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GAP SERIES AND AN EXAMPLE TO MALLIAVIN'S
THEOREM

ROBERT KAUFMAN

0. Malliavin's celebrated theorem of spectral nonsynthesis
is based on a real function / of class A

oo oo

f(t) = ^ an cos nt + Σ δ» sin nt,

Σ I On I + Σ I b" i < °° f

for which I \u\\\ eiuf ||<»du < oo.
J—CO

Here and in general 11 g |1«, = sup% | g(n) |. This note presents
a method for constructing a function /, based on a gap prop-
erty and a method of estimation of Kahane.

Let 0 < nx < n2 < < nk < be a sequence of integers with
the property:

Whenever εk = 0, ± 1 , and ε ^ + + eNnN = 0, then εx = ε2 =
. . . = e* = 0.

Let o)u ω2i •• ,ωA;, ••• be independent random variables defined
upon a probability space Ω, distributed uniformly upon [0, 2π], For
a number 0 < 6 < 1 set

f(t) = Σ bk cos (Λ4t + ωk) .

Then, for each integer M ̂  1 there is a δ = δ(M) < 1 such that

(1) Γ |wH|eίM/|U<2u < oo for almost all ω in Ω .
J-oo

REMARKS. Choosing nk = 2*, we obtain a function / of class
Lip(—Iogδ/log2), and this shows that b(M) must converge to 1 as
M_> oo. For if the integral in (1) is finite, there is a number ξ such
that (/ — ξ)M does not admit synthesis, and it must be false that

l / ω - e r = o<d(ίf/-i(e)))f

[3, pp 116, 122], But then / $ Lip (2~1/¥). Functions / with the Lip-
schitz condition were first produced in [1], and an explicit example—
that is, nonprobabilistic—given in [2].

1* Let 0 < r < 1, 0 < ε, 0 < η < (1 - r) log 5 - log 4. Define
BN(s, t) for 0 < s, t < 2π(N = 1, 2, 3, •) to be the number of inte-
gers k defined by
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1 ^ k ίg N , I cos nks — cos %£ | >̂ ε .

LEMMA. 1/ ε > 0 is small enough, the Lebesgue measure

m{B»(s, t) ^ rN} = Oie-^), as ΛΓ— co .

Proof. Set

ζk(s, t) — 5 — (cos nks — cos nktf

or

ίΛ = 4 — £ cos 2%s + 2 cos 7&Λs cos nkt — i cos 2wAί .

The mean of the product ζ 1 ξN is 4V. For the product is a sum
of terms

e Πr cos 2nks Π" cos ^fcs cos nkt Πrtt cos 2wfcί ,

where the symbols Π', etc., refer to products over mutually disjoint
subsets of {1,2, •• ,Λ/r}. If such a sum has mean ^ 0 , it is trivial,
for there are integers εk = ± 1 , δk = ± 1 , defined for every exponent
^ present, such that 2Σ'sknk + 2"'efcwfc = 2" rδ^ f c + 22 r /"δA ;^ = 0. But
Σ'eknk + iΣ"(ek + δfc)% + ^ f /δ twΛ - 0, where £(efc - δfc) = 0, ± 1 . Thus
Π' and 77'" must be trivial, and so finally 77" is trivial.

Now

{BN £ rN} S {ξ, ^ ^ (5 - ε2)(1-)Λ} ,

so

m{BN ^ rΛΓ} ^ 4ττ2[4/(5 - ε2)1-^]^ ,

and we need only choose ε > 0 so that η < (1 — r) log (5 — ε2) — log 4.
We now choose ε > 0, rj > 0, 1 > r > 0, once and for all.

2* Following [1] we observe that for g in L2

1 (9(t
J

| | l)r*ί/| |i = (27Γ)-1 j j j flr(t - s)g(s)g(Γ=~ϊ)g(p)dsdtdp = Σ

Set

, 2/, 2:, ω)

= cos (x — y + ω) + cos (y + a>) — cos (x — 2 + ft>) — cos(2 + α») .
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For fixed x, y9 z, P is a trigonometric monomial in ω, say τ sin (ω + c),
and τ can be estimated by setting

tf = z — ix , y' = y — ix .

We find that r2 = 41 cos zf — cos #' |2. Now

exp w[/(ί - s) + /(β) - /(ί - v) - /(P)]

= exp m Σ bkP(nkt, nks, nkp, ωk) .
k=l

To obtain an upper bound for the expectation of ||eίM/||i> we integrate
this formula, first with respect to ωu ω2, and then with respect
to s, p, t. Note the estimation

J0(R) - (27Γ)-1 P eiRsinωdω ^ C(l + | i2 |)- 1 / 2 , - <χ> < R < oo .
Jo

(2π)~3111 Π I e/o(2t66A | cos %2/' — cos nkz
f |)| dxdydz

r r Nίu)

<, (2TΓ)-2 11 Π |Λ(2wδfc I cos nky — cos nkz\)\dydz .

Here iV(u) is the integral part of — £ log w/log 6. If Bmu)(y, z) ;>
the product in the integral is at most (C |^ |~ 1 / 4) r i N Γ ( w ), a magnitude
ultimately smaller than any assigned power of l^l""1. The integral
on the complement {BN{U) ^ rN(u) is O(β~^u )) = 0( |^ | 2 ~ l l J / l o ε δ ). Choos-
ing b close to 1, we can make this O(\u\-m~6). Then by FubinΓs
theorem

\u\4M+iE(\\e™f\\l)du< oo ,

Soo

\u\*M+*\\eίuf\\Ldu< oo for almost all ω in Ω. Conclusion (1) is

a consequence of Holder's inequality.
It is clear that if bk is replaced by Ar2 for example, the condition

(1) is valid for any integer M.
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