EXTENSIONS OF THE MAXIMAL IDEAL SPACE OF A FUNCTION ALGEBRA

J-E. Björk

Let A be a function algebra with its maximal ideal space M_A . Let B be a function algebra such that $A \subset B \subset C(M_A)$. What can be said about M_B ? We prove that $M_A = M_B$ if every point $x \in M_A$ has a fundamental neighborhood system $\{W\}$ such that the topological boundary bW of each W is contained in the Choquet boundary of A or if A is a normal function algebra. The first condition is satisfied if M_A is a one dimensional topological space. Let H(A) be the function algebra on M_A generated by all functions which are locally approximable in A. We prove that $M_{H(A)} = M_A$ and then we try to generalize this result. If $f \in C(M_A)$ is such that f is locally approximable in A at every point where f is different from zero then M_A is the maximal ideal space of the function algebra generated by A and f. We also look at closed subsets F of M_A such that $M_{H(F)} = F$ where H(F) is the function algebra generated by restricting to F all functions that are defined and locally approximable in A in some neighborhood of F. These sets are called natural sets. We prove that there exists a smallest natural set B(F) containing a closed set F in M_A and that the Silov boundary of H(B(F)) is contained in F. We also find conditions that guarantee that a closed set in M_A is a natural set.

If X is a set and f is a complex-valued function defined on Xthen $|f|_{v} = \sup \{|f(x)|| x \in V\}$ for every $V \subset X$ and f_{v} is the restriction of f to V. If V is a subset of a topological space X then bVis the topological boundary of V in X. If A is a function algebra we denote by M_A its maximal ideal space, and S_A its Shilov boundary. A point $x \in M_A$ is a strong boundary point in A if $\{x\} = \cap P(f)$, where P(f) are peak sets of A in M_A . We shall use the wellknown fact that S_A is the closure of the strong boundary points of A in M_A . If F is a closed set in M_A then Hull $_A(F) = \{x \in M_A || f(x) | \leq |f|_F$ for every $f \in A$. If $x \in \operatorname{Hull}_{A}(F)$ we say that F is a support of x. A minimal support of x is a support F of x such that no proper closed subset of F_{i} is a support of x. Now we have the principle of minimal supports. Let F be a minimal support of x. Suppose $\{f_n\} \in A$ is such that $|f_n|_F \leq K$ for some constant K independent of n and $\lim |f_n|_{W \cap F} =$ 0, where W is an open subset of M_A such that $W \cap F$ is not empty. Then it follows that $\lim f_n(x) = 0$. If F is a closed set in M_A then A_F is the function algebra on F generated by functions $f \in C(F)$ such that f = g on F for some $g \in A$. Now M_{A_F} can be identified with

Hull $_{A}(F)$. If F is a closed set in M_{A} such that $F = \text{Hull}_{A}(F)$ we say that F is an A-convex set. A is a convex function algebra if every closed set in $M_{\scriptscriptstyle A}$ is A-convex. If B is a function algebra on $M_{\scriptscriptstyle A}$ such that $A \subset B$ then the maximal ideal space $M_{\scriptscriptstyle B}$ contains $M_{\scriptscriptstyle A}$ and $S_{\scriptscriptstyle B} \subset M_{\scriptscriptstyle A}$. If $x \in M_B$ there exists a point $y(x) \in M_A$ such that f(x) = f(y(x)) for $f \in A$. If V is a subset of M_A we put $\{V\}_B = \{x \in M_B | y(x) \in V\}$. The set $\{V\}_B$ is called the fiber of V in M_B . The correspondence between points x in M_A and the fibers $\{x\}_B$ is continuous in the following way: Let W be an open neighborhood of $\{x\}_B$ in M_B for some point $x \in M_A$. Then there exists a neighborhood V of x in M_A such that $\{V\}_B \subset W$. If W is an open set in M_A then $H_0(W) = \{f \in C(W) \mid f \text{ is locally ap-}\}$ proximable in A at every point in W, i.e., if $x \in W$ there exists a neighborhood $V \subset W$ of x and $\{g_n\} \in A$ such that $\lim |g_n - f|_V = 0$. We put $H_{\scriptscriptstyle 0}(A) = H_{\scriptscriptstyle 0}(M_{\scriptscriptstyle A})$ and H(A) is the function algebra generated by $H_0(A)$ on M_A . If F is a closed set in M_A then $H_0(F) = \{f \in C(F) | f = g$ on F for some $g \in H_0(V)$, where V is some neighborhood of F}. We let H(F) be the function algebra on F generated by $H_0(F)$. We shall now discuss the results of this paper. The general problem which interests us here is the following: Let A be a function algebra with its maximal ideal space M_A . Let B be a function algebra such that $A \subset B \subset C(M_A)$. What can be said about M_B ? In Lemma 1 we give the well-known construction which shows that $M_{\scriptscriptstyle B}$ in general is strictly larger than M_A . A point $x \in M_A$ is a stationary point if $\{x\}_B = \{x\}$ for every B such that $A \subset B \subset C(M_A)$. A is a resistent function algebra if M_A consists of stationary points. In Theorem 2 we prove that A is a resistent function algebra if every point $x \in M_A$ has a fundamental neighborhood system $\{W\}$ such that $\{bW\}$ consist of stationary points. We remark here that the Choquet boundary of A is contained in the set of stationary points and that A is resistent if $M_A = [0, 1]$. A function algebra A on a compact set X is regular if A separates points from closed subsets of X. It is wellknown that if $X = M_A$ then A is normal, i.e., A separates disjoint closed sets. In Theorem 4 we prove that if A is a regular function algebra on X then Xconsists of stationary points when we consider X as a closed subset of M_A . We remark that if A is a normal function algebra on X then $X = M_A$. The rest of this paper is mostly devoted to a study of relations between A and H(A). We have never introduced the general concept of A-holomorphic functions as is done in [3]. We wish to point out that our methods come almost entirely from [3] and [4]. Our proof of Theorem 5 uses an argument which is essentially the same as in Lemma 3.1, p. 368, in [3]. We point out that Theorem 7 gives a proof of Rado's Theorem: Let $f \in C(F)$ where F is a polynomially convex compact set in the complex plane. Assume that f is analytic if f is different from zero. Then it follows that f is analytic in the interior of F and hence $f \in P(F)$, i.e., f can be uniformly approximated by polynomials on F. In Theorem 8 we prove that if H(A) is a resistent function algebra then A is a resistent function algebra. We also discuss the general problem of determining 'domains of holomorphy' in general function algebras. A closed set F in M_A is a natural set if $M_{H(F)} = F$. The main result about natural sets is contained in Theorem 10 which was essentially wellknown in [3]. Every closed subset F of M_A is contained in a smallest natural set B(F), the barrier of F. We have also introduced the set $\hat{F} =$ $\{y \in M_A | \{y\}_{H(F)} \cap M_{H(F)} \text{ is not empty}\}$. We know that $\hat{F} \subset B(F)$ and in general the inclusion is strict.¹ Theorem 12 is essentially wellknown in [5] but we believe our proof is different.

1. DEFINITION 1. A function algebra A is resistent if $M_{\scriptscriptstyle B}=M_{\scriptscriptstyle A}$ for every function algebra B such that $A \subset B \subset C(M_{\scriptscriptstyle A})$.

LEMMA 1. A resistent function algebra is convex.

Proof. Let A be a function algebra such that $\operatorname{Hull}_A(F) - F$ is not empty for some closed set F in M_A . Let $B = \{g \in C(M_A) \mid g_F \in A_F\}$. Obviously $A \subset B \subset C(M_A)$ and now we prove that $M_A \neq M_B$. Let $x \in \operatorname{Hull}_A(F) - F$. If $g \in B$ we can find $\{f_n\} \in A$ such that $\lim |g - f_n|_F =$ 0. Now we put $\hat{x}(g) = \lim f_n(x)$. It is easily seen that \hat{x} is a well defined complex-valued homomorphism on B. Hence there exists a point $y \in M_B$ such that $\hat{x}(g) = g(y)$ for $g \in B$. In particular f(x) = $\hat{x}(f) = f(y)$ for $f \in A$. If $M_A = M_B$ it follows that $\hat{x}(g) = g(x)$ for $g \in B$. But now we choose $g \in B$ such that g(x) = 1 while g = 0 on F and obtain a contradiction. Hence $M_A \neq M_B$ and the lemma follows.

LEMMA 2. Let A be a convex function algebra and let

$$A \subset B \subset C(M_{\scriptscriptstyle A})$$
 .

Then the fibers $\{x\}_B$ are connected in M_B for every point $x \in M_A$.

Proof. Suppose that some fiber $(x)_B$ is disconnected in M_B . Hence there exists a closed component G of $\{x\}_B$ such that $G \subset M_B - M_A$. Now we can find a closed neighborhood W of G in M_B such that $b W \cap \{x\}_B$ is empty and $W \subset M_B - M_A$. Let $F = \{y \in M_A | \{y\}_B \cap b W$ is not empty}. Obviously F is a closed subset of M_A such that $x \notin F$. Let $y \in G$, then the local maximum principle shows that $|g(y)| \leq |g|_{bW}$ for $g \in B$. It follows that $|f(x)| \leq |f|_F$ for $f \in A$, hence $x \in \text{Hull}_A(F)$,

¹ I am indebted to the referee for giving an example where $F \neq B(\widehat{F})$.

J-E. BJÖRK

a contradiction to the fact that A is a convex function algebra.

THEOREM 1. Let V be a closed A-convex subset of M_A such that A_V is resistent. Let $f \in C(M_A)$ be such that f = 0 in $M_A - V$, then $M_{A(f)} = M_A$.

Proof. Assume that $D = M_{A(f)} - M_A$ is not empty. Let $x \in D$ and choose a minimal support F of x such that $F \subset M_A$. Now $F \subset V$ is impossible since A_V is a resistent function algebra. Because f = 0in $M_A - V$ the principle of minimal supports shows that f(x) = 0. Choose $y \in M_A$ such that g(x) = g(y) for $g \in A$. Since y and x are different points of $M_{A(f)}$ it follows that f(y) must be different from zero, hence $y \in V$. We have now proved that $D \subset \{V\}_{A(f)}$. Now Lemma 1 shows that A_V is a convex function algebra and Lemma 2 can be applied to show that $\{z\}_{A(f)}$ are connected in $M_{A(f)}$ for every $z \in V$. In particular $\{y\}_{A(f)}$ has no isolated points in $M_{A(f)}$. Since D is an open subset of $M_{A(f)}$ we can find $x_1 \in D \cap \{y\}_{A(f)}$ such that $x_1 \neq x$. But now we get $f(x_1) = f(x) = 0$ and then x and x_1 are not different points in $M_{A(f)}$, a contradiction.

DEFINITION 2. A point $x \in M_A$ is stationary if $\{x\}_B = \{x\}$ for every function algebra B such that $A \subset B \subset C(M_A)$.

THEOREM 2. Let A be a function algebra such that every point $x \in M_A$ has a fundamental neighborhood system $\{W\}$ such that each bW consists of stationary points, then A is a resistent function algebra.

Proof. Suppose that B is a function algebra such that

$$A \subset B \subset C(M_A)$$

and assume that $D = M_B - M_A$ is not empty. Let $z \in D$ and choose $y \in M_A$ such that f(z) = f(y) for $f \in A$. Choose an open neighborhood V of y in M_A such that bV consists of stationary points. Let W be a closed B-convex neighborhood of z in M_B such that $W \subset D$. Now $\{V\}_B \cap W$ is open and closed in W. We apply Shilov's Idempotent Theorem to the function algebra B_W . Hence we find $\{f_n\} \in B$ such that $\lim |f_n - 1|_{W \cap \{V\}_B} = 0$ while $\lim |f_n|_{W - \{V\}_B} = 0$. Choose a minimal support F of z such that $F \subset bW$. It follows from the principle of minimal supports that $F \subset bW \cap \{V\}_B$. Now we let V shrink to y in M_A and it follows that $z \in \operatorname{Hull}_B(bW \cap \{y\}_B)$. This holds for every $z \in D \cap \{y\}_B$ when W is a closed B-convex neighborhood of z such that $W \subset D$. Now we choose a strong boundary point $x \in D \cap \{y\}_B$ of the function algebra $B_{\{y\}_B}$ to obtain a contradiction.

DEFINITION 4. A point $x \in M_A$ is locally regular if there exists a neighborhood V of x such that to every $y \in V - \{x\}$ there exists $f \in A$ with f = 0 in a neighborhood of y and f(x) = 1.

THEOREM 3. A locally regular point is a stationary point.

Proof. Let $x \in M_A$ be a locally regular point. Let B be a function algebra such that $A \subset B \subset C(M_A)$. Let $D = M_B - M_A$ and assume that $\{x\}_B \cap D$ is not empty. Let V be an open neighborhood of x in M_A such that to every $y \in V - \{x\}$ there exists $f \in A$ with f = 0 in a neighborhood of y and f(x) = 1. Let $z \in \{x\}_B \cap D$ and choose a closed neighborhood W of z in M_B such that $W \subset D \cap \{V\}_B$. Let F be a minimal support of z such that $F \subset bW$. It follows now that $F \subset \{x\}_B$ holds. Hence $z \in \operatorname{Hull}_B(bW \cap \{x\}_B)$ and we obtain a contradiction if we choose a suitable point $z \in D \cap \{x\}_B$. Hence $\{x\}_B \cap D$ must be empty and it follows that x is a stationary point.

THEOREM 4. Let A be a regular function algebra on a compact set X. Then every point $x \in X \cap M_A$ is a stationary point.

Proof. Let $x \in X \cap M_A$ and put $R(x) = \{y \in M_A | \text{ there exists } g \in A \text{ with } g = 0 \text{ in a neighborhood of } y \text{ and } g(x) = 1\}$. We shall now prove that $R(x) = M_A - \{x\}$ and then it follows from Theorem 3 that x is a stationary point. Let $y \in M_A - \{x\}$ and choose $g \in A$ such that g(y) = 1 and g(x) = 0. Let $V = \{z \in M_A | | g(z)| > 1/2\}$ and let $W = \{z \in X | | g(z) \leq 1/2\}$. We choose $f \in A$ such that f = 0 on X - W and f(x) = 1. If $z \in V$ we can choose a minimal support F of z such that $F \subset X$. Obviously $F \cap (X - W)$ is not empty and the principle of minimal supports implies that f(z) = 0. Hence f = 0 on V and f(x) = 1, i.e., $y \in R(x)$.

THEOREM 5. Let F be a closed subset of M_A and let $f \in CM_A$ be such that f is locally approximable in A at every point in $M_A - F$. Then $M_{A(f)} - M_A \subset \{\text{Hull}_A(F)\}_{A(f)}$.

Proof. Let $D = M_{A(f)} - M_A$. Let $K = \operatorname{Hull}_{A(f)}(bD)$ and let $C = A(f)_K$. We have $D \subset K = M_C$ and bD contains the Shilov boundary of C. Let $x \in bD$ be a strong boundary point of C. Assume that $x \in M_A - F$. Choose a closed neighborhood V of x in M_A such that there exists $\{g_n\} \in A$ with $\lim |g_n - f|_V = 0$. Now we choose $h \in C$ such that $h(x) = |h|_K = 1$ and $\{x \in K || h(x)| \ge 1/2\} \subset \{V\}_{A(f)}$. Let

$$D_1 = \{x \in D \, || \, h(x) \, | \, > 1/2 \}$$
 .

The topological boundary bD_1 of D_1 in K is obviously contained in the set $T = \{x \in bD \mid | h(x) | \ge 1/2\} \cup \{x \in K \mid | h(x) | = 1/2\}$. Choose a point

 $x_1 \in D_1$. Now the local maximum principle shows that we can find a minimal support F of x_1 in C such that $F \subset T$. Since $|h(x_1)| > 1/2$ it follows that $F \cap bD$ contains an open subset of F. Since $F \subset T \subset \{V\}_{A(f)}$ we have $|g|_F \leq |g|_V$ for $g \in A$. Now $\lim |g_n - f|_{F \cap bD} \leq \lim |g_n - f|_V = 0$ and the principle of minimal supports shows that $\lim g_n(x_1) = f(x_1)$ holds. Now we also have $x_1 \in \{y_1\}_{A(f)}$ for some point $y_1 \in V$. Hence $f(y_1) = \lim g_n(y_1) = g_n(x_1) = f(x_1)$ and then x_1 and y_1 cannot be different points in $M_{A(f)}$, a contradiction. We have now proved that every strong boundary point of C must belong to F. It follows that $S_C \subset F$ and hence $M_{A(f)} - M_A \subset \operatorname{Hull}_{A(f)}(F)$. This implies that $M_{A(f)} - M_A \subset \operatorname{Hull}_A(F)_{A(f)}$.

LEMMA 3. Let A be a function algebra on a compact set X. Let F be a closed subset of X. Then there exists a point $x \in F$ such that if m is a representing measure of x in A with m(F) = 1 then $m = e_x$, i.e., m is the unit point mass at x.

Proof. Choose a strong boundary point $x \in F$ of the function algebra A_F .

THEOREM 6. Let $A \subset B \subset C(M_A)$. Let $f \in B$ be such that $f \in H_0(A)$. Then f is constant on each fiber $\{x\}_B$ for $x \in M_A$.

Proof. If $x \in M_B$ we denote by y(x) the point in M_A such that $x \in \{y(x)\}_B$. Let d(x) = |f(x) - f(y(x))| and assume that d(x) is different from zero. Let $F = \{x \in M_B | d(z) = ||d|| = \sup d(z)\}$. Obviously F is a closed subset of M_B and $F \cap M_A$ is empty. Let $x \in F$ and choose an open neighborhood V of y(x) in M_A such that there exists $\{g_n\} \in A$ with $\lim |g_n - f|_V = 0$. Choose now a closed neighborhood W of x in M_B such that $W \subset \{V\}_B \cap (M_B - M_A)$. Let T be a minimal support of x such that $T \subset bW$. Now we can find a positive measure on T such that $g(x) = \int gdm$ from $g \in B$. It follows that $|f(x) - g_n(y(x))| = |f(x) - g_n(x)| \leq \int |f - g_n| dm$ for every n. Hence we also get

$$|f(x) - f(y(x))| \leq \int |f(z) - f(y(z))| dm(z)$$

It follows that |f(z) - f(y(z))| = ||d|| for every $z \in T$, hence $T \subset F$. We have now proved that $x \in \text{Hull}_{B}(bW \cap F)$ for every $x \in F$ and every closed neighborhood W of x such that $W \subset (M_B - M_A)$. Now we derive a contradiction from Lemma 3.

THEOREM 7. Let $f \in C(M_A)$ and suppose that f is locally approximable in A at every point where f is different zero. Then $M_{A(f)} = M_A$ and $\operatorname{Hull}_A(F) = \operatorname{Hull}_{A(f)}(F)$ for every closed subset F of M_A .

Proof. Let F be a closed subset of M_A such that $F = \operatorname{Hull}_{A(f)}(F)$. Let us put $G = \operatorname{Hull}_{A}(F)$ and assume that D = G - F is not empty. Let $C = A(f)_{c}$. We see that the Shilov boundary S_{c} of C meets D. Hence we can find $x \in D$ such that x is a strong boundary point of C. Let us assume that $f(x) \neq 0$. Choose a closed neighborhood $V \subset (M_A - F)$ of x in M_A such that there exist $\{g_n\} \in A$ with lim $|g_n - f|_v = 0$. Now we choose $h \in C$ such that if $P(h) = \{x \in G \mid h(x) = x \in g \mid h(x) = x$ $|h|_{G}$ then $x \in P(h)$ and $P(h) \subset V$ with $P(h) \cap bV$ empty. Since $h \in C$ we can find $\{h_n\} \in A$ with $\lim |h_n - h|_{v \cap G} = 0$. Now the local maximum principle shows that $|g(x)| \leq |g|_{bV \cap G}$ for $g \in A$. It follows that |h(x)| = $\lim |h_n(x)| \leq \lim |h_n|_{bV \cap G} = |h|_{bV \cap G}$, contradiction to the fact that $P(h) \cap bV$ is empty. Hence we have proved that if $x \in D$ is a strong boundary point of C then f(x) = 0. If $x \in D$ we can choose a minimal support T of x such that $T \subset S_c$. Since $F = \operatorname{Hull}_{A(f)}(F)$ it follows that $T\cap D$ is not empty. Since f=0 on $S_c\cap D$ it follows from the principle of minimal supports that f(x) = 0. Hence we have proved that f = 0 on D. But then $A(f)_D = A_D$ and it follows easily that D cannot contain any strong boundary point of C. Hence $S_c \subset F$ which shows that D must be empty. We have now proved that $\operatorname{Hull}_{A}(F) = \operatorname{Hull}_{A(f)}(F)$ for every closed subset F of M_{A} . In particular we see that $Z(f) = \{x \in M_A | f(x) = 0\}$ is an A-convex set and using Theorem 5 it follows easily that $M_A = M_{A(f)}$.

COROLLARY 1. $M_A = M_{H(A)}$ and $\operatorname{Hull}_A(F) = \operatorname{Hull}_{H(A)}(F)$ for every closed subset F of M_A .

THEOREM 8. If H(A) is a resistent function algebra then A is a resistent function algebra.

Proof. If A is not a resistent function algebra we can find $g_1 \cdots g_k \in C(M_A)$ such that $g_1 \cdots g_k$ have no common zero on M_A while $g_i(z) = \cdots = g_k(z) = 0$ for some point $z \in M_{A(g_1 \cdots g_k)}$. Because H(A) is resistent we can find $h_1 \cdots h_k$, where each h_i is a polynomial in $g_1 \cdots g_k$ with coefficients in $H_0(A)$, such that $|h_1g_1 + \cdots + h_kg_k - 1|_{M_A} < 1/2$. Let $h_i = \sum f_{iv}g^v$, where v runs over a finite set of multi-indices $(v_1 \cdots v_k)$ and $g^v = g_1^{v_1} \cdots g_k^{v_k}$. Each $f_{iv} \in H_0(A)$ and we define f_{iv} on $M_{A(g_1 \cdots g_k)}$ by letting f_{iv} be constant on each fiber of $M_{A(g_1 \cdots g_k)}$ over points of M_A . Each g^v is defined on $M_{A(g_1 \cdots g_k)}$. Call these extensions $H_1 \cdots H_k$. It is easily seen that $H = H_1g_1 + \cdots + H_kg_k$ is locally approximable in $A(g_1 \cdots g_k)$ on $M_{A(g_1 \cdots g_k)}$. Now H(z) = 0 while $|H - 1|_{M_A} < 1/2$ and since M_4 contains the Shilov boundary of $A(g_1 \cdots g_k)$ we derive a contradiction from Corollary 1.

THEOREM 9. Let $f \in C(M_A)$ be such that $f^n + a_1 f^{n-1} + \cdots + a_n = 0$

on $M_{\scriptscriptstyle A}$ where $a_{\scriptscriptstyle 1} \cdots a_{\scriptscriptstyle n} \in A$, then $M_{\scriptscriptstyle A} = M_{\scriptscriptstyle A(f)}$.

Proof. Let $g = nf^{n-1} + (n-1)a_1f^{n-2} + \cdots + a_{n-1}$. It is well known that f is locally approximable in A at every point $x \in M_A$ where g(x) is different from zero. (See [1], Th. 3.2.5, p. 71.) It follows that g is locally approximable in A at every point where g is different from zero. Now Theorem 7 shows that Z(g) is A-convex and then Theorem 5 shows that $M_{A(f)} - M_A \subset \{Z(g)\}_{A(f)}$. Let us put $B = A_{Z(g)}$, then $M_B = Z(g)$ and the restriction of f to M_B satisfies the equation $nf^{n-1} + (n-1)b_1f^{n-2} + \cdots + b_{n-1} = 0$ where $b_i \in B$ are the restrictions of a_i to Z(g). Since $M_{A(f)} - M_A \subset \{Z(g)\}_{A(f)}$ we see that $M_{B(f)} - M_B$ is not empty if $M_{A(f)} - M_A$ is not empty. Hence we can use induction over n to prove that $M_{A(f)} = M_A$.

Let A be a function algebra. If F is a closed subset of M_A we have defined the function algebra H(F). We are now interested in the maximal ideal space of H(F).

DEFINITION. If F is a closed subset of M_A we put $\widehat{F} = \{y \in M_A | \{y\}_{H(F)} \cap M_{H(F)} \text{ is not empty} \}.$

DEFINITION. A natural set in M_A is a closed subset F of M_A such that $F = M_{H(F)}$.

LEMMA 4. $(\cap F_a)^{\wedge} \subset \cap \hat{F}_a$ for every family $\{F_a\}$ of closed subsets of M_A .

Proof. Let $y \in M_A$ be such that $y \in (\cap F_a)^{\wedge}$. Hence there exists a complex-valued homomorphism C of $H(\cap F_a)$ such that C(g) = g(y) for $g \in A$. If $f \in H(F_a)$ the restriction of f to $\cap F_a$ obviously gives an element of $H(\cap F_a)$. Hence C can be restricted to $H(F_a)$ and we obtain a complex-valued homomorphism of $H(F_a)$ such that C(g) = g(y) for $g \in A$.

THEOREM 10. Let F be a closed subset of M_A such that $F = \hat{F}$, then $M_{H(F)} = F$.

Proof. Let $f \in H_0(F)$ and define d(x) = |f(x) - f(y(x))| on $M_{H(F)}$ where y(x) is the point in F such that g(x) = g(y(x)) for $g \in A$. Assume that d is not identical zero. Let $D = \{x \in M_{H(F)} | d(x) > 0\}$. Obviously $D \cap F$ is empty and hence D lies off the Shilov boundary of H(F). Hence $D \subset K = \text{Hull}_{H(F)}(bD)$. Let us put $C = H(F)_K$ and choose $x \in bD$ such that x is a strong boundary point of C. Choose a closed neighborhood V of y(x) in M_A such that there exists $\{g_n\} \in A$ with $\lim |g_n - f|_{V \cap F} = 0$. Now we choose $h \in C$ such that h(x) = $|h|_K = 1$ and $\{x \in K || h(x)| \ge 1/2\} \subset \{V \cap F\}_{H(F)}$. Now we obtain a con-

460

tradiction using the same argument as in the final part of Theorem 5. Hence we have proved that if $f \in H_0(F)$ then f is constant on each fiber $\{x\}_{H(F)}$ when $x \in F$. Since $H_0(F)$ is a dense subalgebra of H(F) it follows that $F = M_{H(F)}$.

COROLLARY 2. If $\{F_a\}$ is a family of natural set of M_A then $\cap F_a$ is a natural set.

Proof. Lemma 4 shows that $(\cap F_a)^{\widehat{}} \subset \cap \widehat{F}_a = \cap F_a$ and then Theorem 10 implies that $\cap F_a$ is a natural set.

DEFINITION. If F is a closed subset of M_A then B(F) is the intersection of all natural sets containing F. B(F) is called the barrier of F.

Corollary 2 shows that B(F) is the smallest natural set containing a closed subset F of M_A .

LEMMA 5. Let F be a natural set. Let $f \in H(F)$ and let $F_1 = \{x \in F || f(x) | \leq 1\}$. Then F_1 is a natural set.

Proof. Let $z \in M_{H(F_1)}$. If $g \in H(F)$ the restriction of g to F_1 gives an element of $H(F_1)$. It follows that g(z) = g(y) for some point $y \in M_{H(F)}$ when $g \in H(F)$. In particular f(z) = f(y) and since $|f(z)| \leq |f|F_1$ it follows that $y \in F_1$. Hence we have proved that $F_1 = \hat{F}_1$ and now Theorem 10 implies that F_1 is a natural set.

THEOREM 11. Let F be a closed subset of M_A . Let S(F) be the Shilov boundary of H(B(F)). Then $S(F) \subset F$.

Proof. Assume that S(F) meets B(F) - F. Hence we can find $x \in B(F) - F$ such that x is a strong boundary point of H(B(F)). Now we can choose $f \in H(B(F))$ such that $F_1 = \{x \in B(F) || f(x) | \leq 1\}$ contains F and omits the point x.

Lemma 5 shows that F_1 is a natural set, a contradiction to the fact that B(F) is the smallest natural set containing F.

We finally give some examples of natural subsets of M_A .

DEFINITION. An A-analytic polyhedron P is a closed set in M_A of the form $P = \{x \in V || f_a(x)| \leq 1 \text{ where } V \text{ is an open neighborhood}$ of P and $\{f_a\}$ is a family in $H_0(V)\}$.

THEOREM 12. An A-analytic polyhedron is a natural set.

J-E. BJÖRK

Proof. Let U be an open neighborhood of P and W a closed set containing U such that $W \subset V$. Now we can find finitely many $\{f_a\}$, say $f_1 \cdots f_k$ such that $P_1 = \{x \in W || f_i(x) | \leq 1, i = 1 \cdots k\}$ is contained in U. Now we can prove that P_1 is a natural set using the same argument as in the final part of Theorem 5. Finally we let U shrink to P and obtain natural sets $\{P_U\}$ such that $P = \cap P_U$. Now Corollary 2 shows that P is a natural set.

DEFINITION. If F is a closed subset of M_A we put $R_0(F) = \{h \in C(F) \mid h = f/g \text{ where } f, g \in A \text{ and } g \text{ has no zero on } F\}.$

We let R(F) be the function algebra on F generated by $R_0(F)$.

DEFINITION. If F is a closed subset of M_A we put Hull $_{R}(F) = \{x \in M_A | g(x) \in g(F) \text{ for } g \in A\}.$

THEOREM 13. $M_{R(F)} = \text{Hull}_{R}(F)$ for every closed set F in M_{A} and if $M_{R(F)} = F$ then F is a natural set.

Proof. If $y \in M_{R(F)}$ we choose $x \in M_A$ such that g(y) = g(x) for $g \in A$. It is easily seen that $x \in \operatorname{Hull}_R(F)$ and that (f/g)(y) = f(x)/g(x) when $f/g \in R_0(F)$. Since $R_0(F)$ is dense in R(F) it follows that y is uniquely determined by x. Conversely if we choose $x \in \operatorname{Hull}_R(F)$ then the mapping $X; f/g \to f(x)/g(x)$ is well defined on $R_0(F)$. We have $|f(x)/g(x)| \leq |f/g|_F$ for if f(x) = g(x) while $|f/g|_F < 1$ we see that (g - f) is different from zero on F and hence $(g - f)(x) \in (g - f)(F)$ is different from zero, a contradiction. Hence we can extend X to R(F) and we obtain a complex-valued homomorphism on R(F) such that g is mapped into g(x) when $g \in A$. This proves that $M_{R(F)} = \operatorname{Hull}_R(F)$. If $M_{R(F)} = F$ then Corollary 1 can be applied to prove that F is a natural set.

Acknowledgement. I wish to express here my deep gratitude to Professor C. E. Rickart whose original research on this subject has been the source for this paper.

BIBLIOGRAPHY

2. H. Rossi and R. Gunning, Analytic functions of several complex variables, Prentice-Hall, 1965.

3. C.E. Rickart, Analytic phenomena in general function algebras, Pacific J. Math. **18** (1966), 361-377.

4. _____, The maximal ideal space of functions locally approximable in a function algebra, Proc. Amer. Math. Soc. 17 (1966), 1320-1326.

5. _____, Holomorphic convexity for general function algebras, Yale University, 1967.

Received June 30, 1967, and in revised form December, 18, 1967.

UNIVERSITY OF STOCKHOLM

^{1.} L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand, New Jersey, 1966.