THE PRODUCT FORMULA FOR THE THIRD OBSTRUCTION

Robert E. Mosher

Abstract

Let ξ be an $S O(n)$-bundle with $n>3$; let p : $E \rightarrow B$ be the projection in the associated ($n-1$)-sphere bundle. In this note we express the third obstruction to a cross-section of p as a tertiary characteristic class and prove a product formula for the behavior of this class under Whitney sum.

The first obstruction is the Euler class $\chi(\xi) \in H^{n}(B ; Z) . \quad \chi$ is a primary characteristic class and satisfies $\chi=j^{*}(U)$, where $j: B \rightarrow T$ is the inclusion into the Thom space and $U \in H^{n}(T ; Z)$ is the Thom class. Whenever $\chi(\xi)=0$, a secondary characteristic class

$$
\alpha(\xi) \in H^{n+1}\left(B ; Z_{2}\right) /\left(S q^{2}+w_{2} \smile\right) H^{n-1}(B ; Z)
$$

is defined. α is the second obstruction and satisfies

$$
\alpha=\left(S q^{2}+w_{2} \smile\right)_{j}(U)
$$

Thus α is obtained by applying a twisted functional primary operation to U. The third obstruction $\gamma(\xi)$, defined whenever $\alpha(\xi) \equiv 0$, will be expressed as the value $\Phi_{j}(U)$ of a certain twisted functional secondary operation.

It is immediately plausible to consider as $(n+1)$-ary characteristic classes the values of certain functional twisted n-ary operations on U, defined when appropriate n-ary characteristic classes vanish. We hope to deal with such classes systematically in a future paper, but the treatment is expected to be more complicated technically; hence $\gamma(\xi)$ is presented here as an illustrative example in a straightforward setting.

The paper is organized as follows. Section 2 is a statement of results, while in $\S 3$ we define $\gamma(\xi)$. The Peterson-Stein formula and the proof of (2.2) appears in $\S 4$; the product formula is obtained in $\S 5$. We conclude in $\S 6$ with an example.

Throughout the paper all cohomology is taken with Z_{2} as coefficients unless otherwise indicated.
2. Statement of results. Suppose ξ is an $S O(n)$-bundle with $n>3$ and suppose $\chi(\xi)=0$. Let

$$
\alpha(\xi) \in H^{n+1}(B) /\left(S q^{2}+w_{2} \smile\right) H^{n-1}(B ; Z)
$$

be the secondary characteristic class given by $\alpha(\xi)=\left(S q^{2}+w_{2} \smile\right)_{j}(U)$
[5, 6, 7, 9]. By [9], $\alpha(\xi)$ is the second obstruction to a cross-section in the associated sphere bundle.

Suppose now $\alpha(\xi) \equiv 0$. Then in § 3 is defined a tertiary characteristic class $\gamma(\xi) \in H^{n+2}(B)$ modulo an indeterminacy Q, given in (3.6). γ is natural in the following sense.

Proposition 2.1. $f: \xi^{\prime} \rightarrow \xi$ be a map of $S O(n)$-bundles. Suppose $\gamma(\xi)$ is defined. Then $\gamma\left(\xi^{\prime}\right) \equiv f^{*}(\gamma(\xi)) \bmod Q\left(\xi^{\prime}\right)$.

In $\S 4$ we establish the following.
Proposition 2.2. $\gamma(\xi)$ is the third obstruction to a cross-section of p.

For product farmulas we now assume ξ and ξ^{\prime} are $S O(n)$ and $S O\left(n^{\prime}\right)$ bundles over B and B^{\prime} respectively such that $\alpha(\xi)$ and $\alpha\left(\xi^{\prime}\right)$ are defined. Let $\xi \oplus \xi^{\prime}$ be the external Whitney sum over $B \times B^{\prime}$. By the Whitney formula for secondary characteristic classes [9], $\alpha\left(\xi \oplus \xi^{\prime}\right) \equiv 0$ and thus $\gamma\left(\xi \oplus \xi^{\prime}\right)$ is defined. In $\S 5$ we prove the following.

PRoposition 2.3. $\gamma\left(\xi \oplus \xi^{\prime}\right) \equiv \alpha(\xi) \otimes \alpha\left(\xi^{\prime}\right)$ modulo the total indeterminacy.

Taking $B=B^{\prime}$ and writing $\xi+\xi^{\prime}$ for the internal Whitney sum, we obtain the following corollary to (2.1) and (2.3).

Proposition 2.4. $\gamma\left(\xi+\xi^{\prime}\right) \equiv \alpha(\xi) \smile \alpha\left(\xi^{\prime}\right)$ modulo the total indeterminacy.
3. Definition of $\gamma(\xi)$. Let A be the $\bmod 2$ Steenrod algebra. In the semi-tensor product $H^{*}(B S O) \odot A$ [3] we have, in the terminology of [11], the relation

$$
\begin{equation*}
\left(1 \otimes S q^{2}+w_{2} \otimes 1\right)\left(1 \otimes S q^{2}+w_{2} \otimes 1\right)=0 \tag{3.1}
\end{equation*}
$$

over Z. Let $\beta=1 \otimes S q^{2}+w_{2} \otimes 1$. According to [4] and [11], (3.1) defines for each n sufficiently large ($n>2$ suffices in this case) a twisted secondary operation $\Phi^{(n)}$. $\Phi^{(n)}$ is defined on an n-dimensional integral cohomology class x of a space X, where $\beta x=0$ and $H^{*}(B S O) \times A$ acts on the cohomology of X via a vector bundle. The indeterminacy of $\Phi^{(n)}(X)$ is the subgroup $\beta H^{n+1}(X)$ of $H^{n+3}(X)$. While $\Phi^{(n)}$ is not uniquely determined by (3.1), computation in the universal example verifies the following for $n>2$.

Proposition 3.2. For each n, there exist precisely two distinct
operations $\Phi_{1}^{(n)}$ and $\Phi_{2}^{(n)}$ associated with (3.1); these operations are related by $\Phi_{1}^{(n)}(x)+\Phi_{2}^{(n)}(x)=S q^{3} x=w_{3} \smile x$.

Let U_{n} be the Thom class of the universal $S O(n)$-bundle γ_{n}. Another calculation checks the following.

Proposition 3.3. For each n, there is a unique choice of $\Phi^{(n)}$ such that $\Phi^{(n)}\left(U_{n}\right)=0$.

We now assume that $\Phi^{(n)}$ are so chosen and further note that $\Phi^{(n)}$ so chosen are compatible with coboundary, as is verified by consideration of the natural map $T\left(\gamma_{n-1}+1\right) \rightarrow T\left(\gamma_{n}\right)$ of Thom spaces.

Suppose now the $S O(n)$-bundle ξ satisfies $\chi(\xi)=0$ and $\alpha(\xi) \equiv 0$. Then U satisfies $j^{*}(U)=0, \beta(U)=0, \beta_{j}(U) \equiv 0$, and $\Phi(U)=0$ with zero indeterminacy. Under these circumstances one defines $\Phi_{j}(U)$ by the analogue for twisted operations of Peterson's generalization [8] of Steenrod's basic method [10], detailed below; one then defines $\gamma(\xi)$ as follows.

DEFINITION 3.4. $\gamma(\xi)=\Phi_{j}(U)$.
To define $\Phi_{j}(U)$, following Massey [2], consider the cohomology sequence of the pair (B, E) where B replaces the mapping cylinder of p. Since $\chi(\xi)=j^{*}(U)=0$, we may choose $a \in H^{n-1}(E ; Z)$ such that $\delta^{*}(a)=U$. Since $\alpha(\xi) \equiv 0$, a may be further assumed to satisfy $\beta(\alpha)=0$. Then $\Phi(\alpha)$ is defined and satisfies

$$
\delta^{*} \Phi(a)=\Phi\left(\delta^{*}(a)\right)=\Phi(U)=0
$$

Definition 3.5. $\quad p^{*}\left(\Phi_{j}(U)\right)=\bigcup \Phi(a)$ as a ranges over elements $a \in H^{n-1}(E ; Z)$ such that $\delta^{*}(a)=U$ and $\left(S q^{2}+w_{2} \smile\right)(a)=0$.

Proposition 3.6. The indeterminacy Q of $\gamma(\xi)$ is given by

$$
Q=\{\Phi(b)+\beta(c)\},
$$

where $b \in H^{n-1}(B ; Z)$ such that $\Phi(b)$ is defined and $c \in H^{r}(B)$.
(3.6) and (2.1) are now evident.
4. The Peterson-Stein formula and the proof of (2.2). Twisted secondary operations satisfy the usual Peterson-Stein formulas. Stated as (4.1), for simplicity in terms of absolute cohomology classes, is the one to be used.

Proposition 4.1. Let $f: Y \rightarrow X$ be a map compatible with the given structures of Y and X as spaces obtained from vector bundles. Let $x \in H^{n}(X ; Z)$ satisfy $\beta\left(f^{*}(x)=0\right.$. Then

$$
\Phi\left(f^{*}(x)\right) \equiv \beta_{f} \beta(x) \in H^{n+3}(Y) \bmod \beta H^{n+1}(Y)+f^{*} H^{n+3}(X)
$$

The proof of (4.1) is postponed to the end of this section. The functional operation β_{f} appearing in (4.1) is defined by the generalization of Steenrod's method as given in [7].

We now turn to the proof of (2.2). Consider the portion of the Moore-Postinkov tower for the associated sphere bundle to the universal $S O(n)$-bundle γ_{n} displayed in (4.2).

Diagram 4.2.

Let $\xi_{1}=q_{1}^{*}\left(\gamma_{n}\right)$ and $\xi_{2}=q_{2}^{*}\left(\xi_{1}\right)$. It then suffices to show $k_{2} \in \gamma\left(\xi_{2}\right)$. By [9] $k_{1} \in \alpha\left(\xi_{1}\right)$, while, by [1], $k_{2} \in \beta_{q_{2}}\left(k_{1}\right)$.

Consider now (4.3), induced by the bundle map $q_{2}: \xi_{2} \rightarrow \xi_{1}$.
Diagram 4.3.

Since $k_{1} \in \alpha\left(\xi_{1}\right)$, we may write $p_{1}^{*}\left(k_{1}\right)=\beta\left(a_{1}\right)$ for an appropriate $a_{1} \in H^{n-1}\left(E_{1}\right)$ such that $\delta^{*}\left(a_{1}\right)=U\left(\xi_{1}\right)$. Let $a_{2}=q_{2}^{*}\left(a_{1}\right)$. Then $\left(p_{2}^{*}\right)^{-1} \Phi\left(a_{2}\right)$ represents $\gamma\left(\xi_{2}\right)$.

On the other hand, since $k_{2} \in \beta_{q_{2}}\left(k_{1}\right)$, by naturality

$$
p_{2}^{*}\left(k_{2}\right) \in \beta_{q_{2}}\left(p_{1}^{*}\left(k_{1}\right)\right)=\beta_{q_{2}} \beta\left(a_{1}\right) .
$$

The result follows by (4.1), which yields $\beta_{q_{2}} \beta\left(a_{1}\right) \equiv \Phi\left(a_{2}\right)$.

Proof of (4.1). For this proof we adopt the notations of [11]. Let $p: E, Y \rightarrow Y \times K, Y$ be the universal example for Φ. Then a representative φ of $\Phi\left(p^{*}\left(c_{n}\right)\right)$ is defined in [11] by means of a certain relative transgression sequence for p by a formula $\varphi \in \mu^{-1} \alpha \tau^{-1} \beta\left(\iota_{n}\right)$. However, it is proved in [12] that this transgression sequence, in the range of dimensions considered, is equivalent to the cohomology sequence of the triple (M, E, Y), where M is the mapping cylinder of
p. Let $j: Y \times K, Y \rightarrow M, E$ be the inclusion. Translating the definition of φ to this sequence, we have $\varphi \in\left(\delta^{*}\right)^{-1} \beta\left(j^{*}\right)^{-1} \beta\left(c_{n}\right)$. But this last is precisely the definition of a representative of $\beta_{p} \beta\left(\iota_{n}\right)$. Thus (4.1) is valid in the universal example, and hence in general.
5. Proof of (2.3). We now consider bundles ξ and ξ^{\prime} such that $\alpha(\xi)$ and $\alpha\left(\xi^{\prime}\right)$ are defined; let $\xi^{\prime \prime}=\xi \bigoplus \xi^{\prime}$. Denote by Z the mapping cylinder of p. The following is proved in [7].

Proposition 5.1. There is a natural homeomorphism of pairs $Z^{\prime \prime}$, $E^{\prime \prime} \rightarrow Z \times Z^{\prime}, E \times Z^{\prime} \smile Z \times E^{\prime}$ extending the identity of $B^{\prime \prime}=B \times B^{\prime}$ and inducing a natural homeomorphism $T^{\prime \prime} \rightarrow T^{\prime \prime} \wedge T^{\prime \prime}$.

Now consider (5.2), in which the rows and the middle triangle are exact. The top row of (5.2) is obtained by splicing $\left(0 \rightarrow H^{*}(B) \rightarrow\right.$ $\left.H^{*}(E) \rightarrow H^{*}(T) \rightarrow 0\right) \otimes H^{*}\left(B^{\prime}\right)$ with $H^{*}(T) \otimes\left(0 \rightarrow H^{*}\left(B^{\prime}\right) \rightarrow H^{*}\left(E^{\prime}\right) \rightarrow\right.$ $H^{*}\left(T^{\prime \prime}\right) \rightarrow 0$), while the triangle is the exact sequence of the pair $E^{\prime \prime}$, $E \times Z^{\prime}$.

Diagram 5.2.

The proof of (2.3) is based on (5.2) as follows. Choose $a^{\prime} \in H^{n^{\prime}-1}\left(E^{\prime}\right)$ such that $\delta^{\prime *}\left(a^{\prime}\right)=U^{\prime}$. Let $a^{\prime \prime}=f^{*}\left(U \otimes a^{\prime}\right)$. Then $\delta^{\prime \prime *}\left(a^{\prime \prime}\right)=U^{\prime \prime}$. Further, $\left(S q^{2}+w_{2}^{\prime \prime} \smile\right)\left(a^{\prime \prime}\right)=0$, as calculation checks. Thus $\left(p^{\prime \prime *}\right)^{-1} \Phi\left(a^{\prime \prime}\right)$ is a representative of $\gamma\left(\xi+\xi^{\prime}\right)$.

On the other hand, $\Phi\left(a^{\prime \prime}\right)=\Phi\left(f^{*}\left(U \otimes a^{\prime}\right)\right)$ may be evaluated by (4.1). Computing, using the Wu formula [9] $\left(S q^{2}+w_{2} \smile\right)(a)=0$ and denoting by a any class in $H^{n-1}(E ; Z)$ such that $\delta^{*}(a)=U$, we have the following, in which $\alpha(\alpha)$ is the representative of α determined by α.

$$
\begin{aligned}
\left(p^{\prime \prime *}\right)^{-1} \Phi\left(a^{\prime \prime}\right) & =\left(p^{\prime \prime *}\right)^{-1} \Phi\left(f^{*}\left(U \otimes a^{\prime}\right)\right) \\
& =\left(p^{\prime \prime *}\right)^{-1} \beta_{f}^{\prime \prime} \beta^{\prime \prime}\left(U \otimes a^{\prime}\right) \\
& =\left(p^{\prime \prime *}\right)^{-1} \beta_{f}^{\prime \prime}\left[U \otimes \beta^{\prime}\left(a^{\prime}\right)\right] \\
& =\left(p^{\prime \prime *}\right)^{-1}\left(g^{*}\right)^{-1} \beta^{\prime \prime}\left[a \otimes \alpha^{\prime}\left(a^{\prime}\right)\right] \\
& =\left(p^{*} \otimes 1\right)^{-1}\left[\beta(\alpha) \otimes \alpha^{\prime}\left(a^{\prime}\right)\right] \\
& =\alpha(\alpha) \otimes \alpha^{\prime}\left(a^{\prime}\right)
\end{aligned}
$$

modulo indeterminacies.
This completes the proof of (2.3) and in fact of the following sharpening.

Corollary 5.3. Under the hypotheses of (2.3), let $\alpha(a)$ and $\alpha^{\prime}\left(\alpha^{\prime}\right)$ be representatives of $\alpha(\xi)$ and $\alpha\left(\xi^{\prime}\right)$ respectively. Then $\alpha(a) \otimes \alpha^{\prime}\left(\alpha^{\prime}\right)$ is a representative of $\gamma\left(\xi \oplus \xi^{\prime}\right)$.
6. An example. Let $\xi+1$ be the tangent bundle of $S^{4 q+1}$ and $\xi^{\prime}+1$ the tangent bundle of $S^{4 q^{\prime}+1}$ for $q, q^{\prime} \geqq 1$. By $[9], \alpha(\xi) \neq 0 \bmod 0$ in $H^{4 q+1}\left(S^{4 q+1}\right)$ and similarly for ξ^{\prime}. It follows by (2.3) that $\gamma\left(\xi \oplus \xi^{\prime}\right)$ is nonzero in $H^{4 q+4 q^{\prime}+2}\left(S^{4 q+1} \times S^{4 q^{\prime}+1}\right)$; the indeterminacy again vanishes. Thus $\xi \bigoplus \xi^{\prime}$ has no nonvanishing section.

This result can be obtained without the use of twisted operations, for the Whitney classes here vanish. That $\alpha(\xi) \neq 0$ reflects that $S q^{2} a$ generates $p^{*} H^{4 q+1}\left(S^{4 q+1}\right)$ in $H^{4 q+1}(E)$, while $\gamma\left(\xi+\xi^{\prime}\right) \neq 0$ reflects that $\Phi_{1,1}\left(a^{\prime \prime}\right)$ generates $p^{\prime \prime *} H^{4 q+4 q^{\prime}+2}\left(S^{4 q+1} \times S^{4 q^{\prime}+1}\right)$ in $H^{4 q+4 q^{\prime}+2}\left(E^{\prime \prime}\right)$, where $\Phi_{1,1}$ is the ordinary secondary operation associated with the Adem relation $S q^{2} S q^{2}=0$, valid on integer classes.

References

1. M. Mahowald, On obstruction theory in orientable fiber bundles, Trans. Amer. Math. Soc. 110 (1964), 315-349.
2. W. S. Massey, On the cohomology ring of a sphere bundle, J. Math. Mech. 7 (1958), 265-290.
3. W. S. Massey and F. P. Peterson, The cohomology structure of certain fibre spaces, I, Topology 4 (1964), 47-66.
4. J. F. McClendon, Higher order twisted cohomology operations, Ph. D. thesis, University of California, Berkeley, 1966.
5. J. P. Meyer, Functional cohomology operations and relations, Amer. J. Math. 97 (1965), 649-683.
6. R. E. Mosher, Functional cohomology operations and secondary characteristic classes, Ph. D. thesis, M.I.T., 1962.
7. -, Secondary characteristic classes for k-special bundles, Trans. Amer. Math. Soc. 131 (1968), 333-344.
8. F. P. Peterson, Functional cohomology operations, Trans. Amer. Math. Soc. 86 (1957), 197-211.
9. F. P. Peterson and N. Stein, Secondary characteristic classes, Ann. of Math. (2) 76, (1962), 510-523.
10. N. E. Steenrod, Cohomology invariants of mappings, Ann. of Math. (2) 50 (1949), 954-988.
11. E. Thomas, Postnikov invariants and higher order cohomology operations, Ann. of Math. (2) 85 (1967), 184-217.
12. ——An exact sequence for principal fibrations, (to appear)

Received January 4, 1968. Partially supported by NSF grant GP-8955.
California State College at Long Beach

