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LIFTING PROJECTIONS OF CONVEX POLYHEDRA

DAVID W. WALKUP AND ROGER J.-B. WETS

If τ is a projection of a closed convex polyhedron P onto
a convex polyhedron Q, then a lifting of Q into P is defined
to be a single-valued inverse τ* of τ such that τ*(Q) is the
union of closed faces of P. The main result of this paper,
designated the Lifting Theorem, asserts that there always
exists a lifting r*, provided only that there exists at least
one face of P on which τ acts one-to-one. The lifting theorem
represents a unifying generalization of a number of results
in the theory of convex polyhedra and should prove useful as
an investigative as well as a conceptual tool. In the course
of the proof, a special case of the Lifting Theorem is trans-
lated into linear programming terms and stated as the Basis
Decomposition Theorem, which summarizes the behavior of a
linear program as a function of its right-hand sides. In par-
ticular, the fact that a lifting is necessarily a piecewise linear
homeomorphism is reflected in the Basis Decomposition
Theorem as the observation that the optimal solution of
a linear program can always be chosen as a continuous function
of the right-hand sides.

DEFINITION. Suppose τ is an affine transformation taking a closed

convex polyhedron P onto a closed convex polyhedron Q. A function
r* taking Q into P is said to be a lifting of Q into P relative to τ if

( i ) τ* is a single-valued inverse of τ, that is, τ*(q) is a point
of τ~ι{q) for each q e Q, and

(ii) τ*(Q) is the union of closed faces of P.
A lifting is said to be regular (strictly regular) if there exists an
affine functional f on P such that for each q in Q the image τ*(q) is
some point (the unique point) of τ~ι(q) at which / is minimized.

LIFTING THEOREM. Suppose τ is an affine transformation of the
closed convex polyhedron P onto the closed convex polyhedron Q which
acts one-to-one on some closed face F of P. Then there exists a strictly
regular lifting τ* of Q into P relative to τ such that Faτ*{Q).

The Lifting Theorem can be related to a number of topics in the
theory of convex polyhedra which differ more or less in their basic
viewpoint. First, the theorem is related to the theory of paths on
the edges of polyhedra, as can be seen easily by considering the special
case in which Q is one-dimensional. Second, in [2, p. 168] Eggleston,
Grϋnbaum, and Klee make use of the fact that if an affine transfor-
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mation τ takes a bounded convex polyhedron P onto an s-dimensional
polyhedron Q then it takes the s-dimensional skeleton of P onto Q.
The Lifting Theorem is a generalization of this result, since every
vertex of a bounded polyhedron P is a face on which τ acts one-to-
one and since a lifting τ* of Q into P necessarily takes Q onto the
union of s-dimensional faces of P. In fact, as will be seen from Pro-
position 3, the Lifting Theorem replaces the sufficient condition that
P be bounded by the weaker necessary and sufficient condition that τ
act one-to-one on the lineality space of P. Finally, we note that τ~\q)
may be interpreted as one of a family of polyhedra whose defining
halfspaces are subject to translations parametrized linearly by q.
Viewed in this way the Lifting Theorem asserts in a rigorous way
that the vertices of a polyhedron move continuously and piecewise
linearly as its defining halfspaces are perturbed. The Lifting Theorem
is used in this context in [4] to show that if the space of polyhedra
τ~~ι(q) is given the Hausdorff metric, then r"1 is a Lipschitz function
on Q. This result in turn can be used to establish some regularity
conditions for convex programs with linear constraints [5].

The Basis Decomposition Theorem collects and sharpens certain
results on a perturbation theory for linear programs which appeared
in the Appendix of [6]. As already mentioned, the Basis Decomposi-
tion Theorem shows that it is always possible to make the optimal
solution of a linear program a continuous function of its right-hand
sides. This fact is used in [3], The results of Dantzig, Folkman,
and Shapiro [1], when applied to the very special case of a linear
program, show that the set M(t) of all optimal solutions of a program
is an upper semicontinuous set-valued function of the right-hand sides
t. They also show that, when restricted to that part of its domain
on which it is single-valued, M(t) is continuous. The basis Decompo-
sition Theorem asserts the existence of a continuous single-valued
function m(t), sometimes known as a continuous selection, such that
m(t) is a member of M(t) for all t. We remark that in general a
continuous selection cannot be found if variation of other parameters
of a linear program is considered.

Section 5 contains an example which may help the reader visua-
lize some of the results obtained here, and which shows that certain
of these results cannot be significantly sharpened.

2* Elementary properties of liftings* In addition to serving as
an introduction to the concept of a lifting, the four elementary pro-
positions of this section will be useful in the proofs of the theorems
and in the applications of the Lifting Theorem mentioned in the In-
troduction.
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PROPOSITION 1. If τ is an a fine transformation of a polyhedron
P onto a polyhedron Q and τ* is a lifting of Q into P relative to
τ, then τ* is a piecewise linear homeomorphism.

Proof. Of course τ* is one-to-one and its inverse is continuous
since it is a restriction of τ. To show that τ* is continuous we must
show that τ(S) is closed in Q for any relatively closed subset S of
τ*(Q). Since τ*(Q) is closed, so is S. The set S is a finite union of
sets Si.= S Π Fi9 where each Ft is a closed face of P in τ*(Q). Since
Ft is in τ*(Q), τ acts one-to-one on Fif and hence τ is a affine homeo-
morphism on Fim If follows that τ(S<) and therefore r(S>) = U; r(£i)
is closed. This establishes that τ* is a homeomorphism. The sets of the
form τ(F), where F is a maximal face of P contained in τ*(Q), cover
Q and are polyhedral regions of linearity of τ*.

PROPOSITION 2. Suppose τ is an affine transformation of the
finite-dimensional linear space E onto a space Ef taking a convex
polyhedron P onto a polyhedron Q. Suppose further that F is any
face of P (including possibly P itself), p is a point in the relative
interior of F, and q — τ(p). Then τ acts one-to-one on F if and
only if p is a vertex of κ(q) = τ~ι(q) f] P.

Proof. By supposition p is in the relative interior of F. Thus
if τ does not act one-to-one on F there is a line segment in τ~\q) ΓΊ F
passing through p. From this it is immediate that p is not a vertex
of tc(q) — τ~\q) Γ) P. Conversely, if p is not a vertex of κ(q), there
is a line segment I in κ(q) passing through p. Since the face F must
contain every line segment in P through p, I must be contained in
^(Q) Γl F, i.e., τ does not act one-to-one on F.

PROPOSITION 3. Suppose τ is an affine transformation of the
finite-dimensional linear space E onto a space Er taking a convex
polyhedron P onto a polyhedron Q. Then the following are equivalent:

( i ) τ acts one-to-one on some face F of P.
(ii) τ acts one-to-one on the lineality space of P.
(iii) For some (or alternatively every) q in Q the polyhedron
= τ~\q) Γl P has at least one vertex.

Proof. Items (i) and (ii) are equivalent since in any polyhedron
there is a face which is a translate of the lineality space and every
face contains a translate of the lineality space. The equivalence of
(i) and (iii) is an easy consequence of the previous proposition.

PROPOSITION 4. Suppose τ is an affine transformation of the



468 DAVID W. WALKUP AND ROGER J.-B. WETS

finite-dimensional linear space E onto a space E* taking a convex
polyhedron P onto a polyhedron Q and S is any polyhedron in Έ'
intersecting Q. If r* is a lifting of Q into P relative to τ, then
the restriction of τ* to Q Π S is a lifting ofQf]S into the polyhe-
dron tc(Q n S) = τ~\Q Π S) Π P relative to the restriction of τ to
κ(Q Π S). If τ* is regular or strictly regular, so is its restriction
to Qf]S.

Proof. For each point q in E', τ~ι(q) is a flat in E, and hence
S' = τ~ι(S) is a polyhedron in E whose faces are of the form τ~ι(F),
where F is a face of S. Note that tc(Q n S) is just P n S'. It is
trivial that the restriction of r* to Q f] S satisfies part (i) of the de-
finition of a lifting. That is satisfies part (ii) of the definition follows
from the fact that the faces of the intersection of two polyhedra, in
particular κ(Q Π S) = S' D P, are exactly the nonempty intersections
of the faces of each. If τ* is regular or strictly regular with respect
to the function /, then clearly the restriction of τ* to Q n S is regular
or strictly regular with respect to the restriction of / to S' ΓΊ P.

In § 5 we shall prove a converse of Proposition 4, specifically,
that a strictly regular lifting r* of Q Π S into κ(Q Π S) can be ex-
tended to a lifting of Q into P. However, it will be shown by coun-
terexample that the condition of regularity on r* cannot be removed
from the converse even if S is a flat.

3* A theorem in linear programming* We begin by stating
a lemma, which establishes a special case of the Strengthened Lifting
Theorem to be proved in § 4. Many of the details of this lemma are
slightly strengthened forms of familiar results in the theory of linear
programming; accordingly, parts of the proof are only a brief review
of the necessary arguments. We follow the convention of writing pos
A for the set of column vectors spanned positively by the columns of
a matrix A, i.e., the convex polyhedral cone {y\y — Ax, x ^ 0}.

LEMMA. Let P(c, t) denote the linear program

min ex

Ax = t

where A is a fixed m x n matrix of rank m whose columns are so
ordered that the last m of them constitute a feasible basis for P(c°, f)
yielding an optimal solution x°. Let c(θ) denote the cost vector whose
ith component Ci(θ) is the sum of the ith component c\ of c° and the
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ith power of θ. If P(c°, t) has a unique solution x*(t) for all t in
pos A, then x* is a lifting of pos A into the positive orthant R^ =
{x I x ^ 0} relative to the transformation τ(x) = Ax which is strictly
regular with respect to the functional fo(x) — c°x. In any case there
always exists θ* > 0 such that:

( i ) For all θ e (0, θ*] the program P(c(θ), t) has a unique optimal
solution #*(£) independent of θ for all t in pos A, so that by the
above, x* is a lifting of pos A into R\ which is strictly regular
with respect to the functional fθ(x) — c(θ)x.

(ii) x*(t) is a (not necessarily unique) optimal solution to P(c°, t)
for all t in pos A, i.e., #* is a regular lifting with respect to
fo(x) = c°x.

(iii) x*(f) = x°.

Proof. Observe that, whatever the value of c, the program P(c, t)
is feasible if and only if t lies in pos A. Since we assume P(c\ t°)
has an optimal feasible solution, the dual program is feasible. But
feasibility of the dual is independent of t, hence P(c°, t) has an optimal
basic feasible solution for all t in pos A. Similarly, P(c(θ), t) must
have an optimal basic feasible solution for all t in pos A and all posi-
tive θ; for replacement of the quantities c^θ) by the lesser quantities
c\ — d(0) in a supposedly unbounded problem P(c(θ), t) would produce
an unbounded problem P(c\ t).

There are finitely many bases in A, i.e., nonsingular m x m sub-
matrices A{k), l^k^K. A basis A{k) satisfies the optimality criterion
for P{c{θ), t) if the adjusted objective coefficients

c(θ) = e(θ) - c{k){θ)Aτk\A

are nonnegative. A basis satisfies the strict optimality criterion if
the nonbasic components of c(θ) are strictly positive. (Here c{k)(θ)
denotes the basic part of c(θ), i.e., the subvector of c(θ) corresponding
to the submatrix A{k) of A.) The components of c{θ) are polynomials
in θ and none of the nonbasic components are constant polynomials.
Thus there exist θk > 0 such that either

(a) the basis A[k) fails to satisfy the optimality criterion for
P(c(θ), t) for all θ e (0, θk], or

(b) the basis A{k) satisfies the strong optimality criterion for
P(c(θ), t) for all θ e (0, θk).
If a basis is feasible and satisfies the strong optimality criterion, then
it yields a unique optimal solution. (There can be other feasible bases
also satisfying the strong optimality criterion, but only if the solution
is degenerate.) Let θ* be the minimum of the finite set of values θk.
It follows that for each t in pos A there is some feasible basis which
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satisfies the strong optimality criterion for P(c(θ), t) for all θ e (0, θ*]
and that this basis also satisfies the optimality criterion for P{c\ t).
This establishes the first half of both parts (i) and (ii) of the lemma.
Part (iii) of the lemma follows from the fact that when the basis consists
of the last m columns of A the nonbasic component c3(θ) of c(θ) is
the sum of a nonnegative constant c3- = c) — c\k)A^)Aj and a polynomial
Q5 _ φn-m+i^ # . m ̂  βnjAj ̂ Ao whose leading term (with smallest exponent)
has a +1 coefficient, so that only case (b) above applies.

It remains to prove the first statement of the lemma, from which
the rest of (i) and (ii) will follow. Thus suppose that the optimal
solution x*(t) of P{c*y t) is unique for all t in pos A. Clearly x* will
be strictly regular with respect to f0 if we show that it is a lifting,
and just as clearly x* satisfies part (i) of the definition of a lifting.
To prove that x* satisfies part (ii) of the definition it suffices to show
that if F is the face of R\ containing x = x*(t) in its relative interior
and xr is any other point of F, then xf = x*(t') for some V in pos A.
But F is the set of vectors obtained from x by independently mul-
tiplying its nonzero components by nonnegative scalars, and any such
vector is clearly obtained by altering t without affecting feasibility
or optimality of the feasible, optimal basis yielding x.

The foregoing lemma has shown that the behavior of a linear
program as a function of its right-hand sides can be summarized using
the concept of a lifting. There is an additional concept that may be
of value in visualizing this behavior. If τ* is a lifting of a polyhedron
Q into a polyhedron P, then it is immediate that the image τ*(Q) is
the union of the cells of a finite closed polyhedral complex. By de-
finition a finite closed polyhedral complex will be any finite collection
3ίΓ of closed convex polyhedra, called the cells of J^" such that:

( i ) If C is a cell of 3ίΓ then every closed face of C is a member
of 3ίΓ.

(ii) If Cx and C2 are distinct cells of 3tΓ then either they are
disjoint, or one is a face of the other, or their intersection is a face
of each.

Since the restriction of z to the set τ*(Q) is a homeomorphism and is
linear on the faces of P in r*(Q), it defines a decomposition of Q into
a finite closed polyhedral complex. For the special case described in
the lemma the cells of the complex associated with a;*(pos 4̂.) are
simplicical cones, that is, polyhedral cones affinely equivalent to or-
thants. Using these observations we may incorporate parts of the
lemma in the following theorem, which constitutes an extension of
certain of the results summarized in the Appendix of [6]. Expressing
part (ii) of the lemma in this form it is, if possible, even clearer that
the solution of a linear program can be made a continuous function
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of its right-hand sides.

BASIS DECOMPOSITION THEOREM. Let P(t) denote the linear pro-
gram

min ex
X

Ax = t

where c is fixed and A is a fixed m x n matrix of rank m. Then:
( i ) P(t) is feasible if and only if t lies in the closed convex

polyhedral cone pos A of dimension m.
(ii) Either P(t) is bounded for all t in pos A or P(t) is unbound-

ed for all t in pos A.
(iii) // P(t) is bounded there exist a decomposition of pos A into

a finite closed polyhedral complex Sίf whose cells are simplicial
cones with vertex at the origin and a one-to-one correspondence be-
tween the one-dimensional cells of SΓ and selected columns of A
which generate them, such that

(a) the closed m-dimensional cells of 3ίΓ cover pos A and
(b) the m columns of A associated with the edges of a closed m-

dimensional cell C of Jst~ constitute an optimal basis for all t in C.

REMARK. At first glance one might guess that a decomposition
of pos A into simplicial cones could be obtained by selecting for each
t the optimal feasible basis which is lexicographically least with respect
to some ordering on the columns of A. However, it can happen that
a basis which is lexicographically preferred for some t is not preferred
for all V for which it is feasible. Consequently the resulting "decom-
position" need not be simplicial nor yield a continuous solution.

4* Proof of the Lifting Theorem* This section will be devoted
exclusively to the proof of the following strengthened version of the
Lifting Theorem stated in the Introduction.

STRENGTHENED LIFTING THEOREM. Suppose τ is an affine trans-
formation of a finite-dimensional linear space E onto the linear
space Ef taking the closed convex polyhedron P in E onto a closed
convex polyhedron Q in Ef and that f0 is an affine functional on E
which achieves a (not necessarily unique) minimum on

κ(<f) = τ-\q«) n P

at a vertex p° of tc(q°) for some q° in Q. If f0 has a unique minimum
on κ(q) for all q in Q, then /0 defines a lifting τ* of Q into P rela-
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tive to τ which is strictly regular with respect to fQ. In any case
there exist a class of affine functions fθ on E parametrized continu-
ously by θ on the interval [0, 1] and a lifting τ* of Q into P rela-
tive to τ such that τ* is strictly regular with respect to fθ for θ e (0, 1],
τ* is regular with respect to f0, and r*(g°) = p\

Proof. It is clear that we may as well suppose that τ is a linear
projection of E into itself taking the polyhedron P onto the polyhedron
Q in the subspace τ(E). Let N and L denote respectively the null-
space of τ and the lineality space of P (the largest subspace of E for
which a translate lies in P). The equivalence of parts (ii) and (iii)
of Proposition 3 shows that N Π L — 0. Thus we may choose a sub-
space Eι of E such that Eί9 N, and L are independent and span E.
The polyhedron P is the sum of L and a polyhedron F = Pί l f f i +
N + q°) with a trivial lineality space. The projection τ takes Pf onto
a polyhedron Qf in E1 + q° such that Q = Qf + L. (Thus L is con-
tained in, but need not be equal to, the lineality space of Q.) It is
not difficult to see that to prove the theorem it is sufficient to prove
it for P', Q', p\ q\ and the restrictions of τ and f0 to Eι + N + q\

Now it is well known that any polyhedron P' with trivial linea-
lity space is affinely equivalent to the intersection of the orthant RX
and a /^-dimensional flat K in jβn, where k is the dimension of P' f n
is the number of (k — l)-dimensional faces of P', and K intersects
the relative interior of R\. Clearly we may identify P ' with R\ Π K
and suppose that τ is an affine projection taking K, which is the affine
hull of P', onto a subflat S of K. It is then possible to extend τ to
all of Rn in such a way that the identity τ^iS) = K is preserved.
The functional fQ may be extended from K to Rn in any way; p° will
still be a vertex of fc(q°) minimizing the (extended) functional fQm

We next show that the lemma applies. Let M be the flat τ(Rn)
of dimension m, say, (so that M Π K = S). With respect to a coor-
dinate system in M with origin at r(0) the projection τ can be given
by a matrix equation τ(a ) = Ax, where A is an m x n matrix of rank
m. Let F be the face of R\ containing p° in its relative interior.
Then F is the set of vectors in Rn

+ whose components are zero in every
position that p° has a zero component and nonnegative in every posi-
tion that p° has a positive component. By Proposition 2, τ acts one-
to-one on F. Hence there are at most m nonzero components of p*
and the corresponding columns of A must be independent. Since A
has rank m the coordinates of Rn may be reordered if necessary so
that the last m columns of A constitute a feasible basis for the equa-
tions Ax = t°, where t° = Ap°, and of course this is an optimal basis
with respect to the cost vector c°, where c°x + d — fQ(x). Thus the
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lemma applies and we have a lifting τ* and functional

fΘ(x) - e(β)x + d .

Since τ^(S) = M we may apply Proposition 4, and the restrictions of
τ* and /„ to Q' = τ(Rn

+) Π S and K respectively have all the properties
required in the Strengthened Lifting Theorem.

4. A counterexample. The Lifting Theorem may be viewed as
saying that a lifting of a subset of Q onto a face F of P can be
extended to a lifting of all Q. Thus it is perhaps natural to ask
what more general partial liftings can always be extended. It is cer-
tainly clear that if a function τ* defined on a subset Q' of Q can be
extended to a lifting of Q into P then it must be a single-valued in-
verse of τ taking Qr homeomorphically into the union of faces of P
on each of which τ acts one-to-one. Let us call a function r* satisfy-
ing these conditions a partial lifting. It is not difficult to find low-
dimensional examples of partial liftings satisfying a number of addi-
tional plausible conditions for which no extension to Q is possible. The
following counterexample shows that a partial lifting r* need not
have an extension even if r* takes a convex subset Qf of Q onto the
union of faces of P on which r acts one-to-one. It is necessary to
go to dimension d = 4 for P to construct the counterexample, since
an extension exists if the dimension of Q is 0, 1, d - 1, or d.

Consider the 3-dimensional trapezoidal prism B in R* with vertices
α, δ, .••, h listed in Figure 1 below. Figure 1 shows an accurate re-
presentation of the projection of B into the plane of the first two
coordinates. Let P be the 4-dimensional pyramid with base B and
apex p The 2-faces of p are the 2-faces of B plus the triangles with

α = (~4, -2, 1,0)
b =(-4, 2, 1,0)
c = ( - 3 , - 3 , -1,0)
d = (-3, 5,-1,0)
e = ( 1,-2, 1,0)
/ = ( 1, 2, 1,0)
0 = ( 2,-3,-1,0)
h=( 2, 5,-1,0)
p = ( 0, 0, 0,1)
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P as apex and the 1-faces of B as bases. Let r be the coordinate-
wise projection sending R4 onto the plane of the first two coordinates.
It is readily seen that τ acts one-to-one on every face of P of dimen-
sion 2 or less. Let Pr be the union of the closed faces cdp, dhp, and
hfp of P, and let Q' be the image of P ' under τ. Then Q' is convex
and there is a unique single-valued inverse τ* of τ taking Qf onto
P', but r* cannot be extended to a lifting of Q into P. The difficul-
ty is that any extension counterclockwise about p from cdp must
involve gcp and any extension clockwise about p from hfp must in-
volve fep.

The foregoing example may also be used as a counterexample to
a converse of Proposition 4. Let S be the line in the plane of Figure
1. There is a lifting of the line segment Q f) S into the 3-polyhedron
τ~1(Q Π S) Π P involving the intersection of τ-^S) and the faces abdc,
cdp, dhp, hfp, and fhge of P. But by the same arguments as above,
this cannot be a restriction of a lifting of Q into P.

We conclude with the following limited converse to Proposition 4.

PROPOSITION 5. Suppose τ is an affine transformation taking a
polyhedron P onto a polyhedron Q. Suppose further that S is a
polyhedron intersecting Q, and rf is a lifting ofQdS into τ~\Q Π S)
relative to τ which is strictly regular with respect to the affine func-
tional /j defined on τ~\Q D S). Then there exists an extension τ* of
τ* which is a lifting of Q into P relative to τ and which is strict-
ly regular with respect to a functional f on P. (But note that no
relationship between f1 and / is asserted.)

Proof. Let /„ be any extension of fx to P. If q° is any point of
Q f] S then /0 achieves its unique minimum on τ~ι{q°) at the vertex
pQ = τf(g°). Now it may be impossible to choose f0 so that it yields
a strictly regular lifting of Q into P, but the Strengthened Lifting
Theorem assures us of a lifting τ* of Q into P which is regular with
respect to f0 and strictly regular with respect to some functional /
close to /o. We supposed that τf is strictly regular with respect to
f19 that is, /i has a unique minimum on τ~\q) for all q in Q 0 S,
hence τ* must agree with τ* on Q Γ) S. Thus τ* is a strictly regular
extension of τf.

REFERENCES

1. G. B. Dantzig, J. Folkman, and N. Shapiro, On the continuity of the minimum
set of a continuous function, J. of Math. Anal. Appl. 17 (1967), 519-548.
2. H. G. Eggleston, B. Grunbaum, and V. Klee, Some semicontinuity theorems for
convex polytopes and cell-complexes, Comment. Math. Helv. 39 (1964), 165-188.



LIFTING PROJECTIONS OF CONVEX POLYHEDRA 475

3. D. W. Walkup and R. J.-B. Wets, A note on decision rules for stochastic programs,
Journal of Comp. and System Sciences, 2 (1968), to appear.
4. , A Lipschitzian characterization of convex polyhedra, Boeing document
Dl-82-0728, Boeing Scientific Research Laboratories, 1968.
5. , Some practical regularity conditions for nonlinear programs, Boeing
document Dl-82-0792, Boeing Scientific Research Laboratories, 1968.
6. R. J.-B. Wets, Programming under uncertainty: the equivalent convex program,
SIAM J. Appl. Math. 14 (1966), 89-105.

Received June 12, 1968.

BOEING SCIENTIFIC RESEARCH LABS






