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ON INDETERMINATE HAMBURGER
MOMENT PROBLEMS

T. S. CHIHARA

This paper is concerned with the moment problems asso-
ciated with a sequence of orthogonal polynominals defined by
a recurrence formula, The principle interest centers on the
question of the determinacy of the Stieltjes moment problem
in the case where the corresponding Hamburger moment pro-
blem is indeterminate., Necessary and sufficient conditions
expressed in terms of the recurrence formula are obtained
for an indeterminate Hamburger moment problem to be a
determined Stieltjes moment problem. Using this result, vari-
ous criteria concerning the determinacy of the moment pro-
blems are obtained., It is also shown that if an indeterminate
Hamburger moment problem has at least one solution whose
spectrum is bounded below, then there is an extremal solution
¥4 such that every substantially different solution has at least
one spectral point smaller than the least spectral point of ¥,.

Let {P.(x)} be a sequence of monic polynomials defined by a
recurrence

Pn(x) = (f(/' - cn)Pn—l(m) - )“nPn—Z(x)r n = 1, 27 3’ ot

(1.1)
P_j(x) = 0, Pyw) = 1; ¢, real, \,,>0 (m=1).

Then it is a classical result that the P,(x) are orthogonal with respect
to some mass distribution d+r(x) on the real line, 4 being a bounded,
nondecreasing function with an infinite spectrum.

In [2, Th. 1], it was shown that a necessary and sufficient
condition that there is at least one such distribution function +
whose spectrum is a subset of [0, ) is that ¢, > 0 (r = 1) and that
{Nuti/€uCuriti-: 18 @ chain sequence. After an arbitrary choice of y, > 0,
the orthogonality of the P,(x) determines a Hamburger moment sequ-
ence {{t,}y-.. With the above chain sequence condition, this is also a
Stieltjes moment sequence.

In [3], we gave some conditions on the coefficients in (1.1) by
which the determinacy or indeterminacy of the Hamburger moment
problem (HMP) can be decided. In the event the HMP is indeter-
minate, it is natural to inquire about the determinacy of the corre-
sponding Stieltjes moment problem (SMP). In what follows, we will
pursue this inquiry and apply our results and methods to a study of
the uniqueness of the distributions obtained by Al-Salam and Carlitz
[1] for a certain class of orthogonal ‘‘g-polynomials.”
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2. Preliminaries. For the sake of definiteness (and without
loss of generality), we will take g, =1 for the moment sequence
determined by (1.1). Thus we will speak of ‘‘the’” moment problem
associated with (1.1).

With the recurrence (1.1), we have the associated J-fraction

N Ny | Ny |

(2.1) ]a:——cl_lx—cz_lx—c3

— = p=1).

The nth approximant of (2.1) is the rational function, P/”(x)/P.(x),
where {P."(x)} is defined by (1.1) after replacing ¢, and X\, by ¢ = ¢,.,
and A" = \,,,, respectively.

Ifz, <z,<---<x,, denote the zeros of P,(x), then it follows
from the separation properties of the zeros of P,(x) and P,,(x) that
{x,}5.; is decreasing while {v,,} is increasing. We write

(2.2) T PELRS,
¢ =limua,, .

Then (&, £..) is the so-called ‘‘true’” interval of orthogonality of {P,(x)}
and there is always one solution of the associated HMP whose spectrum
is a subset of [£, £.]. Also, & =c¢ if and only if ¢, —¢ >0 (n=1)
and {\,4./(c, — €)(Cuei — €)} is a chain sequence [2, Lemma 5].

In case the HMP associated with (2.1) is also a solvable SMP,
then (2.1) is the even part of the corresponding S-fraction (e.g. [5,

p. 73]

2.3) Ll Ll i, L

e Tk ke (TR T

The coefficients in the two continued fractions are related by the
formulas (see [9, §28])

(2.4) ¢ = = (bans + bzni) n=123,--.
Nat1 = byp_1bsn

Where bo == 0 and bz = (kiki.{.l)_l ('i g 1) and kl = )\:rl = 4.
3. Stieltjes’ condition. Stieltjes [6] (cf. also [5], Th. 2.20])

showed that a necessary and sufficient condition that the SMP asso-
ciated with (2.3) (hence also with (2.1)) be determined is

(3.1) IIAEESS

From the relations (2.4) and (2.5), we obtain
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k1 =1 ’ k2n+1 = '—"—"“blbs - bZn—l

bb, + - by,
(3.2) 1 bzb b2
by= =, kpppy=—24""""2m =1,2,3, +--.
: b1 +2 b1b3 et b2n+1 "

On the other hand, from relations in [2, § 2], we know that if

¢, >0 and a = {\,;./c.Cri} is a chain sequence, then the associated
moment problem is a solvable SMP and we have

(3.3) Cn = Ton1 T Ton =0, 7 >0 (n=2)

>\’n+1 = 72n72n+1

where v,,_, = m,_.c, and {m,}; is the minimal parameter sequence for «.
Comparing (2.4) and (3.3), we thus obtain

ky=1, Fkyy = c(l —my) - (1 —m,_,)
MMy = » MypCpiy

1 MMy + - M
kz_ k2n+2_ L2 =

¢ __(l—ml)“.(l_mn).

If we write p,(®) = (\; +++ Npy) 2P, (%), then [3, p. TO8]

[D.(0)] = ol —m)--- 1 —m,_,)
" MMy ++» MoCpiy

Thus Stieltjes’ (3.1) is equivalent to the divergence of at least one of
the two series

3.4 S MMy * 2 My and S [p,(O)F .
(3.4) D e S [.(0)]
But by a theorem of Wall [9, Th. 19.3], a necessary and sufficient
condition that « determine its parameters uniquely is that the first
series in (3.4) diverge. Thus we can state the transformed criterion
of Stieltjes as follows:

THEOREM 1. Letc, > 0 and let @ = {\,,/c,Cori} be a chain sequence
(so that the corresponding SMP has a solution). Then a mecessary
and sufficient condition that the SMP be determined ts that either
S [2.(0))F = o= or a determines its parameters uniquely.

Throughout the remainder of this paper, we will maintain the
notation, & = {\,.,/€.Cpri}-

1 There is a factor of ¢: missing from the pertinent formula in the citation. This
omission is carried through to a number of the following formulas but does not affect
any of the conclusions drawn.
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LEMMA 1. Let ¢, > 0 and let @ be a chain sequence. Then

m Pn-H(O) —_ clMO

w= P(0)

where M, denotes the ‘‘Oth’’ maximal parameter for «.

Proof. By a formula of Wall [9, (19.6)],

M,=1—%l_ &l ol @, = Dntr

CuCrt1

Comparing this with (2.1) (with x = 0), we see that
(—eMy= Ml el M| gy PO

l —C | — Cy I — G noee n+1(0) )

Lemma 1 is really needed in the next section but it is of some
interest here in view of a theorem of Hamburger [5, Th. 2.17] that
a necessary and sufficient condition for a HMP to be determined is
the divergence of at least one of the series, > [p,(0)]* and 3 [ (0)],
where () = A\ - -+ M) 2PO() (ef. also [3, Th. 4.1]).

THEOREM 2. Let ¢, > 0 and let a be a chain sequence.

(A) If a does not determine its parameters uniquely, then the
HMP and SMP are both determined or are both indeterminate according
as >, [0.(0)]F diverges or converges.

(B) The case of a determined SMP which is an indeterminate
HMP occurs if and only if a determines its parameters uniquely
and > [p(0)]F < oo.

Proof. (A) If >\ [0.(0) = «, then by Hamburger’s theorem,
the HMP (and hence the SMP) is determined. Conversely, if the
series converges and a does not determine its parameters uniquely,
then by Theorem 1, the SMP (hence the HMP) is indeterminate.

(B) It follows that if the SMP is determined while the HMP is
indeterminate, then « must determine its parameters uniquely. By
Hamburger’s theorem, we must also have >, [p(0)]* < . Conversely,
if the latter series converges, so does > [p,(0)® by Lemma 1. Thus
the HMP is indeterminate by Hamburger’s theorem while the SMP
will be determined according to Theorem 1 if a determines its para-
meters uniquely.

4. The case of an indeterminate HMP. We consider the
polynomials B,(z) and D,(z) defined by
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M+ MeiBunl2) = Poss()PL(0) — Po2)P(0)
A oo N1 Dyi(2) = Poyy(2)P,(0) — P,(2)P,+,(0) .

Using the fact that B,(0) = — 1 [5, (2.46)], we obtain
P,(2) = P;2(0)D,.\(2) — Pn(0)B,+(?) .

(Note that we write \,, P,(2) and P'(z) for B,_,, Q.(2) and P,.(z),
respectively, in [5].)

If we now assume that the HMP associated with (1.1) is inde-
terminate, then B,(z) and D,(?) converge uniformly on bounded subsets
of the complex plane to entire functions B(z) and D(z) [5, Th. 2.11].
Hence if we now also assume that ¢, > 0 and « is a chain sequence,
then by Lemma 1.

P.(2)

4.1
@b L P0)

= D(z) + ¢.M,B(z)

uniformly on bounded subsets of the complex plane.

Now by a theorem of Nevanlinna [5, Th. 2.13], the zeros of the
entire function E(z) = D(z) + ¢,M,B(z) are real, simple and coincide with
the spectrum of one of the extremal solutions, 4., of the HMP.

Since the convergence in (4.1) is uniform, it follows from (2.2)
that each &; is a zero of F(2) and hence also that & < &, (&, = 0).
It then follows from Hurwitz’ theorem on uniform limits of analytic
functions [8, Th. 1,91, 3] that {¢;|7=1,2,8, ---} is the spectrum of
the extremal solution, .

We summarize with a lemma which will be sharpened somewhat
subsequently (Theorem 5).

LEMMA 2. Let ¢, >0 and let a be a chain sequence. If the
associated HMP 1is indeterminate, then there 1is an extremal
solution ., whose spectrum coincides with the set {¢;|1=1,2,8,---}.
The spectrum of every solution of the HMP which is mot substan-
tially equal to +r, contains at least one point that does not exceed &,.

Proof. Only the last assertion requires further comment. (By
“‘substantially equal’’ solutions of the HMP, we mean, following
Shohat and Tamarkin [5], solutions with the same points of continuity
whose difference is constant at all points of continuity.) Since the
zeros of P,(x) must lie in the interior of the interval of orthogonality,
then & must belong to the smallest closed interval containing the
support of any d+(x) with respect to which the P,(x) are orthogonal.

THEOREM 3. If the true interval of orthogonality for (1.1) is



480 T. S. CHIHARA

(0, ) and if the associated HMP is indeterminate, then the chain
sequence a determines its parameters uniquely.

Proof. Assume « does not determine its parameters uniquely.
Then [2, Th. 1] the P,(x) are ‘‘kernel polynomials’’—that is, there
is a distribution function » whose spectrum is a subset of [0, «) such
that the P,(x) are orthogonal with respect to azdp(x). Further, by
Theorem 2, the corresponding SMP is also indeterminate.

By [2, Th. 2], there is a continuum of indeterminate SMPs
whose solutions have the property described for ¢ above. Consider
one of these SMPs. By Lemma 2, this indeterminate SMP—which is
also an indeterminate HMP—has an extremal solution ¢, whose spec-
trum is a well ordered subset of [0, ).

It then follows that the spectrum of the distribution function -,
defined by dvr.(z) = xdp,(x) does not contain 0, hence must contain
a least element ¢ > 0. But the P,(x) are orthogonal with respect to
diry(2) which means the true interval of orthogonality is (a, ), con-
trary to hypothesis.

THEOREM 4. If the HMP associated with (1.1) is indeterminate,
then the corresponding SMP is (solvable and) determined if and only
if the true interval of orthogonality is (0, o).

Proof. If the SMP is solvable and determined, then « is a chain
sequence which by Theorem 2 determines its parameters uniquely.
According to [2, Th. 1], the P,(x) are not ‘‘kernel polynomials’’ so
the true interval of orthogonality must be (0, «).

Conversely, suppose the true interval of orthogonality is (0, ).
Since the HMP is indeterminate, it follows from Theorem 3 that «
must determine its parameters uniquely. Thus by Theorem 1, the
SMP is determined.

We can now restate Lemma 2 in stronger form.

THEOREM 5. Assume there is a real ¢ such that ¢, — ¢ >0 and
Nusd/(Cn — €)(€hrr — €©)} T8 @ chain sequence. Suppose also that the
associated HMP s indeterminate. Then the HMP has an extremal
solution +r, whose spectrum ts the set {§;|1=1,2,3,---}. The spec-
trum of every solution not substantially equal to +r, contains at least
one point smaller than &,.

Proof. By hypothesis, &, is finite (¢, =¢). If we put 7,(x) =
P.(x + &), the 7, (x) are orthogonal with respect to dv-(x + &,), where
+r is any solution of the original moment problem, and the corresponding
true interval of orthogonality is (0, o).
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If the original HMP is indeterminate, so is the HMP associated
with the 7,(x). By Lemma 2, the latter HMP has an extremal solution
@, whose spectrum coincides with the set {& — & |7 =1,2, ...} deter-
mined by the zeros of {7,(z)}.

But since the true interval of orthogonality is (0, =), then by
Theorem 4, the corresponding SMP is determined. Then ¢, is sub-
stantially the only solution of the transformed HMP whose spectrum
is a subset of [0, ). Thus in terms of the original HMP, +r.(2) =
@4 (¢ — &) has the desired properties.

COROLLARY. If an indeterminate HMP is a determined SMP,
then the solution of the SMP is an extremal solution of the HMP

whose spectrum contains 0 and is a discrete, unbounded subset of
[0, co).

Proof. By Theorem 4, the true interval of orthogonality is
(€1, &x) = (0, ).

The preceding shows that—at least from the viewpoint of orthogo-
nal polynomials—when the HMP is indeterminate, the question of
the determinacy of the SMP is relatively unimportant since deter-
minacy depends only on an ‘‘accident’”’ of translation (whereas deter-
minacy of the HMP is invariant under translation). Stieltjes had
observed that in the indeterminate case, &, > 0 [6, p. 441]. However,
it does not seem to have been observed previously that there is always
substantially only one solution of a SMP whose spectrum is a subset
of [Ely C’O)-

In a sense, the solution described in Theorem 5 is a ‘‘natural”
one since every spectral point is a limit point of a sequence of zeros
of the P,(x), a property that is shared by the solution of a determined
HMP (Stone [7, Th. 10.42]).

In [2, Th. 8] and [3, Th. 3.1], we have obtained sufficient conditions
(in terms of ¢, and \,) for the spectrum associated with (1.1) to be
a discrete, unbounded set. These conditions are accompanied by
the hypothesis that the associated HMP is determined but in view
of the above, this hypothesis can be dropped if we think in terms of
the ‘‘natural’’ solution. With this viewpoint, a recent theorem of
Maki on continued fractions [4, Th. 3.2] should be compared with
[2, Th. 8].

5. Examples. We illustrate various aspects of the preceding
theory with two examples.

(A) The Laguerre polynomials. Using the notation of [8], we
have
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P,(x) = (= 1)"L;(x) (> —-1)
G, =2n+a-—1, Npis = 0N + @) n=1).
Then
Nyt n(n + «)

an = =
Calarr (20 + @ —1)@2n + a + 1)

- ( . n-1 ) n

- 2n +a—1/2n +a+1°
It follows from Wall’s criterion (following (3.4)) that {«,} is a chain
sequence which determines its parameters, m, = k/(2n + a — 1) (k = 0),
uniquely if and only if a < 0.

Then for — 1 < a < 0, the moment problem is at least a deter-
mined SMP (by Theorem 1) and the true interval of orthogonality is
(0, ). Since the weight function for the Laguerre polynomials is
2%¢~" and this does not correspond to an extremal solution, it follows
from Theorem 5, corollary, that the HMP must be determined for
— 1< a<0. Then, also, the corresponding spectrum is [0, ) and
the zeros of the polynomials are dense in (0, ),

Now the L{**V(x) are the kernel polynomials corresponding to the
L{®(z) so it follows that the true interval of orthogonality must be
(0, =) for 0 < a@ <1 and hence for all @« > — 1 by induction. Since
for & > 0, {a,} does not determine its parameters uniquely, Theorem
3 shows that the HMP must be determined for a > 0 also.

Thus the HMP is determined for every @ > — 1 and by Riesz’
theorem [5, Th. 2.14], the Laguerre polynomials are complete in the
corresponding L* space (as is well known).

(B) Al-Salam and Carlitz [1] have recently considered two inter-
esting classes of orthogonal polynomials involving ‘‘g-numbers.’”” One
of these satisfies the recurrence

Vi@ = [o — (1 + a)g V(@) — ag (L — ¢) Vi) (0= 0)
Vi@ =0, V@ =1 0<g¢<la>0.

These authors obtain the corresponding moments and construct a
solution of the moment problem. (However, their solution is not
non-decreasing when agq > 1 and does not exist if ag®* = 1.) The other
system considered by them has bounded coefficients in its recurrence
and hence the corresponding HMP is automatically determined. For
the V.”(xz), however, the HMP may be indeterminate. Since they did
not investigate the uniqueness of the solution of the moment problem,
such a study will provide an interesting application of our methods.

Relative to (1.1), we have
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¢, =1+ a)g, Nt = g (1 — q")
o, = >\'n+1/(cncn+1) = a(l + a)_z(l - qn) .

Since a, < 1/4, {a,} is a chain sequence [9, Th, 20.1] which does not
determine its parameters uniquely [9, Th. 19.6].

Next let v@(x) = Ay +++ Npy) 2V @(x). With the aid of [1, (4.8)],
we find

[ROF = a7 @V [Ha@)F ,  @=0—-9 -+ 1—0¢),

where

Se<H@=3—D _o<@rSa.
= = @r(@), =
It follows that > [v#(0)P < oo if and only if 0 <g<a=1 or
1< a<q. Since @ = {«,} does not determine its parameters uniquely,
Theorem 2 shows that:

(a) both the SMP and HMP are determined if

0<a=sqg<l or 1<qg'Za;
(b) both the SMP and HMP are indeterminate if
0<g<asl or 1<a<q.

Except for the cases, ¢ = ¢ and a = ¢!, the above results can also
be obtained using [3, Th. 4.3].

In the indeterminate case, there may some interest in knowing
whether the distribution function obtained by Al-Salam and Carlitz is
the extremal solution described in Theorem 5.

To this end, translate the minimal spectral point, 1, of the dis-
tribution funection, B = B°, obtained in [1] to the origin. That is,
consider (1.1) with ¢, replaced by ¢, = ¢, — 1 = (1 + a)¢"™" — 1. Then

Nt al —¢")

a{fﬂ = =t
ey (L +a—q¢ 1+ a—q)

and it is readily verified that {«} is a chain sequence with minimal
parameters m;, = (1 — ¢*)(1 + @ — ¢")~* (k = 0). Wall’s criterion shows
that {a]} determines its parameters uniquely if and only if 0 < a < 1.
By theorem 2, the translated SMP is determined (and the HMP is
indeterminate) if and only if 0 <a <1. In terms of the original
moment problem, this means that the true interval of orthogonality
is (1, o).

Summarizing:

(i) if 0<aea=g<lorl<gqg*<a, the solution of the HMP
is substantially unique (and is given by A in [1] when 0 < a < ¢ < 1);
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(ii) if 0 < g < a <1, the solution B is not substantially unique
but it is substantially the only solution whose spectrum is a subset
of [1, co);

(iii) If 1 <a <q™', there are infinitely many solutions of the
moment problem whose minimal spectral point is larger than 1 (that
is, the true interval of orthogonality is (¢, o) where ¢ > 1).
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