
PACIFIC JOURNAL OF MATHEMATICS
Vol. 28, No. 2, 1969

LARGE SUBLATTICES OF A LATTICE

THOMAS P. WHALEY

In this paper we consider a special case of the following
two closely related problems of B. Jόnsson:

I. For which infinite cardinals m is there an algebra of
power m which has finitely many operations and satisfies the
descending chain condition for subalgebras.

II. For which infinite cardinals m is there an algebra of
power m which has finitely many operations and has no proper
subalgebra of power m.

Of course a positive answer to the first problem for a given
cardinal always indicates a positive answer to the second for the same
cardinal.

The special case we are concerned with is obtained by further
restricting the algebras to be lattices. With this restriction we obtain
a negative answer to the second problem for any regular cardinal. It
follows that the answer to the first question is negative for the class
of lattices and for any infinite cardinal m. Actually we obtain a
stronger result which shows that in a lattice of power m where m is
infinite and regular, there are at most two elements which do not lie
in the complement of a sublattice of power m. We give an example
to show that regularity is needed here. In a distributive lattice of
regular cardinality m every element lies in the complement of some
sublattice of cardinality m.

We adopt the conventions of identifying an ordinal with the set
of smaller ordinals and of identifying a cardinal m with the smallest
ordinal of cardinality m.

The bibliography includes most of the results related to problems
I and II.

2* Lattices of regular cardinality* Throughout this paper
<X; +, , 5 0 will denote a lattice of power m ^ coin which x -f y is
the least upper bound of {x, y] and x y is the greatest lower bound of
{x, y) for any x, yeL. We usually identify such a lattice with the
underlying set L. We use the notation Kξ^8L to indicate that K is
a sublattice of L. For x, y e L we let

S(x, y) = {zeL\z + x = y}

and

T(x,y) = {zeL\z-x = y} .
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In particular S(x, x) is the principal ideal generated by x and T(x, x)
is the principal dual ideal generated by x. We write S(x) for S(x, x)
and T(x) for T(x,x). Thus for any xeL, S(x)^sL and T(x)^sL.
It is easy to check that S(x, y) and T(x, y) are sublattices of L for
any x, y e L if L is distributive. Since for any x, y e L we have
x + y 6 T(x) and # e S(x, x + y), we see that

disjointly and dually
(2) L = \J{T(x,z)\zeS(x)}

disjointly.
If A; is a cardinal, we let Mk be the two-dimensional lattice having

k atoms. We indicate this lattice in our diagrams by the figure

FIGURE 1.

If L has a largest element, we denote this element by 1, and we
let 0 indicate the smallest element of L if such an element exists. If
L has a largest and a smallest element and x e L, we let C(x) be the
set of all complements of x, i.e., C(x) = S(x, 1) Γ) T(x, 0).

The following theorem yields some immediate results concerning
the problems under investigation. This theorem is also used in almost
every proof of this paper.

THEOREM 2.1. If L is a lattice of power m where m is infinite
and regular, then one of the following conditions must hold:

( i ) There is anx e L, distinct from lifl exists, with \ S(x)
(ii) There is anx e L, distinct from OifO exists, with \ T(x)
(iii) L has a sublattice isomorphic to Mm.

= m.
= m.

Proof. Suppose (i) and (ii) fail. Let x be any element of L other
than a possible largest or smallest element. Since (i) and (ii) fail, we
h a v e I S(x) U T(x) \ < m. B y (1) w e h a v e L = \J {S(x, y)\ye T(x)}

d i s j o i n t l y . T h u s m = \ L \ = Σ (I S(x, y)\;ye T(x)). S i n c e | T(x) \ < m

and m is regular, there is a y0 e T(x) with | S(x, y0) | = m. It is clear
that S(x, y0) S S(y0). Hence | S(y0) \ = m implying that y0 = 1. If
y e T(x) - {!}, then | S(y) \ < m so | S(x, y)\ < m. Thus
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|L - S(x, 1) I = I U {S(x, V) \yeT(x) - {1}}\

= Σ>(\S(x,v)\;yeT(x)-{l})

< m .

Similarly, | L — T{x, 0) | < m. Combining these inequalities, we get

\L - C(x)\ = \L - (S(x,l) Π T(x,0))\

£\L-S(x,ΐ)\ + \L- T{x,V)\
< m .

This holds for any x Φ 0,1. We use this fact to obtain a sequence
{xζ I £ < m} S L — {0,1} so that a?e e C(xξ,) whenever £, £' < m and
£ ^ £'. Inductively, suppose we have β < m and {â  | £ < β} with this
property. Note that

IL - Π {C(ae) I f < /9} I = I U {(L - C(x<)) \ζ<β}\

< m

since m is regular, β < m, and for each £ < /S, | L — C(#f) | < m. Now
we take ^ e fl {C(a?e) | £ < β}. Clearly {xξ \ £ < m} U {0,1} is a sublattice
of L isomorphic to Mm.

COROLLARY 2.2. If L is a lattice of cardinality m where m is
infinite and regular, then L has a proper sublattice of power m.

COROLLARY 2.3. No infinite lattice satisfies the descending chain
condition for subalgebras.

COROLLARY 2.4. If L is a lattice of cardinality m where m is
infinite and regular, then one of the following must hold:

( i ) L has an infinite chain of elements
(ii) L has a sublattice isomorphic to Mm.

Proof. Suppose (ii) fails. We obtain (i) by repeatedly applying
(i) and (ii) of Theorem 2.1.

COROLLARY 2.5. (Well-known). No infinite distributive lattice
is finite dimensional.

EXAMPLE 2.6. Suppose m is not regular, say m = X (ma \ a e k)
where each ma < m and k < m. Consider the lattice.
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•. ctεk.

FIGURE 2

It is clear that (i), (ii), and (iii) of Theorem 2.1 fail in this lattice.

3* Separation of elements by large sublattices* Theorem 2.1
leads us to consider how many elements of a lattice of regular cardinality
are disjoint from some "large" sublattice. Also, given two elements
of such a lattice, is there a "large" sublattice which contains one but
not the other? Of course we note that Mk where k is infinite has
two elements, 0 and 1, which are in every "large" sublattice and hence
may not be so separated. We proceed now to show that this is
essentially the only such example.

DEFINITION 3.1. Suppose L is a lattice of power m ^ ω and
KξΞ:sL with \K\ — m. We say K separates x from y if xeK and
y e L — K. We say x can be separated from y if such a K exists.

LEMMA 3.2. Suppose L is a lattice of power m Ξ> ω with m
regular. IfyeL has the properties

( i ) | S(y) U T(y) \ < m,
(ii) if zeL with \ S(z) \ = m, then y e S(z),
(iii) if zeL with \ T(z) | = m, then y e T(z),

then L has a sublattice isomorphic to Mm having y as an atom.

Proof. As in the proof of Theorem 2.1 there is a ceL with
I S(y, c)\ = m. Consider any z e S(y, c), z Φ c. By (ii) and (iii) we have
I S(z) U T(z) I < m. Now

S(y, c) = z, x) n S(y, c)\xe T(z)} .

Thus there is c' e L with | S{z, c') n S(y, c)\ = m. Since | S(cf)
I S(z, cf) I = m, we have y e S(c') by (ii). Thus for x e S(z, &) Π S(y, c)
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It follows that | S(y, c) — S(z, c) | < m. We can now proceed as in the
proof of Theorem 2.1 to obtain our desired copy of Mm.

THEOREM 3.3. Suppose L is a lattice of power m with m infinite
and regular. Assume furthermore that x, y e L with x Φ y, that x
cannot be separated from y, and that y cannot be separated from x.
Then there is a sublattice of L isomorphic to Mm which has one of
x, y as the largest element and the other as the smallest.

Proof. We consider two cases.
Case 1. x is not related to y: First we note that | S(x) U T(x) | <

m. For otherwise S(x) U T(x) separates x from y. Now if z e L and
j S(z) I = m we must have x e S(z). For if not S(z) U T(y) separates y
from x. Dually, if | T(z)\ = m, then xe T(z). By Lemma 3.2 there
is a copy of Mm occuring as a sublattice of L and having x as an
atom. If y does not belong to this sublattice then x is separated from
y. Otherwise we separate x from y by removing y from this sublattice.

Case 2. x is related to y: Without loss of generality, assume
that x < y. Furthermore, we assume that the conclusion of the theorem
is false. We observe that if zeL with \S(z)\ = m, then x,yeS(z).
For if x$S(z), then S(z) U T(y) separates y from x. If y$S(z), then
S(z) separates x from y. The dual argument gives x, y e T(w) whenever
I T(w) \ = m. We also note that | S(x) U T(y) \ < m.

Suppose now that | S(y) Π T(x) \ = m. Applying Theorem 2.1 to
the lattice S(y) Π T(x) gives

( i ) ze L with z < y and | S(z) Π T(x) \ = m,
(ii) zeL with x < z and | T(z) n S(y) \ = m,

or (iii) there is a copy of Mm occuring as a sublattice of S(y) Π T(x).
Since none of these can happen, we must have | S(y) ΓΊ T(x) \ < m.

Assume now that | T(x) \ = m. We know that

\(T(x)nS(y))ϋT(y)\ <m.

Also if ze T(x) with | S(z) f] T(x) \ = m, we have y e S(z) Π T(x). If
« 6 T(x) with I Γ(ίδ;) | = m, then 2 = x and 2/ e T{z). Hence we can apply
Lemma 3.2 to the lattice T(x) and the element y to get a copy of Mm

occuring as a sublattice of T(x) having y as an atom. We must have
x as the smallest element of this sublattice. Thus if we remove y
from this sublattice, we separate x from y. This shows that | T(x) \ < m.

We now apply Lemma 3.2 to L and the element x to get a copy
of Mm having x as an atom. If y is not the largest element of this
sublattice, then we have separated x from y. If y is the largest
element of this sublattice, we just remove x from this sublattice to
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\S\

separate y from x. This final contradiction comes from the assumption
that the conclusion of the theorem is false.

COROLLARY 3.4. In a lattice of power m where m is infinite and
regular, there are at most two elements which do not lie in the
complement of some sublattice of power m.

EXAMPLE 3.5. Let k be any infinite cardinal. Take L(k) to be
the set of all finite subsets S of k which satisfy the restrictions

( i ) if I S I is odd, then -I S ' ~ 1 ^ °

(ii) if I >S I is even, then
Δ

If S is a finite subset of k, we let S = S U n where n is the smallest
member of ω for which S \J ne L(k). It is now fairly routine to check
that L(k), ordered by set inclusion, is a lattice in which the least
upper bound of two elements S and T is S U T, and the greatest lower
bound is S Γ) T.

It is clear that the atoms of this lattice are the sets of the form
{ξ} where ζ ek. Also, we can check that any sublattice which contains
infinitely many atoms contains each nea).

Suppose now that m is an infinite cardinal with cf(m) = k < m.
Then there are cardinals ma < m for a e k so that X (m« \ a e k) = m.
We obtain a lattice L from the following diagram by letting the
elements {£} for ξ ek generate L(k) as a sublattice:

,aεk.

FIGURE 3

Then any sublattice of L of power m must contain infinitely many of
the elements {a} with aek. This shows that each neω is in such a
sublattice. Thus there are infinitely many elements of L which lie in
each sublattice of power m.

LEMMA 3.6. If L is a distributive lattice of power m ^ ω , then
for any yeL we have \S(y) U T(y) | = m.
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Proof. Define a map φ of L into S(y)xT(y) by φ(x) = (x-y, x + y).
Since L is distributive, φ is one-to-one (cf [1]). Hence | S(y) | | T(y) \ =
m; so I S(y) | = w or | T(y) | = m.

THEOREM 3.7. If L is a distributive lattice of regular power
m ^ w, then each element of L lies in the complement of some
sublattice of power m.

Proof. Suppose x0 is a member of each sublattice of power m.
By Lemma 3.6 | S(x0) U T(x0) | = m. We assume that | S(x0) \ = m. Take
any x1 e S(xQ) with xί Φ x0. Applying Lemma 3.6 to the lattice S(x0)
and the element xx gives

Clearly we must have | T{x^) Π S(x0) \ = m. Let Y be the set of all
elements of S(xQ) which are not related to xt. Suppose | Y | = m. Then
since

Y = U {7(0?^ z)ΓiY\ze Six,) - {x,}} ,

we must have | T(x19 z0) f) Y\ = m for some z0 < xlm Thus | ^Xj, jg0) π
S(χ0) I = m. However, since L is distributive, T(x19 z0) Π S(»o) is a
sublattice of L not containing xQm Hence we must have | Y\ < m or
I S(a?0) — ^ ( ^ I ) I < w. This holds for any a?! < a;0.

Suppose ξ < m and we have {xβ \ β < ξ} having the property that
1 <̂  β < βf implies that xβ < xβ, < x0. Now

- I U { S ( χ 0 ) - T ( χ β ) \ β < ξ } \

< m

since m is regular. We take xξ e Π {S(^o) Π Γ(^^) | /9 < ξ}, xξ < x0. In
this way we get {xς \ ξ < m} a chain of elements of L. But then
{xξ 11 <; ί < m} is a sublattice of L not containing xQ. This contra-
diction completes the proof.
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