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GROWTH TRANSFORMATIONS FOR
FUNCTIONS ON MANIFOLDS

LEONARD E. BAUM AND GEORGE R. SELL

In this paper we look at the problem of maximizing a func-
tion P defined on a manifold M. Although we shall be pri-
marily concerned with the case where M is a certain polyhedron
in a Euclidean space Rn and P is a polynomial with nonnegative
coefficients defined on Rn, some of our results are valid in
greater generality.

In § 2 we describe the general behavior of a growth transforma-
tion of P in the vicinity of a local extremum. These results are of
a topological nature and can be thought of as a topological—dynamical
description of growth transformations.

In § 3 we turn our attention to a particular class of growth
transformation which arise for polynomials with nonnegative coefficients.
We shall prove the following result, which is the main theorem of
this paper:

THEOREM. Let M U dM denote the manifold with boundary given
by x = (xiή) where

j :xi5 ^ 0 and Σ®ϋ = If

where qu , qk is a set of nonnegative integers. Let P be a homo-
geneous polynomial in the variable fan}, with nonnegative coefficients.
Let J7~ — ά7~P : M-* MU dM defined by y — ̂ ~P(x) where

Then

(1) P(x) ^ P(ίjrP(α0 + (1 - t)x) , (0 ^ t ^ 1, x G M) .

The proof of this is based on a suitable modification of an argu-
ment of L. E. Baum and J. A. Eagon, cf., [1].

We also study the problem of extending the mapping ^~P to the
boundary dM in such a way that it is continuous. These results are
stated in Theorem 7. It is a consequence of this that J7~P maps
neighborhoods of a local maximum into themselves even if the maximum
is on the boundary.

In § 5 we examine other growth transformations that are related

211



212 L. E. BAUM AND G. R. SELL

to the mapping ^ " P . By using an argument suggested by Professor
0. Rothaus we are able to extend the theorem stated above to arbitrary
(nonhomogeneous) polynomials with positive coefficients.

2 Growth transformations* In this section we shall investigate
the behavior of a growth transformation in the vicinity of an isolated
maximum.

DEFINITION. Let P be a continuous function defined on a C°°-
manifold M. We say that a continuous mapping σ:M-+M is a
growth transformation (for P) if

( 2 ) P(x) ^ P(σ(x)) , (x 6 M) .

If P is a C2-function we say that σ is a proper growth transforma-
tion (for P) if (2) holds and

( 3 ) P(x) = P{σ(x)) implies that x is a critical point of P,

which means that grad P = 0 at x. A growth transformation σ is
said to increase P homotopically if there exists a continuous mapping

S t(α):[0,l] x M >M

such that

( i ) So(x) = α

( 4 ) (ii) ^(a?) = σ(a?)

(iii) For each tf0^t^l,St is a growth transformation for P.

A continuous function P is said to have a iocαi maximum at g
if there is a neighborhood F of g with

for all se in V. If P is a C2-function, the point q is called an isolated
maximum if it is a local maximum of P and an isolated critical point.

We will describe the asymptotic behavior of the iterates of a
growth transformation. Let σ be a growth transformation for P and
define the fixed value set FPσ by

( 5 ) FPσ = {xeM: P(x) = P(σ(x))} .

We say that a set Kcz M is invariant if 6r%(x) e iΓ for w ^ 1, when-
ever xe K.

THEOREM 1. Let P be a real-valued continuous function on a
C00-manifold M and let σ:M—>M be a growth transformation for
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P. Let K be the largest invariant subset of the fixed value set FPσ

given by (5). If a point x in M has the property that σn{x) remains
in a compact for n^l, then

σn(x) > K as n > oo .

Proof. Let xeM be a point with the property that {xy σ(x),
o\x), •••} lies in a compact set in M. Since P(σn(x)) is increasing in
n, it follows that lim,^ P(σn(x)) exists, say that

P(σn(x)) • α a s n • oo .

Now let y e M be a limit point of a subsequence {σ%i(x)}. Then by
the continuity of P we have

P(σ**(x)) > P(y) = α .

However σni+1(x) —> σ(y) and in general σni+k(x) —> σk(y). From this it
follows that P(σk{y)) = α, k = 0,1, , in other words, y e K, which
completes the proof of Theorem 1.

By demanding that the growth transformation σ leave the local
maxima of P fixed, we are able to assert something about the behavior
of σ in the vicinity of a local maximum.

THEOREM 2. Let P be α reαl-vαlued C2-function on α C°°-manifold
M and let σ:M—*M be a growth transformation for P. Assume
that every local maximum of P is a fixed point for σ. Then for
every local maximum q of P there is a neighborhood V with σ( V) c F.
//, in addition, σ is a proper growth transformation and q is an
isolated maximum than V can be chosen so that

σn(x) > q as n • oo

for every xe V.

Proof. Let q be a local maximum of P and let V be the con-
nected component of

{x : P(x) > P(q) - η}

that contains q, where η > 0 is fixed. Furthermore, we can choose
η so that V, the closure of F, is compact. Now define

A = {xe V:σ(x)e V)

B = {xe V:σ(x)ί V} .

It is clear that Af] B = 0 and V = A U B. Furthermore, B is an
open set since σ is continuous. The set A can be written as



214 L. E. BAUM AND G. R. SELL

A = {xe V:σ(x)eV}

since σ is a growth transformation, that is the set

{xeV: σ(x) e V - V} = {xe V: P(x) = P(q) - ΎJ)

is empty. It follows then that A is an open set. Since V is con-
nected one of the sets A or B must be empty. However, σ{q) — q,
therefore B = 0 . Hence V — A and σ( V) c F. (It also follows that
σ{V)a V.)

If q is a maximum, that is an isolated critical point, then η can
be chosen so that V contains no critical point of P other than q. If K
is the largest invariant subset of FPσ which is given by (5), then
K f] V = {q}. Hence by Theorem 1, if x e F, then σn(x) -*q as n —• oo.

A conclusion similar to that of Theorem 2 is possible under a
slightly different hypothesis.

THEOREM 3. Let P be a real-valued continuous function defined
on a C°°-manifold M and let σ : ikf —> M be a growth transformation
for P. Assume that σ increases P homotopically and let St(x) satisfy
(4). Then for every local maximum q of P there is a neighborhood
V with St(V) c V, 0 ^ t ^ 1. //, in addition, σ is a proper growth
transformation and q is an isolated maximum, then V can be chosen
so that for every x e V

σn(x) > q as n > oo ,

in particular σ{q) — q.

Proof. Let q e M be a local maximum of P and let V be the
component of {x : P(x) > P(q) — rj) that contains q, where η > 0 is
fixed. We also choose η so that V is compact. Now fix x in V.
Then

( 6 ) P(q) ~r]< P(x) ^ P(St(x)) , 0 ^ t<S 1 .

Let G = {St{x): 0 <; t <£ 1}, then G is a connected set since St(x) is
continuous in t. By (6) we see that the set

{St(x) eV-V} = {St(x): P(St(x)) = P(q) - y}

is empty. Thus, G = (G Π V) Ό(G n (M - V)). Since G is connected
one of the sets G Π V or G Π (M — V) is empty. However, xeGf] V.
Hence G c F, that is St( V) c F for 0 ^ t ^ 1. The remainder of the
proof follows that of Theorem 2.

In Theorems 2 and 3 one is able to assert that the neighborhood
V is a disk provided the function P is a C2-function, cf. [4]. Also,,
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these results are really " local" results, so they are still valid even
if σ and P are defined only in a neighborhood of the maximum q.
And, finally, they have obvious extensions to manifolds with boundary.
Another refinement of Theorem 3, is the following.

THEOREM 4. Let P be a real-valued continuous function defined
on a C"-manifold M and let σ : M—>M be a growth transformation
that increases P homotopically. If q is an isolated maximum of P, then
σ(q) = q.

Proof. Let Vv be the component of {x : P(x) > P(q) — η) that
contains q. It was shown in the proof of Theorem 3 that St(Vη)S Vη.
By letting ^ 0 we conclude that σ(q) — q.

The next result seems rather interesting. It asserts that, under
appropriate conditions, every growth transformation increases P homo-
topically in a neighborhood of an isolated maximum.

THEOREM 5. Let P be a real-valued C2-function on a C°°-manifold
M and let σ : M—> Mbe a growth transformation. Assume that every
isolated maximum of P is a fixed point of a. Then for every
isolated maximum q there is a neighborhood V such that σ increases
P homotopically in V.

Proof. Let η > 0 be chosen so that the component V = Vη of
the set {x: P(x) > P(q) — η] that contains q has the property that V
is compact and V contains no critical points of P other than q. Now
consider the differential equation

x' — — grad P

in Vv, and let φ(x, t) denote the solution that satisfies φ(x, 0) = x.
It is easy to show that for xe Vv, φ(x, t) e Vv, for t ^> 0, and φ(x, t) —>q
as t —• oo. Now choose ε, 0 < ε < η, so that, in the local coordinate
system at g, the convex hull of Vε lies in Vv. We now define a
mapping h : Vη —• Vε by

h(x) = x, if x G Vε

h(x) - φ(x, Tx), if xeVη- Vε,

where φ(x, Tx) is the first point at which the trajectory φ(x, t) meets
Ve. Since the level surface P(x) = P(q) — ε is transverse to the flow
φ(x, t), it follows that h is continuous. Also the mapping

g : Vη x [0,1] -> Vκ
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given by

g(x, τ) = τh(σ(x)) + (1 - τ)h(x)

is continuous. Now define Sτ(x), 0 <£ τ ^ 1 and xe VV9 to be that
point in Vv on the trajectory φ(g(x, τ), t) that satisfies

P(St(x)) = τP(σ(x)) + (1 - τ)P(s) .

It is clear that Sr(x) is continuous, and it is easy to verify that Sτ(x)
satisfies (4). This completes the proof of the theorem.

It is apparent from the proofs that if σ is a proper growth
transformation then the region of attraction of an isolated maximum
q is " large". More precisely, let η > 0 and define Vv to be the
component of {x : P(x) > P(q) — η} that contains q. We have seen
that the region of attraction for q will contain every Vv that has
the property that the closure Vη is compact and contains only one
critical point of P, which must necessarily be the point q. If we let
7]Q > 0 be the first real number for which VVo contains more than one
critical point of P then since

this implies that the region of attraction always contains V v It should
be emphasized that VVo depends only on the function P and not on
the growth transformation σ.

3* Homogeneous polynomials and the transformation
Let 9i, •••,?* be a set of nonnegative integers with Σ&i = n. Let
M U dM denote the set of all vectors

{x = (Xij), i = 1, , k, j = 1, , q%)

such that

Xij >̂ 0 and Σ®n = 1
i=i

The set M U dM is a polyhedron in Rn. We shall let M denote the
interior of the polyhedron, that is

M = {(x{j) eMΌdM: xiά > 0}

and dM is the boundary. The space M is a manifold of dimension
n — k.

Let P:Rn-+R be a homogeneous polynomial in the variables (xiS)
with positive coefficients. We define a mapping
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by y = J^~P(x) where

( 7 ) y.. =

Note that the range of ^ is contained in M unless P does not depend
on one of the variables xi3-.

In [1] it was shown that P(x) ^ P(^~(x)) for all xeM and
equality held if and only if ^~(x) — x. In other words, the transfor-
mation ^p is a growth transformation for P. We now can assert a
stronger result.

THEOREM 6. The transformation J7~P increases P homotopically.
More precisely, if P is a homogeneous polynomial in (xiS) with posi-
tive coefficients and S~P — J7~ is given by (7), then

( 8 ) P(x) ^ P(tJT(χ) + (1 - t)x) , (x 6 Λf, 0 < t g 1) .

Moreover, equality holds in (8) if and only if J7~(x) = x.

Note that the transformation ^~P is determined by the first
derivatives of P only. In a sense it is similar to moving in the
" gradient direction ", which also depends on only the first derivatives
of P. While moving in the gradient direction will increase the value
of P, this is valid only for small steps, and there is no way—without
considering second derivatives—for determining the size of the step.
On the other hand, the size of the step is completely determined by
the first derivatives above for the transformation

Proof. One can write P(x) = ΣaCama(x) where the coefficients Ca

are positive and ma(x) is a monomial of degree d, that is

U

where the aiS are nonnegative integers with Σiy 3aiά — d. We shall
let a — (aiά) be the index set for the summation defining P. We note
now a few identities which will be needed later.

4 Σ * dP

d i,3 dxiό

dP
( 9 ) Σ oίiόCama{x) = xiό

ma

where
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y

By the inequality of geometric and arithmetic means [3, p. 16] we get

(10) ma(x)1/d ^ -~ Σ <XiPii
(I i,3

Let t, 0 ^ t ^ 1, be fixed and let y — tJ7~{x) + (1 — t)x. Also
define Qa by

(11) P(x) = Σ {Cama(y)Y'd+1Q«
a

By applying Holder's inequality [3, p. 21] to (11) we get

\dj(d+l)

(12) P(x) ̂  P(ί/) ι / ί ί+^Σ Q/ + 1 / Ί

Now

Σ Qad+lld = Σ Cama(

(13) = Σ Cama(

where we apply (10) in the last step.
By substituting for yiά in (13) we get

Σ QJd+ί)ld ^ \ Σ Cama(x) Σ Σ aj-
a da i 3 LtJr + (1 - t)ΣkxikPik

where

Now by interchanging the order of summation and using (9) we get

(14) Σ QJd+1)Id £ -j Σ ( Σ χ»Pik)\Σ> +τ> _^nίjPiiy—p-1
d i V fc /Li ί P ^ + (1 - t)ΣkxikPikJ

However, by Lemma 1 (see below) with ad — %ijPiJy bό = tPid and
Cj = (1 — t)ΣkxίkPik1 we see that the quantity in the brackets in (14)
is bounded by 1 for 0 < t < 1, and by continuity it is bounded for
0 <̂  t ^ 1. Hence (14) becomes
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(15) Σ QJi+1Ud ^ 4 Σ Σ χtk
a Cί i k

By putting this into (12) we get

P(x) rg P(yyiid

which implies that P(x) ^ P(y), and this completes the proof of the
theorem.

LEMMA 1. Let aj,bj,cjfj = l, fn, be positive numbers with
ΣUaj/bj ^ IIP and ΣU^i ^ VQ, then XU^IΦj + c) ^ V(P+ Q).

The proof of this is a straightforward induction argument and we
will omit the details.

The following consequence of Theorems 3 and 6 asserts that the
mapping J7~P cannot leave a " local hill". Furthermore, we are able
to conclude something about the region of attraction for an isolated
local maximum of P.

COROLLARY. Let P be a homogeneous polynomial in the variables
(Xij) with positive coefficients and let qe M be an isolated local maximum
of P. Then there exists a neighborhood V of q such that J7~(F)cF
and for every x e V

^~n(x) > q as n • oo .

Observe that this corollary can also be obtained from Theorem 2
since J7~ is a proper growth transformation and ^(x) — x if and
only if x is a critical point of P.

The transformation ^ P can, in a limited sense, be extended to
the boundary dM

where each Ni3 U 9^- is a polyhedron defined by

N{j U dNij = {xeMUdM: xi5 = 0} .

Following our original convention, we shall let NiS denote the interior
of Nij U dNij and dNij the boundary.

THEOREM 7. (A) The transformation ^ P on M can be extended
to be continuous, and in fact C°°, on

(B) ^~P can also be continuously extended to any isolated local
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maximum q of P on dM by the definition. J7^P(q) = q.
(C) The extended transformation ^ P still obeys the inequality

P(x) ^ P(t^P(x) + (1 - t)x) , (0 ^ t ^ 1) .

The proof of this theorem and the following corollaries will be
given at the end of the paper.

In an example below we will show that in general J7~P cannot be
continuously extended to all of dNi3 . This occurs when a saddle point
of P lies on dNi3 .

Note that if a local maximum q lies on dNi3, then statement (B)
above does not assert that ^ can be extended to a neighborhood of
q in M (J dM.

COROLLARY 1 (A). Let P be a homogeneous polynomial in the
variables (xiά) with positive coefficients and let q e \Ji3 Ni3 be an
isolated maximum of P on the boundary dM. Then there exists a
neighborhood V of q, such that ^ ( F ) c F , and for every xeV

Jfn(x) > q as n > oo .

(B) If q £ \Jij dNi:i is an isolated maximum of P, then there is a
neighborhood Vofq in M{J dM such that for every x e V Π (M U U i-W y)

J^Γn{x) > q as n > oo .

COROLLARY 2. Let q e Ni3 be an isolated local maximum of P
and let xe M U dM a point in the domain of attraction of q. Let
yn = J7~n(x) have coordinates (y"8). Then yΐ3 ~* 0 as n—* oo. Further-
more, if yn

X3 is sufficiently small, say that yn

i5 < δ, then we can
replace yn with y where yi3 = 0, | yrs — yn

rs \ <£ d and ^~k{y) ~> q as

That is we can set the ij component of yn equal to zero without
destroying the convergence property. It should be noted that we do
assume q to be an isolated maximum of P in MU dM. If q is only
an isolated maximum on dM and not on M U dM, then it will still be
a critical point of P, but it now will act as a saddle point in the
discrete flow induced by J?~. A simple example of this phenomenon
is given by the polynomial

P(xL1 x2iylf y2) = xtx2 + y,y2

on

M U dM = {(xlt x2, y19 y2): x{ ^ 0, yt ^ 0, i = 1,2, xx + x2 = l,Vl + y2 = l} .
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The points (J, £, 0,1), (£, £, 1, 0), (0,1, £, i) and (1, 0, £, £) are saddle
points for ^ and they are local extremum for P on dM, but are not
extremum on M U 3ikf.

4* An illustrative example* Let M U dM be the subset of R3

given by

{(xlf x2i x3) '.x^O and Σx{ = 1}

and let P(a?) = x\ + 4τ2x3. Then on M, is given by

2x2x3 \p y

The range of ^ is then contained in the set

{(xl9 xz, x3) e M U dM: x2 = x3}

Separatrix for
the vector
field

Separatrix for
gradient vector
field

Separatrix for
the transformation

Figure 1.

The critical points of P on M U dM are:

(1, 0, 0), (0,1, 0), (0, 0,1), (0, h i), (h h i) .

The points (1, 0, 0) and (0, £, i) are local maxima, (0,1, 0) and (0, 0,1)
are local minima, and (^, i, i) is a saddle point. The set of points

{(x19 x2, x3)eM:xl = 4x2x3}

is mapped onto (i, i , i) by ^ ~ . This forms a separatrix for the
domains of attraction of (1, 0, 0) and (0, £, £). If x\ > £x2xz, then
^~n(x) — (0, i , i), and if x\ < Ax2x3 then ^n{x) -> (1, 0, 0).

By taking limits from the inside, as indicated in Theorem 7, J7~
can be extended to all boundary points other than (0,1, 0) and (0, 0,1).

is defined and continuous even at the corner (1, 0, 0) in this case.)
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The corners (0,1, 0) and (0, 0,1) are points of discontinuity of
since there are points arbitrarily close to either that are mapped near
(1, 0, 0) and other points that are mapped near (0, £, i).

Finally let us show that the function of t P(t^~(x) + (1 - t)x)
may fail to be monotone in t. We use this example, which is due to
Blakely [2]. Let x0 = (4/16,1/16,11/16)

^"(4/16,1/16,11/16) = (8/30,11/30,11/30) .

Now

| P ( ί ^ W + (1 - t)x) U = grad P U . {jT{x) - x)',
at

and by a direct computation

grad P | t = 1 (^"(a?0) - x0) < 0 .

Hence P(t^~(x0) + (1 — t)x0) is not monotone.

5* Growth transformations related to ^~P. Let US, for the
moment, consider a special case of the polyhedron M U dM discussed
in § 3, namely where k = 1. Then M U dM is the set of vectors
x — (χj)9 j — ly . . .f n such that x5 ^ 0 and Σ?=i χs = l I n Theorem
3, when we were studying the behavior of the transformation ^~P

generated by a homogeneous polynomial P, we were only interested
in the behavior of P on the polyhedron M U dM. Even though P is
fixed on ilf (J dilf, its extension to Rn is not unique. As a matter of
fact, for every integer m ^ 0, the polynomial Q(x) = (ΣjXj)mP(x) is
homogeneous and agrees with P on M U 9ΛΓ. However, since the
partial derivatives dPjdxt and dQ/dXi differ, the transformation ^ j ,
and S'q generated by P and Q differ. A direct computation shows
that the transformation generated by Q is given by

(16) J^> - - H 2 — I +
d + m
d + m a + m

where / denotes the identity and d is the degree of P. Now (16) is
valid for every integer m ^ 0, and if we set t = d(d + m)~\ (16)
becomes

- ί)J.

By using the fact that the transformation J7~P is a growth trans-
formation, cf. [1], we can give a partial proof of (8). Indeed,

P(X) = Q(X) ^ Q(^-Q(x)) = P(.jrQ(x)) = P(t^P{x) + (1 - t)x)

provided t — d(d + m)"1 where m is an integer.
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It is also interesting to note that when m is large, the trans-
formation *5Γq is a local homeomorphism since the jacobian is (approxi-
mately) m(d + m)"1. In fact, it is not hard to show that ^~Q is a
homeomorphism. This suggests that one may be able to use the
topological-dynamical theory of discrete flows in order to study the
asymptotic behavior of ^~Q(X) when there are nonisolated singularities
for P, or Q.

In the general case, where

M[jdM={x = (Xij):xiS^0, ΣΦ*IVH = 1, < = 1, •••, fc}

the same method yields an improvement of Theorem 6. We are able
to conclude not only that

P(xiά) ^ P{(1 - t)(xiS)

but also that

0 ^ tt ^ 1 , i = 1, ...,fc ,

that is, not only is the number P(x) smaller than (or equal to) the
value of P at any point along the line joining (x) to ^~P(x), but P(x)
is also less than (or equal to) the value of P at any point of the k-
dimensional rectangle determined by (x) and ^~P(x).

The proof of this fact is obtained by applying the original in-
equality [1] to the polynomials

frii) = Π ( Σ XiiY
i=l \j=l J

for integers ni while noting that P and Q agree on M U dM.
Another interesting consequence of this observation is that we

can define proper growth transformations for nonhomogeneous poly-
nomials with positive coefficients.

THEOREM 8. Let P be a polynomial in the variables {xiβ) with
positive coefficients. Then P agrees with a homogeneous polynomial
Q with positive coefficients on the manifold M U dM and the trans-
formation J7~Q is a proper growth transformation for P, in fact

P(x) £ P(t^~q{x) + (1 - t)x) , (0 < t ^ 1 , x 6 M) ,

where equality holds if and only if ^~Q{x) = x.

Proof. Write P in the form

P = Ho + H, + + Hd
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where Hi is a homogeneous polynomial of degree I. Let

Q - i

then Q = P on JlίU 3M. The remainder of the theorem follows from
Theorem 6. Observe that Q is not unique since there is great free-
dom in choosing the multipliers of the H{.

Finally, the method of proof of this section can be used to extend
the basic inequality (10) for homogeneous polynomials with positive
coefficients to all polynomials with positive coefficients. We are grate-
ful to Oscar Rothaus for this observation.

THEOREM 9. Let P be a polynomial in the variables

{(xid): xi3 ^ 0 Σy=i %i, = 1 , i = 1 , , a?}

with nonnegative coefficients. Let

y-J/V I 1L < /Ί'7* I
U tλj A A I—''' — -1 Utk/AT. —«

TΛβw

P(α?) ^ P((l - ί)α + tjr~p(χ)) , (0 < t ^ 1) .

Furthermore, equality holds if and only if J^~P(x) — x.

Proof. We write P(x) in the form P(x) = Σf=ô SΓi(̂ ) where iίj
is a homogeneous polynomial of degree d. Now we introduce some
dummy variables yu y2 and enlarge the domain M U dM. That is, let
N U 3iV be the domain

{ten, Vu 2/2) : (^ίi) eMUdM.y,^ 0, τ/2 ^ 0, ^ + y2 = 1}

and consider the polynomial

Q(x, 2/1,2/2) = Σ ^(^(2/1 + ?/2)
d-z

Q is a homogeneous polynomial with nonnegative coefficients and with
yx and y2 fixed, Q agrees with P on M U 3Λf. Furthermore, we can
apply Theorem 6 of this paper to Q. Since

^ : . _
dXij Lk=ι %h dxik J

OX A A L_& = 1 OX A A J
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and

i dyι

it follows that y1 and y2 are fixed. Hence

P(x) = Q(x, y19 y2) ^ Q(t^-Q(x, ylt y2) + (1 - f)(x, yu y2))

= Q(tj7~P(x) + (1 - t)x, ylf y2) = P(t^~P(x) + (1 - t)x) .

Furthermore, strict inequality holds for 0 < t si 1 unless

^ ( a , 2/I, 2/2) = (&, 2/i, 2/2) ,

that is, unless S^>(x) = a?.

6* Proof of Theorem 7 For clarity we consider first the
special case where there is only one restraint equation. Let

= {x = (xj): Xj ^ 0 and

Let P5 = dP/dxj. Then

is C°° on the subset of M U 3M where P Φ 0, and in particular is
continuous on M U dM at any point where P Φ 0 including points on
the boundary 3ikf. Therefore, J^~(x) is well defined on any local
maximum of P with respect to M U dM whether this local maximum
is on dM or not, since P Φ 0 at a local maximum.

Since P has positive coefficients it has no zero in M unless P = 0.
On the interior of the boundary dM, P can vanish only if P is of the
form P = x)Q where Q is homogeneous of degree d — I and does not
have Xj as a factor. Hence Q Φ 0 in the interior of the face xά — 0.
In this case P Ξ O O Π the face xd — 0 and J7~ is continuously extended
to the interior of the face xi = 0 by

dQ

= l/d , i = 3 .

However, P can vanish on dNtj without having a common factor
and therefore ά/~ cannot generally be extended to dNiά. For example,
on the domain

M U dM = {(&, y , z ) : x + y + z = l,x,y,z}>0}

the function P(α;, ?/, z) = z2 + 4xy vanishes at z = x = 0, y = 1 although



226 L. E. BAUM AND G. R. SELL

P has no common factor and in fact <f?~P cannot be continuously
extended to z = 0, x = 0, y = 1. (See the example of § 4.)

More generally, the transformation ^\

J/ (x)ij = XijPiλ Σ χikPik

(where Piά — dP/dXij) on the domain

M U dM = {(&„) : xiS ^ 0, Σ xiS = 1, i - 1, . . . , fc}

is well defined and C°° on the set where no denominator ΣkxikPik

vanishes. In particular, this is true in the interior M if we assume
P depends on at least one of each set

^ = {^^' = 1 •••?<}* = 1,2, . . . , & .

(If no term xiQJ, j = 1 qio appears in P then we consider j7~P is
acting on the reduced domain without the factor

K i ^ o, Σ χi0, = i}.)

Now 3Jlf = Uwo^o<oU3ΛΓW o, where

^Oio = {(*«) : χioh = °» »« ^ ° f o r <^ i> ^ <Λ, io>} .

Let J?ίt be the sum of all terms of P that do not involve any
factor xiLJ, j = 1, , qh. Then for any <ΐ0, io> including ί0 = iίy P can
be expressed as

where Q does not have a common factor xioJQi and hence does not
vanish on Nio3 Q. Using this decomposition one can show that J7~ can
be continuously extended to NίQJQ as follows:
If ΣkxikP Φ 0 on Nioh, then

If ΣiXikPik = 0 on ΛΓί i o we consider two cases, i =̂  i0 and i = i0.
(a) If i Φ i0, then ΣkxikQik Φ 0 and we define

(b) If ΐ = i0, and ΣkxikQik Φ 0 we define

(c) If ί = i0, and ΣkxikQίk — 0, we define



GROWTH TRANSFORMATIONS 227

: χ . ύ 3 . > 0, j Φ i 0 , a n d j T ~ : xioh > 1 .

At a local maximum on \Jί3 dNijf while P > 0, this does not
obviously imply that Σ i t i ^ dPjdx^ Φ 0 for each i. Hence a proof
that J7~ can be extended to be continuous at a local maximum of P
is most easily made by a route other than that used for the special
case where there is a single restraint equation. We proceed as follows:
Assume that all variables xiά appear in P. (Otherwise the discussion
proceeds in a reduced space.) Then ^ P maps M into M, and for
any point x = (xiS) in ikf, the value of P at x is smaller than (or equal
to) the value of P at any point along the line joining x to J7~{x).
If x° is an isolated local maximum of P in M U δikf, whether on the
boundary dM or not, then for all sufficiently small ε > 0, the trans-
formation ^ maps the connected component of

{(x) I P(x) > P(x°) - ε}Γ\M

surrounding x° into itself. Since these sets form a base for the
neighborhoods about x°, J7~ can be extended to be continuous at (x°)
by defining ^~(x°) = x\

Part C of Theorem 7 follows from the known inequalities for points
in M and standard limiting arguments.

Corollaries 1 and 2 to Theorem 7 are now direct applications of
the above arguments.

We are grateful to the referee for some helpful comments and
suggestions.
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