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ON SUBGROUPS OF FIXED INDEX

GEORGE K. WHITE

If ke o7, where .2 is a subgroup of a group .5, then
closure implies k2, k3, ---,€ .5%". Nonempty subsets Sc .o
with the inverse property s”c S implies s, s, ---,s”e S (m =
1,2, ---) will be called stellar sets. Let p* be a fixed prime
power. If a stellar set S of an abelian group . intersects
every subgroup 7~ of index p* in .7, and 0€ S, then the
cardinal | S| of S is bounded below by p* (Theorem 3), when
S satisfies a mild condition.

Hence for instance a subset S of euclidean n-space E, intersecting
all sublattices of determinant p* of the fundamental lattice will have
at least p* elements, and more if no element is divisible by p~.

Henceforth & will always be an additive abelian group, so a
stellar set will be one with

o +=Scs

1
(1) mgeS=g,2¢9,---,mgeS(ge &, m=1,2,...).

Examples of stellar sets are .&7 itself, and its periodic part [5, p. 137];
and a star set [7] is a symmetric stellar set. There are stellar sets
of one element s, i.e., those s for which s = mg(m = 1, 2, ---) implies
m = 1. Now let p be a fixed prime, and suppose S intersects every
subgroup .2 of & of index p. Suppose also

(2) 0¢S

(if 0 € S the intersection property is redundant). Then we can say
the following (in this paper we denote |A| = cardinal of 4, mA =
{ma; a € A}, for any set A and integer m):

THEOREM 1. Let p be a fized prime, & an abelian group, and
S a stellar set with 0¢ .S which intersects all subgroups 9 of index
1 2 =p. Then

(3) IS|=»p.
When SN pS = @ we have | S| > p.

A similar result holds for ordinary sets T

THEOREM 2. Suppose p is a fixed prime, & is an abelian group
with more than one subgroup of index p, and T is any subset of
& with
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(4) Tnps =0
which intersects all subgroups .22 of index & : %% = p. Then
(5) [Tlzp+1.

When & is the fundamental lattice 4, [2, 4] in r-space E, of
all points with integral coordinates, Theorems 1 and 2 are immediate
using Rogers’ proof of his Theorem 1 [7] on starsets, the small adjust-
ment needed being clear. He states his theorem with a slightly stronger
hypothesis equivalent to “S intersects all subgroups of index < p”, and
for this more stringent requirement Cassels [3], replacing » by =, has
made elegant use of a generalization of Bertrand’s postulate due to
Sylvester [9] and Schur [8] to show |[S|=n for n =1,2, ... and any
stellar set S of an abelian .&” with no periodic part. For n = p* a
prime power we shall extend this as follows:

THEOREM 3. Suppose that n = p* is fixed, &7 is an abelian group
containing no element of order p® when 1 < p° < p*, and that S is a
stellar set with 0¢ S which intersects all subgroups 2% of index
S % = p*. Then

(6) [S| = p~.
When SN p*&” = @, we have

p ifa>1,

> pe
ISl=p +{1 ifa=1.

Note the requirement “contains at least one subgroup of index p*”
is a natural one, but it is an unneeded restriction on S. Note also
that Theorem 1 is an immediate consequence of Theorem 3.

2. A lemma. We find it useful, for Rogers’ case & = A,C E",
to restate Theorem 3 in altered form. We denote # = (¢, +--, 2,) SO
that

A, = {Z: all the z; are integers, ¢ =1, -+, 7},

and & = A, is isomorphic to a direct sum of # infinite cyclic groups.
When Z € 4, we define p|Z to mean p|z, ---, p|x,, and

llzll, = max {a: p*|Z} .
Let T be any subset of 4, satisfying
(7) 4 NT =0 (Tc4y,

and a modified stellar condition
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(8) {p%eT implies %,2%, -+, pxe T

(1= 8= a,p fixed),

and consider congruences

(9) ToZ=1a+ - +La,=00)led,pt ).

LEMMA. If T c A, satisfies (T) and (8), r = 2 and the congru-

ence (9) has for each 1 a solution Tc T, then T contains at least
p* + prired=t distinet elements mod p*,

p ifa>1,

10 T mod p“| = p*
(10) (Tmodpt| zpr ) T

Proof. We consider two cases, (i) « =lorr < a,and (ii) r > a = 2.
For the first case, a simple counting argument will suffice. Define

(v, @) = P — 1) .
»p—1

(11)
Then there are exactly
gp(a—l)(k—lwa(r—k) — 0(,’" a)

distinet congruences (9), representable by
z = (me sy DMy, 1) lk+1y "ty lr) .

If ¥ = bZ mod p~ then clearly 7 satisfies every congruence Z does,
and hence we may construct a subset V of T which likewise satisfies
every congruence (9), and also

(12) {EeV,zjeV,yEbEmodp“=>y=o?,

zeV =2 satisfies some congruence (9) .
Any T eV may be expressed as
T=2pptr;0=¢= 7], <a)

by (7), since VC T. A fixed eV obeys (9) for at least one I and
in fact for precisely those [ satisfying [ - &’ = 0(p**); these cor-
respond to exactly p*6(r — 1, &) congruences (consider, e.g., T’ = (1,

0, ---,0)). Hence, counting over the é(r, &) congruences (9), we get

13) o(r, @) gz_;p”i”pﬁ(r - 1,a).

Now Z € V obeys (8), since VC T. Hence to each ¥ = Z'p® in V there
correspond p¢ elements
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14) I'@) =\ :x=1,.-+,0}CT xeV).
Moreover,
(15) Z, #+ %, implies TE)NT@E,) = @ (%, T, e V),

for otherwise \MT, = N,%,, N; = Mp%(p J \l), without loss of generality
6 =0 —&—(0,— &) =0, and MiT, = AMp'T,, T, = (M) 'Np'Z, mod P,
T, = %, by (12). Thus by (13), (15),

I TI=z X p' "' =z 0(r, )/0(r — 1, @)

a—1(pn
:pa_l_p (p 1). (r=2)
p'f——l . 1

If a=1wehave |[T|Zp+®m—-D@Ep*—1">p s0|T|=p+1;if
r < a>1 then

T —p"zZp - —1)"'>p—-1,

|T| — p* = p, and case (i) is verified.
For our second case » > a = 2 we employ induction on ». Let
r =7, define VT as in case (i), and denote

(16) L= (T, «00, T, @) = (T, @) .
There are p>~' + -+ + p + 1= p* + p + 1 subgroups
H@)={Na modp: =1, ---,p = 0}

(@ fixed, p/ta’), any two of which intersect in a point Z divisible
by p. So if V contains a primitive (p / Z) point from each subgroup,
we have |V|=»*+ p + 1 and our result follows. Hence we may
assume that V does not intersect some H(a’'), where without loss of
generality @ = (0, ---,0,1); then V contains no point of type % =
MPYo, 1) mod p when p ) A, and hence by (8) no such point for any
A=12, .-

(17) TeV==r=9H,v). @I50=8<aq).
Now define sets T(Z) as in (14) and denote their union by W,
W= U{T@) :ZecV},

so that Vc Wc S, and W is the (smallest) set generated by V which
satisfies the modified stellar condition (8). Denote

(18) Wy = {%,: (%o, x;) € W for some =z,}.

Then by (17), (18), points Z(p*(p + %) of W, correspond to points
pi(Zh, ;) of W and so clearly W, satisfies (7) and (8). But V and
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hence W satis_ﬁes every congruence ! in (9); thus W and hence W,
satisfies every ! with [; = 0 for some %, = (x,, ---, ®,_,) € W, such that

law, + «-- +l:i—1xj—1 = 0(p%) by +oe, lj—lr p)=1.

Thus by our induction hypothesis (r = 7 — 1, @ = 2) there are at least
p* + p such %, e W,, and

ISz Wz [W|zp+p.

As our result is already established for » = « (case (i)), this com-
pletes the proof of the lemma.

3. Proof of Theorems 2 and 3. Consider the homomorphism 7:
(19) & T = s pr s

(cf. Cassels [3] for his case s = 1); for Theorem 2 we take « = 1.

We see easily that if .97 : 2%~ = p* then p*.&” < 2 and so there
is a one-to-one correspondence between all .5, 5 of index p“ in
&, & respectively; and any subset V of .o~ intersects all such .5~
if and only if V intersects all such % (index p®). If V has the
stellar set property this may, however, be lost under 7. Since p*.&¥ =0
we have by a result of Priifer [1] that <~ is a direct sum of cyclic
groups C; of orders p’ < p% in fact, B; = a since in all our 3 theo-
rems .<“ has no element of order »’(0 < 8 < @) and hence pfic; =0
implies B; = a. Thus

(20) & = § C(C; =<e:p%e =0)) .

1€l
Note that all se S have infinite period,
21) ms #= 0 (seS,m==+1, 2, .-.)

since otherwise |m|s = 0, s=(m|+1)seS so 0=|m|seS contrary
to (2). Now suppose 0 S. Then p*9ge S sog,2g, ---,p°9€ S, |S| = p*
since otherwise tg = jg(1 < j) and g€ S has finite period. It remains

therefore to settle the matter when
(22) 0¢S (.., SN~ = Q).

The cases |I| = 0,1 in (20) correspond to groups . with no, exactly
one subgroup of index p®. In the latter event we have 0e S, a case
already settled. If |I| = 0 in Theorem 3 then .&¥ = p".<” and all stellar
sets S vacuously satisfy the intersection condition. No stellar set is
empty, so we have se S, s = p%s,, s, = p%s,, +++, and | S| = o since
otherwise s; = s; (¢ < j) and s; € S has finite period, contrary to (21).



230 GEORGE K. WHITE

The case |I| =<1 does not occur for Theorem 2, since here . has > 2
subgroups of index p*. Hence we may assume

(23) Iz 2.

From (23) it is immediate that . contains more than one subgroup
of index p*. We consider only Theorem 3 from now on; Theorem 2
will follow by the same reasoning (a = 1).

It remains, then, to verify Theorem 8 when (22), (23) hold. As-
sume now then

(24) S| < oo,

since if |S| = co we have nothing to prove. Then if we decompose
5§ = 3, in (20) we have s; = 0 for some 5¢S for only a finite number
of 7¢I, which we may include in a finiteset ¢t =1, ---,7 2 =7 < |I)).
Then

Sc.o® = 4,mod p* (in j-space EY), 2=<9,
F =g o,
and we may represent any # €.’ uniquely by
=%+ a*= (@, -, 2; £*) mod p* .

The following subgroups .5 have index p* in .~ and hence are in-

tersected by S:
%7 = {E: l1x1 R ljxj = O(pa)} (lu Tty lJ" p) =1 ’

where (I;, p) = 1 for some i and [,, ---,1; are fixed for each % (cf.
[3, preceding (10)]); we have p yI; for at least one 7 and so for each

X e ,ﬁ?', X, = —'ZJ'#‘J l.,;_lljxj. Hence [u%‘o| = pa(j~1),
S = G 5 = Y =

Elements 5 of S are of type § = (s,, - -, s;; 0%*); since S is a stellar
set the modified property (8) holds for 7' = S; also, 0 = (0, - -+, 0, 0%) ¢ S
and r =7 = 2 by (22), (23). So we may apply the lemma to find there
are at least p* 4+ p™"*»-! distinct points (s, -+, s;, 0*) in S; hence

|S| > ISI > pr + pmin(a,2)—1 ,
and our proof of Theorems 2, 3 is complete.
4. Remarks. 1. In our proof of Theorem 3 we utilize the

stellar property of S only through its consequence in S, a condition
of type (8) with T =S which would clearly follow from imposing
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condition (8) on S, along with S # @. Hence we may make the
following extension:

THEOREM 4. Theorem 3 holds for S mot a stellar set, if S
satisfies 8) (T =Sc.v’, Te.v”), and S = Q.

2. When .¢” is not abelian, Theorems 1-4 need not hold; e.g.,
the direct sum & = C= P A; of the infinite cyclic group and alternat-
ing group of 60 elements has only one subgroup of index 3, % =
3C~ D A;, and %% is intersected by the stellar set of one element,

S = {3 + cycle (123)} = 3g .

3. In the excluded case 0e S the least stellar set containing 0
is the periodic part of <, and | S| = » need not follow.

4. When & = A(r = 2), the set of all (1, x,, 0, ---, 0), (px,, 1,0,
..., 0)mod p* is a stellar set of p* + p*~' elements intersecting all
congruences (9) mod p*. So our bounds are best possible, for the
lemma, when a =1, 2. (r = 2).

5. In Theorem 3 we must exclude elements of order p*(8 < «).
For consider ,e.g., .&” = C*P C™® (any «). Here the bound is p* + 1.

6. Let ¢ =2, S be a stellar set in Kuclidean n-space {Z =
(x, -+, 2,)} with fewer than p* + p elements, and no element p°Z.
Then there is a sublattice of the fundamental lattice of determinant
p* (see [2], p. 10) which is not intersected by S.

7. Our condition (A4)”S intersects all subgroups of index »'’ is
equivalent to (B)” --- index d:d|n” though weaker than (C)”---
index m:m < n'”. The latter remark follows from the example S =
{(4,1), (2,1), (2,0), (1,00} in & =C~HC® (n=4). For the former
prove first for d = n/p and then iterate: if & : %" = n/p (p|n) and
(A) holds then =77 = p.o7°, there exist .27 in o7 with 57 : 2 =»p
so i A =n, ZNS#E Q.

8. Theorem 3 does not hold for all » =1,2, .--. Mr. George
M. Bergman of Cambridge, Mass. has kindly furnished me with a set
of counterexamples for & = C* @ C=, which includes a stellar set S
of 76 elements that intersects every subgroup of index 77.

9. TFinally, we should like to acknowledge here some parallel
though independent work of Mr. Bergman who in unpublished cor-
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respondence proves a simpler version of Theorem 4, obtaining a slightly
lower bound (p* rather than p* + p, 1). His proof is in essence similar
to ours, except there is no induction step: a homomorphism 7 (19)
reduces the problem to Rogers’ case < = 4,, and a version of our
lemma is proved by arguments resembling ours for « =1 or » = ¢,
Mr. Bergman in effect considering congruences (9) with I, =1 to ob-
tain his bound p* for (10) for all r, &, without induction. We thank
Mr. Bergman for the material communicated; among other things it
helped remind us to include Theorem 4. We thank him also for wel-
come suggestions concerning our final draft.
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