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EXTENSIONS OF THE MAXIMAL IDEAL SPACE
OF A FUNCTION ALGEBRA

J-E. BJORK

Let A be a function algebra with its maximal ideal space
MA. Let B be a function algebra such that i c β c C(MA).
What can be said about MBΊ We prove that MA = MB if
every point x e MA has a fundamental neighborhood system
{W} such that the topological boundary 6W of each W is
contained in the Choquet boundary of A or if A is a normal
function algebra. The first condition is satisfied if MA is a
one dimensional topological space. Let H(A) be the function
algebra on MΛ generated by all functions which are locally
approximate in A. We prove that MHU) = MA and then we
try to generalize this result. If feC(MA) is such that / is
locally approximate in A at every point where / is different
from zero then MA is the maximal ideal space of the function
algebra generated by A and /. We also look at closed subsets
F of MA such that MmF) = F where H(F) is the function
algebra generated by restricting to F all functions that are
defined and locally approximable in A in some neighborhood
of F. These sets are called natural sets. We prove that there
exists a smallest natural set B(F) containing a closed set F in
MA and that the Silov boundary of H(B(F)) is contained in F.
We also find conditions that guarantee that a closed set in
MA is a natural set.

If X is a Sf3t and / is a complex-valued function defined on X

then \f\v = avφ{\f(x)\\xe V} for every VaX and fv is the restric-

tion of / to V. If V is a subset of a topological space X then bV

is the topological boundary of V in X. If A is a function algebra

we denote by MA its maximal ideal space, and SA its Shilov boundary.

A point x e MΛ is a strong boundary point in A if {x} = Π P(f), where

P(f) are peak sets of A in MA. We shall use the wellknown fact

that SA is the closure of the strong boundary points of A in MA. If

ί 7 is a closed set in MA then Hull A(F) = {xeMA\\f(x)\ ^\f\F for

every feA}. If xeRuYl A(F) we say thet F is a support of x. A

minimal support of x is a support F of x such that no proper closed

subset of F is a support of x. Now we have the principle of minimal

supports. Let F be a minimal support of x. Suppose {fn} e A is such

that I fn \F ^ K for some constant K independent of n and lim | fn \wf]F =

0, where W is an open subset of MA such that W Π F is not empty.

Then it follows that lim fn(x) — 0. If F is a closed set in M^ then

AF is the function algebra on F generated by functions / e C(F) such

that / = g on F for some g e A. Now MA can be identified with
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Hull^F). If F is a closed set in MA such that F = Hull^(F) we say
that F is an A-convex set. A is a convex function algebra if every
closed set in MA is A-convex. If B is a function algebra on MΛ such
that AdB then the maximal ideal space MB contains MA and Sβ c MA.
If xεMB there exists a point τ/(αθ e MA such that /(x) = f(y(x)) for
/ e A. If F is a subset of MA we put {V}B = {a e Λf51 τ/(x) e F}. The
set {V}B is called the fiber of F in M*. The correspondence between
points x in MA and the fibers {x}B is continuous in the following way:
Let W be an open neighborhood of {x}B in MB for some point xeMΛ.
Then there exists a neighborhood F of x in MA such that {F}β c W.
If TΓ is an open set in MA then HQ(W) -= {f eC(W)\f is locally ap-
proximable in A at every point in W, i.e., if xe W there exists a
neighborhood V a W oί x and {gfJeA such that lim \gn — f\v = 0.}.
We put iϊo(^.) = H0(MA) and iϊ(A.) is the function algebra generated by
H0(A) on M4. If F is a closed set in MA then .HXF) = {/ 6 C{F) \f = g
on F for some geiJ 0(F), where F is some neighborhood of F}. We
let fi^F) be the function algebra on F generated by H0(F). We shall
now discuss the results of this paper. The general problem which
interests us here is the following: Let A be a function algebra with
its maximal ideal space MA. Let B be a function algebra such that
ACLBCLC(MA). What can be said about MBt In Lemma 1 we give
the well-known construction which shows that MB in general is strictly
larger than MA. A point x e MA is a stationary point if {x}B = {x} for
every B such that A c B e C(MA). A is a resistent function algebra
if MA consists of stationary points. In Theorem 2 we prove that A
is a resistent function algebra if every point x e MA has a fundamental
neighborhood system {W} such that {b W} consist of stationary points.
We remark here that the Choquet boundary of A is contained in the
set of stationary points and that A is resistent if MA = [0,1]. A
function algebra A on a compact set X is regular if A separates
points from closed subsets of X. It is wellknown that if X = MA

then A is normal, i.e., A separates disjoint closed sets. In Theorem
4 we prove that if A is a regular function algebra on X then X
consists of stationary points when we consider X as a closed subset
of MA. We remark that if A is a normal function algebra on X then
X — MA. The rest of this paper is mostly devoted to a study of
relations between A and H(A). We have never introduced the general
concept of A-holomorphic functions as is done in [3]. We wish to
point out that our methods come almost entirely from [3] and [4].
Our proof of Theorem 5 uses an argument which is essentially the
same as in Lemma 3.1, p. 368, in [3]. We point out that Theorem 7
gives a proof of Rado's Theorem: Let / e C(F) where F is a poly-
nomially convex compact set in the complex plane. Assume that / is
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analytic if / is different from zero. Then it follows that / is analytic
in the interior of F and hence feP(F), i.e., / can be uniformly
approximated by polynomials on F. In Theorem 8 we prove that if
H(A) is a resistent function algebra then A is a resistent function
algebra. We also discuss the general problem of determining 'domains
of holomorphy' in general function algebras. A closed set F in MA

is a natural set if MII{F) — F. The main result about natural sets is
contained in Theorem 10 which was essentially wellknown in [3].
Every closed subset F of MA is contained in a smallest natural set
B(F), the barrier of F. We have also introduced the set F —
{y e MA\{y}H(F) Π MmF) is not empty}. We know that FaB(F) and
in general the inclusion is strict.1 Theorem 12 is essentially wellknown
in [5] but we believe our proof is different.

!• DEFINITION 1. A function algebra A is resistent if MB = MA

for every function algebra B such that AaB aC(MA).

LEMMA 1. A resistent function algebra is convex.

Proof. Let A be a function algebra such that Hull^(JP) — F is
not empty for some closed set F in MA. Let B = {g e C(MA) I gF e AF).
Obviously Ad Be C(MΛ) and now we prove that MA Φ MB. Let
x e Hull A(F) - F. UgeBwe can find {fn} e A such t h a t lim | g - f n\F =

0. Now we put x(g) = \imfn(x). It is easily seen that £ is a well
defined complex-valued homomorphism on B. Hence there exists a
point y e MB such that x(g) = g(y) for g e B. In particular f(x) =
x(f) = f(v) for feA. If MA = MB it follows that x(g) = g(x) for
g 6 B. But now we choose g e B such that g(x) = 1 while g = 0 on
F and obtain a contradiction. Hence MA Φ MB and the lemma follows.

LEMMA 2. Let A be a convex function algebra and let

AaBcz C(MA) .

Then the fibers {x}B are connected in MB for every point x 6 MA.

Proof. Suppose that some fiber (x)B is disconnected in MB. Hence
there exists a closed component G of {.τ}̂  such that GaMB — MA.
Now we can find a closed neighborhood W of G in MB such that
bWΠ{x}B i s e m p t y a n d WczMB-MA. L e t F = {y eMA\{y}B ΠbW

is not empty}. Obviously F is a closed subset of MA such that x $ F.
Let yeG, then the local maximum principle shows that \g(y)\ ^ \g\bw
for geB. It follows that | f(x) | ^ | / \F for / e A, hence x e Hull A(F),

1 I am indebted to the referee for giving an example where F Φ B{F).
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a contradiction to the fact that A is a convex function algebra.

THEOREM 1. Let V be a closed A-convex subset of MA such that
Av is resistent. Let f e C(MA) be such that f — 0 in MA — V, then
MMf) = MA.

Proof. Assume that D = MA{f) — MA is not empty. Let xe D
and choose a minimal support F of x such that FaMA. Now FaV
is impossible since Av is a resistent function algebra. Because / = 0
in MA — V the principle of minimal supports shows that f(x) — 0. Choose
y e MA such that g(x) = g(y) for g eA. Since y and x are different
points of MMf) it follows that f(y) must be different from zero, hence
yeV. We have now proved that Dd{V}A(f). Now Lemma 1 shows
that Av is a convex function algebra and Lemma 2 can be applied to
show that {z}Mf) are connected in MMf) for every z .e V. In particular
{y}Mf) has no isolated points in MMf). Since D is an open subset of
MMf) we can find xι e D n {V}AU)

 s u c h that xγ Φ x. But now we get
f(Xl) = f(χ) — 0 and then x and xL are not different points in MAif)f

a contradiction.

DEFINITION 2. A point xe MA is stationary if {ίc}β = {x} for every
function algebra B such that 4 c B

THEOREM 2. Le£ A be a function algebra such that every point
x e MA has a fundamental neighborhood system {W] such that each
bW consists of stationary points, then A is a resistent function
algebra.

Proof. Suppose that B is a function algebra such that

A c B c C(MA)

and assume that D = MB — MA is not empty. Let ze D and choose
y 6 MA such that f(z) — f(y) for f eA. Choose an open neighborhood
V of y in MA such that bV consists of stationary points. Let W be
a closed B-convex neighborhood of z in MB such that WaD. Now
{7}ΰίΊ W is open and closed in W. We apply Shilov's Idempotent
Theorem to the function algebra Bw. Hence we find {fn}eB such
that lim | fn — l | τ r n { F } β = 0 while lim | fn\w-{v)B = 0 Choose a minimal
support F of z such that ί7 c b W. It follows from the principle of
minimal supports that FdbW Π {F}^. Now we let V shrink to y in
MA and it follows that zeΈίuYlB(bW Γ) {y}B) This holds for every
z e D Π M B when TF is a closed B-convex neighborhood of z such that
WcZλ Now we choose a strong boundary point x e D Γ\ {y}B of the
function algebra B{y} to obtain a contradiction.
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DEFINITION 4. A point x e MA is locally regular if there exists a
neighborhood V of x such that to every y e V — {x} there exists / e A
with / = 0 in a neighborhood of y and f(x) = 1.

THEOREM 3. A locally regular point is a stationary point.

Proof. Let xeMA be a locally regular point. Let B be a function
algebra such that AczB a C(MΛ). Let D = MB — M"̂  and assume that
{x}̂  Π D is not empty. Let V be an open neighborhood of x in jlf̂
such that to every y e V — {x} there exists f eA with / = 0 in a
neighborhood of y and /(as) = 1. Let z e {x}B Π D and choose a closed
neighborhood W of s in MB such that TFcZ>n{F}β. Let F be a
minimal support of z such that i*7 c b W. It follows now that F c {$}β

holds. Hence ze ΈLul\B(bW P, {x}B) and we obtain a contradiction if we
choose a suitable point ze D f] {x}B. Hence {x}B Π D must be empty
and it follows that x is a stationary point.

THEOREM 4. Lβί A δβ a regular function algebra on a compact
set X. Then every point xeXΠ MA is a stationary point.

Proof. Let xe X f] MA and put R(x) = {y eMA \ there exists g e A
with g = 0 in a neighborhood of y and g(x) = 1}. We shall now prove
that R(x) = M4 — {&} and then it follows from Theorem 3 that a? is a sta-
tionary point. Let y e MA — {x} and choose g eA such that g(y) = 1 and
g(x) = 0. LetV={zeMA\\g(z)\ > 1/2} and let Ŵ  = {ze X\|g(z) ^ 1/2}.
We choose f eA such that / - 0 on X - W and f(x) = 1. If z e F
we can choose a minimal support F o f 2 such that Fa X. Obviously
F Π (X — PΓ) is not empty and the principle of minimal supports im-
plies that f(z) = 0. Hence / = 0 on V and f(x) = 1, i.e., yeR(x).

THEOREM 5. Let F be a closed subset of MA and let f e CMA be
such that f is locally approximable in A at every point in MA — F.
Then MMf) -MAcz {Hull A(F)}A{/).

Proof. Let D = MMf) - MA. Let K = Hull A{f){bD) and let C =
A{f)κ. We have D c K = Mc and bD contains the Shilov boundary
of C. Let xebD be a strong boundary point of C. Assume that
xe MA — F. Choose a closed neighborhood V of x in MA such that
there exists {gn} e A with lim | gn — f \v — 0. Now we choose heC such
that h(x) = Ifelx = 1 and {xeK\\h(x)\ ^ 1/2} c {V}A(f). Let

A = { ^ e ΰ | | ^ ) | > 1/2} .

The topological boundary bDt of Dγ in if is obviously contained in
the set T = {xe bD\\h(x) \ ̂  1/2} U {x e K\\h(x) \ = 1/2}. Choose a point
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xL e D L NOW the local maximum principle shows that we can find a
minimal support F of x1 in C such that FczT. Since | h(xλ) | > 1/2 it fol-
lows that F ΠbD contains an open subset of F. Since Fa Γ c {F} (̂/>
we have \g\F ^ \g\v ίor g eA. Now lim | ̂  - / |Fnδ2> ^ lim | #n - / |F =
0 and the principle of minimal supports shows that limg^x^ = f(x^
holds. Now we also have x1e{y^\A{f) for some point yxeV. Hence
f(yλ) = lim gn{y^ = ffΛ(α?i) = /(a?i) and then a?x and ̂  cannot be different
points in MMf), a contradiction. We have now proved that every strong*
boundary point of C must belong to F. It follows that Scc:F and hence
MMf) - MA c Hull Mf)(F). This implies that MMf) - MA c {Hull ̂ (

LEMMA 3. Le£ A be a function algebra on a compact set X. Let
F be a closed subset of X. Then there exists a point x e F such that
if m is a representing measure of x in A with m(F) — 1 then m = exf

i.e., m is the unit point mass at x.

Proof. Choose a strong boundary point x e F of the function
algebra AF.

THEOREM 6. Let AdBa. C(MΛ). Let feB be such that fe HQ(A).
Then f is constant on each fiber {x}B for x e MA.

Proof. If x e MB we denote by y(x) the point in MA such that
xe{y(x)}B. Let d(x) = \f(x) — f(y(x))\ and assume that d(x) is differ-
ent from zero. Let F = {xeMB\d(z) = | |d | | = supd(^)}. Obviously F
is a closed subset of MB and Fn MA is empty. Let xe F and choose
an open neighborhood V of y(x) in MA such that there exists {gn} e A
with lim|^w — f\v — 0. Choose now a closed neighborhood W of x
in ilίs such that Wc{V}B 0 (MB — MA). Let T be a minimal support
of x such that TczbW. Now we can find a positive measure on

Γ such that g(x) = l #dm from ^ G 5 . It follows that | f(x) — gn(y{x)) \ =

S J
| / — gn\dm for every ^. Hence we also get

fix) - f(y(x))\ £ \\f(z) - f(y(z))\dm(z) .

I t follows t h a t \f(z) - f(y(z))\ = \\d\\ for every zeT, hence TCLF.

We have now proved that x e Hull B(b W Π F) for every xe F and every
closed neighborhood W of x such that W e (ilί* — MA). Now we derive
a contradiction from Lemma 3.

THEOREM 7. Lβ£ / e C(MA) and suppose that f is locally ap-
proximable in A at every point where f is different zero. Then
MMf) = MA and Hull A(F) = Hull A{f)(F) for every closed subset F
of MA.



EXTENSIONS OF THE MAXIMAL IDEAL SPACE 459

Proof. Let F be a closed subset of MA such that F = Hull A{f)(F).
Let us put G — Hull A(F) and assume that D = G — F is not empty.
Let C = A(f)G. We see that the Shilov boundary Sc of C meets Zλ
Hence we can find x e D such that x is a strong boundary point of
C. Let us assume that f(x) Φ 0. Choose a closed neighborhood
V c (Mj — F) of a? in ilί^ such that there exist {gn} e A with lim
I gn — / \v = 0. Now we choose ΛeC such that if P(h) = {x e G | Λ(#) =
|λ,y then xeP(h) and P ( λ ) c F with P(Λ) n Z>F empty. Since Λ e C
we can find {hn} e A with lim \hn — h\VΓ[G = 0. Now the local maximum
principle shows that \g(x)\ ^ \g\bvnG for g e i . It follows that \h(x) =
lim |λw(α;)| ^ lim |ΛΛ|67nG = |Λ|6 7 n σ, contradiction to the fact that
P(h) ΠbV is empty. Hence we have proved that if xeD is a strong
boundary point of C then /(#) = (). If x e J9 we can choose a minimal
support Γ of x such that TczSc. Since F = Hull 4 ( / ) ( J F ) it follows
that T ΓΊ JD is not empty. Since / = 0 on Sc Π /? it follows from the
principle of minimal supports that f(x) = 0. Hence we have proved
that / = 0 on D. But then A(f)D = AD and it follows easily that
D cannot contain any strong boundary point of C Hence ScaF
which shows that D must be empty. We have now proved that
Hull Λ(F) = Hull A{f)(F) for every closed subset F of MA. In particular
we see that Z(f) = {xe MA\f(x) = 0} is an A-convex set and using
Theorem 5 it follows easily that MA = MMf).

COROLLARY 1. MA = MHU) and Hull A(F) = Hull HU)(F) for every
closed subset F of MA.

THEOREM 8. If H(A) is a resistent function algebra then A is a
resistent function algebra.

Proof. If A is not a resistent function algebra we can find
0i 9k e C(MA) such that gt gk have no common zero on MA while
g.(z) = . . . = grfc(̂ ) = 0 for some point zeMAiOl.m.gk). Because H(A) is
resistent we can find hι hk, where each h{ is a polynomial in gι gk

with coefficients in H0(A), such that \h^λ + •-• + hkgk — 1\MA < 1/2.
Let hi = Σ / i ^ " , where v runs over a finite set of multi-indices (^ vk)
and flfB = βf"1 gυ

kk. Each fiυ e JSΓ0(A) and we define / ί v on ilί.K^...^, by
letting fiv be constant on each fiber of MMgy..gk) over points of MA.
Each ^υ is defined on MMgv..gk) in the usual way. In this way we can
extend each ^ to MMgv..gk). Call these extensions Hx Hk. It is
easily seen that H = Hιgί + + Hkgk is locally approximable in
A(g, - gk) o n MMai...Bk). N o w H ( « ) - 0 w h i l e \H-1\MA< 1/2 a n d
since ikf4 contains the Shilov boundary of A(gι gk) we derive a
contradiction from Corollary 1.

THEOREM 9. Let f e C(MA) be such that fn + ajn~ι + - + αw = 0
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on MA where ax an G A, then MA = MMf).

Proof. Let g = nfn~ι + (n - l)ajn~2 + + αn_,. It is well
known that / is locally approximable in A at every point x e MA where
g(x) is different from zero. (See [1], Th. 3.2.5, p. 71.) It follows that
g is locally approximable in A at every point where g is different
from zero. Now Theorem 7 shows that Z(g) is A-eonvex and then
Theorem 5 shows that MMf) - MAd{Z(g)}A{f). Let us put B = Az{g),
then MB = Z(g) and the restriction of / to MB satisfies the equation
nfn~ι + (n - l)bjn~2 + + δ n - 1 = 0 where 6< e B are the restrictions
of a,i to Z(g). Since MMf) - MA c {Z(g)}A(f) we see that Mmf) - MB is
not empty if MA{f) — Jlί^ is not empty. Hence we can use induction
over n to prove that MMf) = MA.

Let A be a function algebra. If F is a closed subset of MA we
have defined the function algebra H(F). We are now interested in
the maximal ideal space of H(F).

DEFINITION. If F is a closed subset of MA we put F —
{yeMA\{y}H{F)r\ MH{F) is not empty}.

DEFINITION. A natural set in MA is a closed subset F of MA

such that F = MH{F).

LEMMA 4. (0Fa)~a Γ\Fa for every family {Fa} of closed subsets

of MA.

Proof. Let yeMAbe such that ye(ΠFa)~. Hence there exists a
complex-valued homomorphism C of H( Π Fa) such that C(g) = g(y) for
gr G A. If / G iϊίFα) the restriction of / to Π î α obviously gives an
element of H(f]Fa). Hence C can be restricted to H(Fa) and we
obtain a complex-valued homomorphism of H{Fa) such that C(g) = #(τ/)
for # G A.

THEOREM 10. Let F be a closed subset of MA such that F = F,
then MH{F) = F.

Proof. Let / G # 0 ( F ) and define d(x) = \ f(x) - f(y(x)) I on MmF)

where y(x) is the point in F such that g(x) = g(y(x)) for g e A. As-
sume that d is not identical zero. Let D = {xe MH{F)\d(x) > 0}. Ob-
viously D Π F is empty and hence D lies off the Shilov boundary of
H(F). Hence D c i ί = Hull II{F)(bD). Let us put C = H(F)K and
choose x G 6D such that # is a strong boundary point of C. Choose
a closed neighborhood V of y(x) in ΛfA such that there exists {gn} e A
with lim \gn - f\vf]F = 0. Now we choose fceC such that fe(») =

{xeK\\h(x)\^ 1/2} cz{Vf]F}H{F). Now we obtain a con-
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tradiction using the same argument as in the final part of Theorem
5. Hence we have proved that if / e H0(F) then / is constant on
each fiber {x}H{F) when xe F. Since H0(F) is a dense subalgebra of
H(F) it follows that F = MH{F).

COROLLARY 2. // {Fa} is a family of natural set of MΛ then
ΠFa is a natural set.

Proof. Lemma 4 shows that (Π Fa)~ a Γ)Fa = f)Fa and then Theo-
rem 10 implies that ί l ^ is a natural set.

DEFINITION. If F is a closed subset of MA then B(F) is the in-
tersection of all natural sets containing F. B(F) is called the barrier
of F.

Corollary 2 shows that B(F) is the smallest natural set contain-
ing a closed subset F of MA.

LEMMA 5. Let F be a natural set. Let f e H(F) and let Fx —
{xe F\\f(x)\ ^ 1}. Then Fx is a natural set.

Proof. Let zeMII{Fl). If geH(F) the restriction of g to Fι

gives an element of H(FX). It follows that g{z) — g(y) for some
point yeMH{F) when geH(F). In particular f(z) = f(y) and since
I f(z) 1^1/ \FX it follows that y e Fx. Hence we have proved that Fx = F,
and now Theorem 10 implies that Fγ is a natural set.

THEOREM 11. Let F be a closed subset of MA. Let S(F) be the
Shilov boundary of H(B(F)). Then S(F)aF.

Proof. Assume that S(F) meets B(F) — F. Hence we can find
x e B(F) — F such that x is a strong boundary point of H(B(F)).
Now we can choose f eH(B{F)) such that Fx = {xeB(F)\\f(x)\ ^ 1}
contains F and omits the point x.

Lemma 5 shows that F^ is a natural set, a contradiction to the
fact that B(F) is the smallest natural set containing F.

We finally give some examples of natural subsets of MA.

DEFINITION. An A-analytic polyhedron P is a closed set in MA

of the form P = {xe V\\fa(x)\ ^ 1 where V is an open neighborhood
of P and {fa} is a family in H0(V)}.

THEOREM 12. An A-analytic polyhedron is a natural set.
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Proof. Let U be an open neighborhood of P and W a closed set
containing U such that WaV. Now we can find finitely many {/α},
say f1 fk such that P, = {xe W\\ fi(x) | ^ 1, i = 1 k} is con-
tained in U. Now we can prove that Pγ is a natural set using the
same argument as in the final part of Theorem 5. Finally we let U
shrink to P and obtain natural sets {Pσ} such that P — dPu. Now
Corollary 2 shows that P is a natural set.

DEFINITION. If F is a closed subset of MA we put R0(F) =
{/^eC(F)!^ = f/g where f,geA and g has no zero on F}.

We let iϋ(F) be the function algebra on F generated by R0(F).

DEFINITION. If F is a closed subset of MA we put Hull R(F) =
{xeMA\g(x)eg(F) for geA}.

THEOREM 13. MR{F) — Hull R(F) for every closed set F in MA and
if MR{F) = F then F is a natural set.

Proof. If y e MR{F) we choose x e MA such that g(y) — g(x) for
geA. It is easily seen that x e Hull R(F) and that (f/g)(y) = f(x)/g(x)
when flgeRo(F). Since R0(F) is dense in R(F) it follows that y is
uniquely determined by x. Conversely if we choose x e Hull R(F) then
the mapping X; f/g —• f(x)/g(x) is well defined on R0(F). We have
|/(aθ/flr(α?)l ^ IZ/ffU for if f(x) = flf(aj) while |//flf|F < 1 we see that
(g — f) is different from zero on F and hence (g — f)(x) e (g — f)(F)
is different from zero, a contradiction. Hence we can extend X to
R(F) and we obtain a complex-valued homomorphism on R(F) such
that g is mapped into g(x) when ^ e A . This proves that MR{F) =
Hull ^(JF7). If MR{F) — F then Corollary 1 can be applied to prove that
F is a natural set.
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