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If £ is a locally compact Hausdorff space, let βS be its
Stone-Cech compactification and let M(S) be the space of all
finite complex valued regular Borel measures on S. In this
paper we will prove that whenever S is paracompact and {μn}
is a sequence in M(βS) which converges to zero in the weak

star topology, then lim I fdμn = 0 for every continuous func-
JS

tion /, and {μn} satisfies a certain uniformity condition on S.
This generalizes a result of R. S. Phillips on weak star sequ-
ential convergence in the dual of l°°. Moreover, by using our
theorem we can obtain many previously known results whose
proofs, though all similar, were apparently independent.

Indeed, the motivation for undertaking the research which led
to this paper came from the similarity of the proofs of a number of
theorems. Among these is the following.

THEOREM A. // S is paracompact and H is a subset of M(S)
which is countably compact in the C(S) topology on M(S) then for
every ε > 0 there is a compact set Kεcz S such that

\μ\(S-Kε)<e

for every μ in H.

This theorem was first proved by LeCam [15] and then, inde-
pendently, by the present author [4]. Another result which utilizes
the same method of proof referred to above is

THEOREM B. If S is paracompact and A is a closed linear sub-
space of C(βS) such that A interpolates βS — S then there is a
closed neighborhood V of βS — S such that A interpolates V.

NOTE. TO say that a closed linear subspace A of C(βS) inter-
polates a closed set K c βS means that any / in C(K) has an exten-
sion F to βS such that F is in A.

Theorem B is due to Bade [1] for σ-compact spaces. In addition
to these two results there are still others which fit into this same
category. These will be presented in § 3 together with the proofs
using the main theorem of this paper. However, we have not yet
been able to discover a proof of Theorem A based on this result.
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Theorem B can be proved by means of Theorem 2.2, but we have
postponed this to a later paper.

1* Preliminaries. The original proofs of the two theorems above,
as well as those of some of the theorems in § 3, employ the following
approach: Using some previous result; an embedding of l°° into C(S),
the space of bounded continuous complex valued functions on S, is
constructed. The adjoint of this map is examined and a result of
R. S. Phillips is applied to achieve the desired conclusion. This result
of Phillips is the following (see [5, p. 32] for a proof).

THEOREM 1.1. // {μn} is a sequence in M(βN) which converges
to zero in the weak * topology of M(βN) then

lim Σ I μ.({k}) I - 0

uniformly in n.

Here we have taken liberty to identify Z°° with C(N) and (ϊ~)*
with M(βN); N is the set of positive integers with the discrete
topology. The proof of our theorem will also use this result.

The notation and terminology used here will be standard as is
found in [9], [12], and [14]; however, there will be a few minor
deviations. We will denote by C0(S) those functions in C(S) which
vanish at infinity, and CQ0(S) will be the space of continuous func-
tions having compact support. The term "weak * topology" will be
restricted to mean only the σ(M(βS), C(βS)) topology on M(βS).
The σ(M(S), C0(S)) and σ(M(S), C(S)) topologies on M(S) will be
referred to as the C0-weak * and C-weak * topologies respectively.
Notice that if we consider M(S) as a subset of M(βS) then the C-
weak * topology is exactly the relativisation of the weak * topology
to M(S).

If μ is in M(S) and B is a Borel subset of S then μB denotes
the restriction of μ to B. That is, μs(A) = μ(B Π A) for every Borel
set A. To simplify our notation, we will not use any symbol to
distinguish between a function in C(S) and its extension to βS.

Finally, we wish to state the characterization of paracompact
locally compact spaces needed below. The proof may be found in [9,
p. 241].

THEOREM 1.2. A locally compact space S is paracompact if and
only if S = \Ja Sa where the Sa are pair wise disjoint open and closed
σ-compact subsets of S.
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2* The main theorem* If H is a subset of M(S) then we say
that H is tight if and only if H is uniformly bounded and for every
ε > 0 there is a compact set Kεa S such that | μ \ (S — Kε) < ε for
every μ in H. (In [4] the author showed a relationship between
tightness and the strict topology on C(S)). With this definition we
state a well-known lemma whose proof will not be given.

LEMMA 2.1. Let {μn} be a sequence in M(S) which is tight and
let μ be in M(S) such that

lim 1 φdμn = I φdμ
n—•<» J s J S

jor each φ in C00(S). Then {μn} converges to μ C-weak * .

We now give the main result.

THEOREM 2.2. // S is paracompact and {μn} is a sequence in
M(βS) which converges weak * to μ in M(βS) then {μ%s} is tight
and converges C-weak * to μs.

REMARKS. It is easily seen that lim I φdμn = 1 φdμ for each φ
JS JS

m COO(JS). Hence, by Lemma 2.1, the important part of the result is
that {μns} is tight. A moments reflection will show that tightness in
M(N) = I1 is exactly the uniform limit condition in Phillips' theorem.
Therefore this is a generalization of Theorem 1.1.

Proof. As was noted in the above remarks we need only show
that {μns} is tight. Since this proof is similar to that of another
result of the author [4, p. 478], we will omit many of the details.
As in [4] we will only consider the case where S is σ-compact, the
general theorem being accomplished by means of Theorem 1.2. There-
fore, let S = U**=i D» where each Dn is compact and Dn is contained
in intZ^+i (the interior of Dn+1).

Suppose {μns} is not tight; since {μn} is uniformly bounded there
is an ε > 0 such that for every k ^ 1 there is a μ%k, subsets Kk and
Uk of S, and a function φk having the properties:

( a ) Kk is compact, Uk is open in S with Uk compact and Uk Π Kk

empty;

(c) 1^,(17*) I >e/4;

(d) φk is in CΌoOS), ||9>*IU — 1> the support of φk is contained

in Uk and \μnΛ{Uk)< \\ φkdμn, + ε/8. If for every £ = {»*} in
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l°° and s e S we define

then Γ(5) is in C(S) and || T(£)|U = II £ II-. It follows that T is an
isometry of ί°° into C(S). Therefore T*: MiβS)--*^00)* = M(βN)
exists and is weak * continuous. From our hypothesis on {μn} it
follows that {T*(μnj)} converges to T*(μ) weak * in M(βN). It is
an easy matter to check that

T*(μ.k)({j}) - \ φjdμnk = ί
J βS J S

Applying Theorem 1.1 we get that

= 0lim £ I ί <Pidμnk
tn—>oo j — in I J S

uniformly in k. In particular, we have that

lim \ φkdμ = 0
k->oo is

which, when combined with condition (d) above, yields a contradiction
to (c). This completes the proof of the theorem.

3* Applications* The applications here are to sequential con-
vergence in M(S). For further results and references concerning this
topic the reader is referred to the papers of Varadarajan [16] and
Dudley [8].

The first result is due to Diendonne [7]. It should be noted that
his original proof was a generalization of a proof of a theorem of
Schϋr. However, it is an immediate consequence of Theorem 2.2.

THEOREM 3.1. // S is paracompact and {μn} is a C-weak * con-
vergent sequence in M(S) then {μn} is tight.

The next theorem was proved independently by Varadarajan [16,
p. 195] and Collins and Dorroh [2]. Both have different proofs; Vara-
darajan uses a method of LeCam [15, p. 218] and Collins and Dorroh
use the method of Theorem 2.2.

THEOREM 3.2. If S is paracompact then M(S) is C-weak *
sequentially complete. Moreover, if {μn} is a C-weak * Cauchy sequ-
ence then {μn} is tight.

Proof. If {μn} is a C-weak * Cauchy sequence in M(S) then
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consider each μ% as an element in M(βS). Since sup {|| μn \\ : n ^ 1} < oo 9

Alagolu's theorem implies that there is a μ in M(βS) which is a weak
* cluster point of {μn}. But for each / in C(S),

lim 1 fdμn = lim I fdμ

exists and so {μn} converges to μ weak * in M{βS). Therefore, Theo-
rem 2.2 implies that {μn} converges to μs C-weak * in M(S) and {μn}
is tight. This completes the proof.

The following theorem of Grothendieck [11] characterizes the
weakly convergent sequences in M(S) (i.e., the sequences which con-
verge for the σ(M(S), M(S)*) topology).

THEOREM 3.3. If S is an arbitrary locally compact space and
μ, μ19 μ2, o/re elements in M(S), then the following are mutually
equivalent:

( a ) {μn} converges to μ weakly in M(S);
( b) {/*»} is uniformly bounded and μ( U) = lim μn( U) for every

open Fσ set UaS;

( c ) lim I fdμn = \ fdμ for every bounded lower semicontinuous

function f;
(d) ( i ) {μn} is tight, (ii) {μn} converges to μ C-weak * , and

(iii) for every ε > 0 and every compact set Ka S there is an open
set VεZ) K such that \ μn \ (Vε — K) < e for every n ^ 1.

Proof. It is trivial to see that (a) implies (b) and that (b) and
(c) are equivalent. Therefore, assume that (c) holds and let us prove
(d). Since we are only dealing with a countable family of regular
measures we can find an open σ-compact set ^ c S such that

for every n ^ 1. If / is a nonnegative function of S which is con-
tinuous on Si and vanishes on S — S^ then / is lower semicontinuous.
From this we have that {μn} converges to μ C-weak * in MiSJ. Since
Sx is <T-compact, Theorem 2.2 implies {μn} is tight in Λf(Sj) and hence
in M(S).

Since (ii) is clearly true it remains only to prove (iii). By means
of (i), the proof of the general case requires only minor technical
changes in the proof of the case when S is compact. Hence, let us
make this assumption. Let e > 0 and let K be a given compact subset
of S. By passing to a larger compact set with the same measure as
K, we may assume that K is a Gδ set. But then W = S — K is an
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open σ-compact subset of S. As above, it follows that {μnw} converges
to μw C-weak * in M(W). Hence {μnw} is tight in M(W); that is,
there is a compact set DczW such that | μn | (W — D) < ε for every
n. But if V=S-D, V is open, KaV and \μn\(V - K) =

I μn I (W - D) < ε for each n.
Now let us assume that (d) is true and prove (a). As before we

will only consider the case where S is compact; we will further assume
that μ = 0. Observe that with S compact condition (iii) is equivalent
to the following:

(iii)' for every ε > 0 and every open set U there is a

compact set KaU such that | μn \ (U — K) < ε for each n.

Using (iii)', Urysohn's Lemma, and property (ii) we get that
lim μn{ U) — 0 for every open set U. It remains to show that this
implies that \xmμn{A) = 0 for each Borel set A in S (see [10, p. 308]).
But again we need only show this when A = (J Kn1 where each Kn

is compact and Kn c Kn+1. Let ε > 0 and for each n choose an open
set Vn 3 Kn such that for every k ^ 1

Let V = U~=i Vn; then V is open, AaV and for every k

\μk\(Vu-A) = \μk\ (Π(Vn - Kά))

Thus,

\μk\(V-A) = \μk\ (Qt(Vn - A)) ̂  A e

for all k. But \iraμn{V) = 0 and so | μn(A) \ < ε for sufficiently large
n. This completes the proof of the theorem.

REMARKS. The proof that (d) implies (a) does not employ Theorem
2.2, but was given here for completeness. Dieudonne [6] showed that
(c) and (d) are equivalent for S compact and that (a) and (b) are
equivalent when S is a compact metric space. In fact, when S is
metrisable he showed that the condition of uniform boundedness in
(b) can be dropped.

A compact space S is said to be a σ-Stonian space if and only
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if every bounded sequence of continuous real valued functions has a
supremum. This is equivalent to the proposition that the closure of
every open Fσ set is open. One interesting property of a σ-Stonian
space is that if U is an open i^-set then βU is exactly U~, the
closure of U. Using this fact and our Theorem 2.2 we can prove the
following result of Grothendieck [11, p. 168] and Isbell and Semadeni
[13, p. 46].

THEOREM 3.4. // the compact space S is a σ-Stonian space and
{μn} is a sequence in M(S) which converges weak * then {μn} con-
verges weakly.

Proof. Let μ be the weak * limit of {μn}. By the preceding
theorem we must show that μ(U) = lim μn(U) whenever U is an open
Fσ set. But then βU = U~ and Z7~ is open in S. Hence, if vn

(respectively, v) is the restriction of μn (respectively, μ) to U~ we
have that {vn} converges to v weak * in M(βU). Therefore, by
Theorem 2.2 we have that {vnu} converges to vΌ C-weak * in M(U).
In particular, we get that μ(U) = limμn(U). This completes the
proof of the theorem.

REMARKS. Grothendieck proved this for S a Stonian space and
Isbell and Semandeni showed it to be true in the more general σ-
Stonian spaces.

As a final application we give a generalization of Phillips' theorem
that c0 is not complemented in l°°.

THEOREM 3.5. // S is paracompact and not compact then there
is no bounded projection from C(S) — C(βS) onto C0(S).

Proof. Suppose P is a bounded projection from C(βS) onto CQ(S).
Then P*: M(S) —• M(βS) is a bounded linear map which is C0-weak * —
weak * continuous. Also, if φ is in C0(S) and a is in M(S) we have

\ φdP*(μ) =\φdμ.
JβS JS

Therefore P*(μ)s = μ for all μ in M(S). But since S is paracompact
and not compact we can, by Theorem 1.2, choose a sequence {sn} in
S which is eventually in the complement of every compact subset of
S. Hence, lim φ(sn) = 0 for every φ in C0(S). If μn is the unit point
mass at sn then {μn} converges C0-weak * to zero in M(S). Thus,
{P*(μn)} converges to zero weak* in M(βS). By Theorem 2.2 we
have that {μn} = {P*(μn)s} converges to zero C-weak * in M(S) and is
tight. Clearly this is a contradiction and the theorem is proved.
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REMARKS. This proof is the analogue of Phillips' proof that c0 is
not complemented in l~, where Theorem 2.2 is used in place of Phillips'
Theorem 1.1. In [3] the present author has proved a more general
result than Theorem 3.5. Also Theorem 3.5 can be obtained as a
corollary to Bade's Theorem B.
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