neq n_{j}^{\prime}$. But by Theorem 3, this is impossible and hence the result follows.

References

1. W. R. Alford and B. J. Ball, Some almost polyhedral wild arcs, Duke Math. J. 30 (1963) 33-38.
2. J. J. Andrews and M. L. Curtis, Knotted 2-spheres in the 4-sphere, Ann. of Math. 70 (1959), 565-571.
3. R. H. Crowell and R. H. Fox, Introduction to Knot Theory, Ginn and Company, 1963.
4. P. H. Doyle and J. G. Hocking, Proving that wild cells exist, (to appear).
5. R. H. Fox and O. G. Harrold, Topology of 3-Manifolds and Related Topics, M. K. Fort, Jr., Editor, Prentice Hall 1962.

Received January 30, 1968. Work on this paper was supported by NSF Contract GP 6776.

Rice University

AND
University of Utah

