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ON (J, M, m)-EXTENSIONS OF ORDER SUMS OF
DISTRIBUTIVE LATTICES

RAYMOND BALBES

In the first section of this paper a characterization of the
order sum of a family {La}aes of distributive lattices is given
which is analogous to the characterization of a free distribu-
tive lattice as one generated by an independent set. We then
consider the collection Q of order sums obtained by taking
different partial orderings on S. A natural partial ordering
is defined on Q and its maximal and minimal elements are
characterized.

Let J and M be collections of nonempty subsets of a dis-
tributive lattice L, and m a cardinal. We define a (•/", M9 m)-
extension (f, E) of L, where E is a m-complete distributive
lattice and f: L —»E is a (J, M )-monomorphism. In the last
section we define a m-order sum of a family of distributive
lattices {La}a&s. The main result here is that the m-order sum
exists if the order sum L of {La}aes has a (J, M, m)-extension,
where / and M are certain collections of subsets of L. These
results are analogous to R. Sikorski's work in Boolean alge-
bras (e.g., [6]).

l Order sums* Let S be a fixed set and {La}aeS a fixed collec-
tion of distributive lattices. From [2] it follows that for each poset
P = (S, ̂ ) , there exists a pair ({φa}aes, L(P)), where L(P) is a distribu-
tive lattice, and for each ae S, φa: La —»L(P) is a monomorphism
such that:

(1.1) L is generated by \JaGSφa{La).
(1.2) If a < β then φa(x) < φβ(y), for all xeLa and yeLβ.
(1.3) If M is a distributive lattice and {fa:La—>M}aeS is a

family of homomorphisms such that fa(x) ^ f§(y) whenever a < /S,
£ e L α and yeLβi then there exists a homomorphism / : L(P)—> M
such that /<pα = /α for each ae S.

The pair ({φa}aes> L(P)) will be called an order sum of {La}aeS

over P.

Let P be the family of all posets of the form (S, ̂ ) and let
Q = {({φaUs,L(P))\PeP}. For ({φaUs, L(P)) and ({θa}aeS, L{P'))
in Q we write

(1.4) (W f l 6 S , L{P)) £ ({θa}r8, L(P')) provided:
(1.5) there is a homomorphism / : L(P') —> L(P) such that /5 α =

<pα for each ae S.
Note that (1.5) implies / is an epimorphism. If / is an isomor-
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phism, we say that ({φa}aes, L(P)) is isomorphic with ({φa}aBS9 L{P')).
Isomorphism in this sense is an equivalence relation ~ , and [2, Th.
1.2] implies that any two order sums over P are isomorphic. By
identifying isomorphs, (1.4) determines a partial ordering on the
equivalence classes of Q/~.

DEFINITION 1.1. Suppose PeP and {Na}aBS is a family of sub-
lattices of a distributive lattices N. The family {Na}aeS is called
P-independent if whenever aί9 , α w are distinct elements of
S, αm + 1, , an are distinct elements of S and xt e Na. for i = 1, , n
then

(1.6) x1 xm £ xm+1 + + xn if and only if
(1.7) for some i and j , either at < a3- or at = a3- and x{ <̂  xjy

where 1 ^ i ^ m and m + 1 ^ i ^ n.

LEMMA 1.2. Suppose N and M are distributive lattices and
{Na}aeS is a collection of sublattices of N such that U α e A generates
N. A necessary and sufficient condition for a family {f a : Na —+ M}aeS

of homomorphisms to have a common extension on N is that if
au , am are distinct members of S, am+u , an are distinct mem-
bers of S, Xi e Na. for i = l, , n and

(1.8) xx xm ^ xm+ι + + xn then

(1.9) faL(xL) fajxm) ^ Λw+1(»»+i) + + fan(xn).

Proof. The necessity is clear. Now if x e Na n Nβ then by (1.9),
x<Lx implies that fa(x) = fβ(x). So the function / : \jaeSNa—+M
defined by f(x) = /α(a?) if xe La makes sense and has the property
that if A and B are finite nonempty subsets of \JaeaSNa, then
ΠN(A) ^ ΣN(B) implies ΠMf(A) ^ ΣMf(B). By [1, Lemma 1.7], / can
be extended to a homomorphism / ' : N—>M. This is the required
extension.

THEOREM 1.3. The pair ({θa}aes, L) is the order sum of {La}aeS

over PeP if and only if {θa : La—>L}aes is a family of monomor-
phisms such that:

(1.10) U« e S θa{La) generates L, and
(1.11) {θa(La)}aeS is P-independent.

Proof. For the sufficiency suppose first that a < β. By (1.11)
θa(x) ^ θβ(y) for all xeLa, yeLβ. But if θβ(y) ̂  6>α(x) then /3 ̂  α.
Hence (1.2) is satisfied. Now assume the hypothesis of (1.3). It is
sufficient to show that the family {faθ~ι: θa(La) —> M}aeS has a common
extension on L. So if
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where au , am are distinct and am+u , an are distinct then by
(1.11) there exists p, q such that ap < aq or ap — aq and θap{xp) <̂  θaq{xq),
where l ^ ^ m and m + 1 S Q ̂  n. In any case fa (xp) <; fa (xq)
and so

ΓJm f Ω-l A ίΎ \ <- yn f ft-1 ft (rψ \

The result now follows from Lemma 1.2. The converse is essentially
[2, Th. 1.9].

The set P can be partially ordered as follows. If P, P ' eP then
P ^ Pr provided Pf gΞ P, as sets of ordered pairs. It is immediate
that P has a greatest element—the trivial partial ordering on S.
Also, it can be shown that P is minimal in P if and only if P is a
chain.

THEOREM 1.4. P = Q/~.

Proof. It is sufficient to show that for ({φa}aes, L(P)), ({θa}aes,
L(P'))eQ:

(1.12) P^Pf

if and only if
(1.13) ({φa}ae8, UP)) ^ ({θa}aes, UP')).

If P ^ P', then {φa : La—> L(P)}aes is a family of homorphisms with
the property that if a < β (in P') then φa(x) < φβ(y) for all a? 6 La,
yeLβ. So by (1.3), we have (1.13). Conversely, suppose (1.5) holds
and a < β (in P'). Letting xeLa and yeLβy we have 0e(&) < 0̂ (2/)
so φβ(aj) = fθa(x) ^ /^(i/) - φβ(y). Since {^α(Lα)}αe5 is P-independent,
a^ β (in P). It follows that P' C P.

COROLLARY 1.5. ({φjαes, L{P))j~ is the greatest element in Qj~
if and only if L(P) is the free product of {La}aes. Furthermore,
({φaϊaes, UP))/— ^s minimal in Q/~ if and only if L(P) is an
ordinal sum of {La}aeS.

Proof. The definitions of free product and ordinal sum can be
found in [7, §9] and [2, Definition 1.3]. The result then follows
from Theorem 1.4 and the remark following Theorem 1.3.

For the remainder of this section, let ({φa}aes, UP)) be a fixed
member of Q.

A lattice L is said to be conditionally implicative if for each
pair x, y e L such that x Sv there is an element x —> y with the
property that x z ^ y if and only if z ^ x —*y. Note that conditionally



444 RAYMOND BALBES

implicative lattices are distributive. The following theorem, which
we stated without proof in [2], is the converse of [2, Th. 2.5].

THEOREM 1.6. // L(P) is conditionally implicative then La is
conditionally implicative for each ae S.

Proof. Let x, y e La and x £ y. Then φa(x) —• <pa(y) exists in
L(P) and equals a sum of m products, each of the form

We can assume 7* £ 73 for i Φ j . Now

χ) — <pa{y)) ̂  <pΛv).

By (1.11) there exists p such that yp < a or 7P = a and xxp ^ ?/.
But in any case φa(x) φΐp(xP) ^ φa{v) Hence

(1.14) ^ f e ) ^ 9β(a?) ~> 9?α(2/).
Choosing an element φβ.{yό), that satisfies (1.14), from each of the m
summands of φa(x)-+φa(y), we have:

Σ
i

and so φa(x)-+φa(y) = ΣUiψβ^yd* where ft ^ ^ for i ^ i . For each
i , φa(x)φβj(yj) ^ φa(x){φa(x)-+<Pa{y)) ^ ?>«(2/), and since a? ̂  2/, we have:
iβĵ  ^ α for i = 1, , p. But <pa(y) ̂  cpα(α;) -^ φa(y) = φβl(Vi) + +
φβ (yp). Hence there exists j 0 such that a ^ βh. Since a — βJQ and
a > βό for i Φ io, we have <̂ α(α;) —> φα(τ/) = φa{xs). From the fact that
<pα is a monomorphism, it is now easy to show that x—+y = xJQ.

The following property of φa will be needed in §3. Note that
the power of a set H is denoted by | H\.

DEFINITION 1.7. Let L and M be distributive lattices and m a
cardinal. A homomorphism h: L—>Mis called a m — homomorphism
provided:

If HQL, 0 < I i J I ̂  m, and ^ ( i f ) exists then ΣMh(H) exists
and equals h(ΣL(H)); and similarly for products. The homomorphism
is complete if it is a m-homomorphism for each cardinal tn.

LEMMA 1.8. EWz, monomorphism φa: La—+ L(P) of ({φa}aes, L(P))
is complete.

Proof. Let H S Lα and suppose a? = ΣLa{H) exists. Clearly
9>α(3/) ^ 9?β(a?) for all y e H. Now suppose that ΣL{P)(Hύ ΣMP)(Hn)
is an upper bound for φa{H), where Hi £ \Jaes<Pa(La) for ΐ = 1, , n.
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We can assume H1 = {φaι(
χi ψaj^m)} where xt e La. and ak Φ a5

for k Φ j . Suppose:
(1.15) there exists j e {1, , m} such that a < aά. Then

9>«(aO < φaj(Xj) so
(1.16) 9>β(a?) ^ SUP)(Hd.

Now suppose that (1.15) does not hold. Since <pa(y) ^ φaι(
χi) + +

φaj%m) for each y eH, and #,- Φ ak for j Φ k, there exists ^ such
that α: = ctj and <pα0/) ^ φaj(

χj) ί ° r all y eH. Hence x, e Lα and
?/ <̂  a?y for all i /eS. So x ^ #y and therefore (1.16) is valid regardless
of the validity of (1.15). Applying this argument to each Hi, we
have Ψa(x) ^ Σ^iHd ΣL{P)(Hn), and so φa(ΣLa(H)) = ΣL{P)φa(H).
Similarly for products.

2* (J, M, m)-eχtensions* Throughout this section, let L be a
distributive lattice, and m a fixed infinite cardinal. Also let J and
M be collections of nonempty subsets of L such that

(2.1) I H\ ^ m for each HeJ and each ifeJf.
(2.2) £L(ii) exists for each HeJ and /7L(iϊ) exists for each HeM.

DEFINITION 2.1. If U is a distributive lattice then a homomor-
phism / : L-+U is a (J, M)-homomorphism provided:

(2.3) If He J then ΣL,f(H) exists and equals f(ΣL(H)).
(2.4) If i ϊ e M then ΠL,f(H) exists and equals f(ΠL(H)).

DEFINITION 2.2. The pair (φ, E) is called a (J, M, m)-extensίon
of L provided:

(2.5) E is a m-complete distributive lattice.
(2.6) ψ: L—*E is a (./, ϋf)-monomorphism.
(2.7) i/KI/) m-generates i? (i.e., E is the smallest m-complete

sublattice of E that contains ψ(L)).
Every distributive lattice has a (φ, φ, m)-extension: the smallest

m-ring of subsets of the Stone space X of L that contains all of the
compact-open sets of X, together with the correspondence that asso-
ciates elements of L with compact-open sets of X. If J(M) is the
collection of all subsets of L of power ^ m which have a sum (product)
in L then a (/, M, m)-extension of L is called a m-regular extension.
Note that in this case, ψ is a m-homomorphism. In [5], Crawley has con-
structed an example of a distributive lattice which can not be regularly
imbedded in any complete distributive lattice. In this example if
we take I to be countable then L will have no y$0-regular extension.

A sufficient condition for L to have a (J, M, m)-extension is that
L be conditionally implicative. Indeed, it is easily verified that the
MacNeille completion [3, p. 58] of such a lattice is also conditionally
implicative and hence distributive. Note that the category of condi-
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tionally implicative lattices includes the categories of Boolean algebras,
chains, free and finite distributive lattices, and pseudo Boolean algebras.
Another sufficient condition for L to have a (J, M, m)-extension is that

(2.8) y Σ Xi = Σ y®i and y + Π xi = Π (y + xt)
iel iel iel iel

whenever the left sides exist and | J | ^ m. This follows from [4,
Lemma 2],

If (ψ, E) and (ψr, Er) are (J, M, m)-extensions of L, then we
write

(2.9) (ψ,E)^(ψ',Ef)
provided there is a m-homomorphism h: E'-+E such that hψ' = ψ.
Clearly h is onto. If h is an isomorphism we say (τ/τ, E) is isomorphic
with (φ'9 E

f). Isomorphism in this sense is an equivalence relation
~ , and by identifying isomorphs, (2.9) determines a partial ordering
on the equivalence classes of K/~ where K is the set of (J, M, m)-
extensions of L.

By generalizing the method in [6, p. 166], we now investigate
the class K.

DEFINITION 2.3. A congruence relation J? on a m-complete lattice
M is called a m-congruence relation on M if whenever I is an index
set of power ^ m and (xi9 yx) e R for each ίeI then

(Σfa I i € / } , JS{^ I i e I}) e R and (Ufa | i e / } , /7{τ/, | i e I}) e Λ .

For a m-congruence relation £ on a m-complete lattice M, let
[^]Λ be the equivalence class containing x e M, and let

M/R = {[a?] I a? e M} .

The following theorem is easily verified.

THEOREM 2.4. If R is a m-congruence relation on a m-complete
lattice M then M/R is partially ordered as follows: [x]R <Ξj [y]B

provided there exists x', yr e ikf such that (x, x') e R, x' ̂  y' and
(y',y)eR. Furthermore, MjR is a m-complete lattice such that if
H^M and 0 <\H\^m then ΣMlR{[x]R \xeH} = [ΣM(H)]R and
ΠMIR{[%]R \xeH} = [ΠM(H)]R. If M is distributive so is M/R.

Let tt be the power of the distributive lattice L and let F be
the free m-complete distributive lattice with tt generators. That is,
F satisfies:

(2.10) F is a m-complete distributive lattice and is m-generated
by a subset G of power tt.

(2.11) If fe: G-^M is a function, where I is a m-complete
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distributive lattice, then h can be extended to a m-homomorphism on F.
By (2.11), G has the property that if Gl9 G2 are finite nonempty

subsets of G and ΠF{G^ <£ ΣF(G2), then Gx Π G2 Φ φ. So the sublattice
Fr generated by G is freely generated by G, and there is an epimor-
phism g: Ff —> L. Let R be the set of m-congruence relations R on
F such that:

(2.12) If x, y e F ' then (x, y)eR*=> g(x) = g(y).
(2.13) If ff S ί7', I ff I ̂  m, flr(ff) e J, xe F\ and ^ ) = ΣLg(H)

then (xyΣF(H))eR.
(2.14) If i ϊ S JF7', I ff I ̂  m, βr(ff) e l , x e f and ff(&) = ΠLg(H)

then (a;, /7^(ff)) e R.
For each iί e R, let ί7^ be the sublattice {[x]R \ x e Ff) of F/R.

By (2.12), the mapping gR\ F'R—>L defined by:
(2.15) gR([x]R) = g(x) for each x e Ff is an isomorphism. Define

ψR: L~+ F/R by ψB = iRgΰ1 where iR : F'R —> F/R is the inclusion map.
We have

(2.16) fRg(x) = [x]R for each xeF'.

THEOREM 2.5. For each ReR, the pair (ψR, F/R) is a (J, M, m)-
extension of L.

Proof. First F/R is m-complete by Theorem 2.4. Let GeJ, then
I G I ̂  m and 2^(6?) exists. Since # is onto L there exists {x} U if g ί7 '
such that I ff I ̂  m, flf(ff) = G and #(#) = ΣLg(H). By (2.13),
(α?, JF(ff)) € R so

- [a?]Λ = [Σ,(ff )]Λ - ΣFlR{[y]R \yeH}

A similar argument for GeM implies that ^ is a (J, Λf)-mono-
morphism. Finally since

= F'R

and Fr m-generates F, we have ψR{L) m-generates F/R.

THEOREM 2.6. For each (J, Jf, m)-extension (ψ, E) of L, there
exists ReR such that (ψ, E) a (ψRj F/R).

Proof. By (2.11), the mapping ψg : F'—> E can be extended to
a m-homomorphism k of F onto E. Define a relation R onFbγ (x,y) eR
if fe(a?) = ά(τ/). It is easily verified that ReR so that by Theorem
2.5, (ψR, F/R) is a (J, M, m)-extension of L. Next, define h : F/R —• £7
by A([α5]Λ) = fe(aj) for each a e ί 7 . Then h is an isomorphism. Let y eL,
then there is an x e Ff such that g(x) — y, so
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hψR(y) = hfRg(x) = h([x]R) = k(x) = ψg(x) = f(y).

It follows that (^, #) ~ (^Λ, 2̂ /22).

THEOREM 2.7. // (ψ>Λf 2<y22) αraZ (ψ>, 2*722') are (J, iίf, m)-extensions
of L then

9 FIR) £ {fB,, FIR')

if and only if

R'QR.

Consequently, 2£/~ is isomorphic with R (partially ordered by the
converse of inclusion).

Proof. Suppose there is a m-epimorphism h : F/R' —• F/R such
that hfR> = ̂ Λ . For each xeF', h([x)]R,) = hψR,g(x) = ψRg(x) = [α]Λ.
But, in fact, {CCGF| fe([a?]B') = Mfl} is a m-sublattice of ί7 containing
ί7'. So A([a?]B.) = [αls for each ^Gί 7. Thus if (x, y)eR' then [a;]s =
h([x]Rf) = Λ([i/]Λ, = [2/]Λ, i.e., 22' s 22. For the converse, define h : 2722'
—> F/22 by h([x]Rf) — [a;]̂  for each x e F. The hypothesis implies h is
a m-homomorphism. Since hψR, = φR, the result follows.

COROLLARY 2.8. The intersection p = Π^e^-K is an element of
R and hence the equivalence class containing (ψpy F/p) is the greatest
element in Kj~. Here it is assumed R Φ 0 .

Proof. Conditions (2.12), (2.13), and (2.14) are satisfied by p.

DEFINITION 2.9. A (J, M, m)-extension (φ, E) of L is said to be
free provided that for each m-complete distributive lattice U and
each (J, M)-homomorphism f:L—>U, there exists a m-homomorphism
h:E-+U such that / = hψ.

The main result of this section is then:

THEOREM 2.10. If L has a (J, M, m)-extension then L has a free
(J, M, myextension: (nfrP9 F/p).

Proof. As in the proof of Theorem 2.6, the mapping fg : F' —> U
can be extended to a m-homomorphism K :F—>U. Define a relation
22' on F by (a?, y) eRf if h'(x) = h'(y). We first show that R' ΠpeR.
Clearly Rr Π p is a m-congruence relation. For (2.12), (2.13), and (2.14),
first let x,ye F'. Since p e 22, (x, y) e Rf Π p implies g(x) = g(y).

Conversely if g(x) = g(y) then /g(a ) = /βr(τ/) so (x, y) e p Π 22'. If
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H S F', I HI ̂  m, #(iϊ) G J , ίϋeί 7 ' and flr(a ) = ΣL#(iϊ) then since p e R,
(x, ΣF(H)) e p. But / is a (J, M)-homomorphism so fg(x) = f{ΣLg{H)) =
ΣL,fg(H). Hence Λ'(α) - ΣL.h'(H) = h'(ΣF(H)), i.e., (a?, 2V(#)) e <o n 2?'.
Similarly for (2.14). Now pnR'eR so pQR'. Hence we can define
fe : Fjp —> 1/ by M M P ) = hf(x) for each α; e F. It follows that h is a
m-homomorphism and / = hψp.

3 m-order sums* In this section {Lα}αe5 is a fixed set of dis-
tributive lattices, m is a fixed infinite cardinal and P is a partial
ordering on S.

DEFINITION 3.1. The pair ({ψa}aeSiE) is said to be a m-order
sum of {La}aBS over P provided E is a m-complete distributive lattice,
and for each a € S, ψa : La—> E is a m-monomorphism such that:

(3.1) JE is m-generated by \JaeS φ(La).

(3.2) If α < β then ^α(a;) < ψβ(y) for each a;eLff and yeLβ.

(3.3) If L' is a m-complete distributive lattice and {fa : La —> Z/}α6S

is a collection of m-homomorphisms such that whenever a < β then
/«(#) ^ fβ(v) for all a; e La, y e Lβ, then there exists a m-homomorphism
f:E—>U such that /fα = / α for each a e S.

It follows that the m-order sum is essentially unique—if it exists.
Note also that if P is the trivial ordering on S and | La \ — 1 for
each aeS then E is the free m-complete distributive lattice with
I S I generators. We now investigate the existence question.

Let ({φa}aeS, L(P)) be the order sum of {La}aeS over P. Let J
be the class of all sets of the form <pa(H) where

(3.4) a e S, HQLa, \H\^m, HΦφ
and such that ΣLa(H) exists. Let M be the class of all sets of the
form <pa{H) satisfying (3.4) and such that ΠLa(H) exists. Note that
since φa is a complete monomorphism (Lemma 1.8), conditions (2.1)
and (2.2) of § 2 are satisfied.

THEOREM 3.2. If L(P) has a (J, M, m)-extension then {La}aes has
a m-order sum over P.

Proof. By Theorem 2.10, L(P) has a free (J, if, m)-extension
(ψ,E). We. will show that ({ψφa}aes,E) is the required m-order
sum. Let H^Lai 0 < \H\ ̂ m and suppose that ΣLa(H) exists.
Then φa(H) e J. Since ψ is a (J, If )-monomorphism and φa is complete,

ψφa(ΣLa(H)) = ΣEfφa{H) .

Similary for products. So ψφa is a m-monomorphism. Since \JaeS

<Pa(La) generates L(P) and ψ(L(P)) m-generates E, it follows that
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La) m-generates E. Finally, let U be a m-complete dis-
tributive lattice and {fa : La—>L'}azS a family of m-homomorphisms
with the property that a < β implies fa(x) ^ fβ(y) for all x e La, y e Lβ.
By (1.3) three exists a homomorphism / ' : L(P) —+L' such that f'φa =
fa for each a e S. Since φa is complete, / ' is a (J, M )-homomorphism.
But (φ, E) is a free-(J, iWΓ)-extension, so there exists a m-homomor-
phism f:E-+L' such that / ' = fψ. Thus ffφa = fa for each ae S.

COROLLARY 3.3. // {La}aeS is a collection of conditionally im-
plicative lattices (or lattices satisfying (2.8)), then {La}aeS has a m-
order sum over P for each partial ordering P on S.

Proof. This is immediate from Theorem 3.2 and the remarks
following Definition 2.2.

A necessary condition for the m-order sum ({ψa}aeS, E) over P of
{La}aeS to exist is that each La have a free m-regular extension
(consider the smallest m-complete sublattice of E that contains ψa(La)).
A case in which an m-order sum has a rather simple structure is
obtained in the next theorem. For the definition of ordinal sum, see
[2, Definition 1.3].

THEOREM 3.4. Suppose S is finite and P is a chain in P. If
(ψa, Ea) is a free m-regular extension of La for each ae S, then
({iaψaϊaes, E) is the m-order sum of {La}aeS over P, where E is the
ordinal sum of {Ea}aeS and ίa: Ea—+ E is the inclusion map for each
aeS.

Proof. We can assume that S = {1, 2, , n} with the usual
ordering and {Ea}aeS is a pair-wise disjoint family. Clearly, for HgU?,
0 < I HI < m, we have ΣE(H) = ΣEβ(H n Eβ) where β = max {a e S \
H Γ\EaΦ φ). It is evident that E is a m-complete distributive lattice,
m-generated by \Jaesiaψa(La). Now assume the hypothesis of (3.3).
Since (ψa9 Ea) is a m-regular extension of La, there exists a m-homo-
morphism ga: Ea—+1/ such that gaψa = fa for each ae S. The function
g ;E—>U defined by g(x) = ga(x) for xeEa has the property gψa = fa

for each ae S. To show g preserves order, suppose a < β, x is a
fixed element in La and let F = {y eEβ\ gaψa(x) ^ gβ(y)} Then

( i ) ψβ(Lβ) S F and
(ii) F is a m-complete sublattice of Eβ.

It follows that F = Eβ and

gaf a(x) ^ gβ(y) for x e Laj yeEβ.
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Now let y be a fixed element of Eβ and let G = {z e Ea \ ga(z) ^ gβ{y)}
Then

(iii) ^ β ( L
(iv) G is a m-complete sublattice of Ea.

It follows that G — Ea and that for a; e La, y e Lβ, g(x) <£ #(?/). Finally,
to show g is a m-homomorphism, let HQE, 0 < | i ϊ | < m, and set
/3 = max {α: e S | H n £?« ̂  <*}. Then

^ ^ ( ί ί ) ^ g(^(^)) = g(ΣEβ(Hf)Eβ)) = gβ(ΣEβ(Hf)Eβ))

= ΣL,gβ(Hf)Eβ)£ΣL,g(H).

So ΣL,g(H) = g(ΣE(H)) .

I wish to thank Dr. A. Horn and the referee for their valuable
comments concerning this paper.
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