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HOMOMORPHISMS OF B*-ALGEBRAS

JAMES D. STEIN, JR.

This paper is divided into two sections. The first deals
with Banach algebra homomorphisms of a von Neumann
algebra 2ί, and extends the Bade-Curtis theory for commuta-
tive B*-algebras to von Neumann algebras, as well as char-
acterizing the separating ideal in the closure of the range of
the homomorphism. The second section concerns homomor-
phisms of B*-algebras; the chief result being the existence
of an ideal ^ with cofinite closure such that the restriction
of the homomorphism to any closed, two-sided ideal contained
in ^ is continuous.

1* Homomorphisms of von N e u m a n n algebras* Let 21 be a

von Neumann algebra, and let v : 3C —* S3 be a Banach algebra homo-
morphism. The reduction theory enables us to write

2ί - Σ Θ MX*) <g> J5(^i)) Θ 2ίi,
4 = 1

where 2^ is the direct sum of the type II and type III parts, X{ is
a hyperstonian compact Hausdorff space, and J%?{ is Hubert space of
dimension i (oo is an allowed index of i, ^f^ is separable Hubert
space). It was shown in [6] that there is an integer N such that

Σ

is continuous.
Some definitions are in order.

S(v, S3) is a closed, 2-sided ideal in S3 ([2]). If feC(Xi),
then </(g) T> will denote (x, y) e % where y = 0 e % and

x e Σ Θ (C(Xk) ® B(<8έ%))

has / 0 Γ in the ith component and 'zero in all "other components.
Let Ψi: C(Xi)-+ S3 be defined by Ψi(f) - v«/®/*», where I{ is the
identity of -B(^), and let i^ be the Bade-Curtis [1] singularity set
associated with φim Let Λf(F*) = {/e C(X<) 1/(2̂ ) - 0}, let T(F{) =
{feC(Xi)\f vanishes on a neighborhood of 2 }̂, and let R(Fi)—
{feC(Xi)\f is constant in a neighborhood of each point of 2 }̂. It
was shown in [6] that v is continuous on
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Σ Θ (R(Fi) ® B(βZrj) θ . Σ χ θ (C(Xi

and that this sub-algebra, denoted by 2ΐ0, is dense in SI. Let μ be
the unique continuous extension of v | 2I0 to 21 and let λ = v — μ. In
this section the Bade-Curtis results ([1], Theorems 4.3 and 4.5) will
be extended to 2ί, and a complete characterization of S(v, S3) will be
obtained.

THEOREM 1.1. (a) The range of μ is closed in S3 and v(%)
μ(%) φ S(v, S3), the direct sum being topological.

(b) S(v, S3) -
(c) Let

Σ

( y , S3) ikf = M S ( v , S3) = ( 0 ) , a n d X \ M i s a h o m o m o r p h i s m .

Proof. μ{%) is closed by [2], Lemma 5.3. We first show λ(2I) g
, S3). If xe§ί, choose a sequence {x%} from the dense sub-algebra

such that \imn^ooxn — x. Since μ is continuous,

μ(x) = lim μ(xn) = lim

and since limw_oo(xw — x) — 0,

— v(x) — lim (v(£cn) — v(x)) = lim ^(α;,, — α) = s e S(v, S3) .

But y(x) = /ί(α ) + \(x) and v(a ) = / (̂x) - s, so λ(x) = - s e S(v, S3).
If SGS(V, S3), there is a sequence {xn} in 21 such that

lim xn = 0, lim v(xn) = s .

Now lim^cα/φj = 0, and s = lim^c (/ί(a;n) + λ(a;n)), so

| | s - λ ( O | | ^ II s - (X(xn) + M^))|| + ίlM^) II — 0 ,

and so S(v, S3) = λ(2X).
Let 17 - v-^Siv, S3)). We now show μ(W) n S(v, S5) - (0). If

μ(α) G S(y, 33), since v{x) = μ(x) + X(x) and λ(2ί) s S(v, S3), we see that
v(x) e S(v, S3), and so XG Z7. But by [6], Theorem II. 5, and [7], Pro-
position 2.1, Z7 = Ker(y) =Ker(μ), so /ί(a ) = 0.

To complete the proof of (a) and (b), all we need show is that
any zev(ίί) can be written z = μ(x) + s, where #e2I, s e S(y, S3).
Let v : %,/U-+}>(%)/S(ι>, S3) be defined by v(x + U) = v(x) + S(i>, S3),

by [2], Theorem 4.6, and [5], Theorem 4.9.2, this is a continuous
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isomorphism of a JB*-algebra and thus has closed range. So ^-f
S(v, 93) = v(x) + S(v, 93), and so Is e S(v, S3) such that z = v(x) + s =
/i(α ) + (λ(a) + s). But λ(a) + s e S(v, 93).

Define T by substituting Γ(Fi) for M(Fi), 1 ^ i ^ N, in the de-
finition of M. The same proof as [6], Prop. II. 3, shows that T is
dense in M, and by the continuity of μ to show μ(M)-S(v, 93) = (0)
we need merely show x e 21, ze T => μ(z)X(x) = 0 (the proof of
S(ι>, SS) ju(Λf) = (0) is symmetric). Clearly zxe T, and μ and v agree
on Γ, so μ(z)X(x) = μ(z)(v(x) - μ(x)) = μ(z)v(x) - μ(z)μ(x) = v(zx) -
μ(zx) = 0. That λ | M is a homomorphism follows from μ(M) S(v, 93) =
(0) and the arguments of Bade and Curtis ([1], p. 601).

The analogue of [1], Theorem 4.3d, will be stated but, once the
definitions are made, the proofs precisely parallel the proofs given in
[1], and so will be omitted. It should be noted, however, that the
proofs carry over because, for 1 ^ i <̂  N, C(Xi) £ξ) B{Sίf^) is actually
the algebraic tensor product.

For 1 ^ i ^ N, let F, = {ωik \ 1 ^ k ^ %}, and for each i, 1 ^
i ^ N, choose functions eit k e C(X{) such that eit k is 1 in a neighbor-
hood of ωitk and eίykei>j = 0,k^j. Let i* denote the identity of
B(<%fi), and define λίffc(ίc) = λ«β ί f Λ (g) / ^ ) (note that this is equal to

L e t Λ<,fc = λί>fc(2I), let M"(ωijfc) be all functions in
vanishing at ωitk, and let Mί>fc, be 2ί with C(X{) (g) 2 ? ( ^ ) replaced in
the direct sum by M{ωi>k) (g) B(,5T,).

PROPOSITION 1.2.

(a) λ - Σ Σ λΐf,

(b)

direct sum being topological.

(c) (i,i)^(fe,Z)=-iϊ< f,..Λ f c f I - (0) ,

(d) The restriction of Xi)k to Mί>k is a homomorphism.

It is possible to obtain a characterization of the ideal S(v,93) by
examining the action of v as related to the operator algebras B(J%%),
rather than the function spaces C(Xi). For 1 <̂  i ^ N, let e{ be the
identity of C(Xi), and let λ^a;) = λ«β^ 0 7, » then λ(α) = Σf=Λt(«)
Now
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and if i Φ j then

lim \i(xn) = lim λy(i/n)

yields the fact that both these limits are zero, and consequently

a topological direct sum. Now each of these components will be
characterized.

Fix n such that 1 g n ^ N, and let {T*,,-11 ^ i, i g n} be a
system of matrix units for B(c%%), i.e., TifjTk>ι = δjkTifι. Define, for
l ^ i , i g % , maps viίifμitSf and 7<,i of C(Xn) into S3 by vitj(f) =
v«f®Titj», jeι<fi(/) = A£«/®Γ4. i»> and Ύt.άf) = viti(f) - μitj(f).
If

we can clearly write

similar assertions hold for μ(&) and λ(α). All maps are linear, but
the " off -diagonal " maps (those for which i Φ j) are not necessarily
homomorphisms.

Computational procedures similar to those already employed will
show

and

so if

Um7ifj(fm) = li

and i Φ k, left multiplication by μ{(en(g) Tit>ή shows that

limw_>ββ7ίfi(/w) = 0;
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the same trick with right multiplication works if j Φ I, and so

λw(SI)= Σ 0

and this is a topological direct sum.
Since Tifί = Ti>kTk,jy we see that

V y» = vitk(f)vkti(g)

consequently yίf f is a homomorphism for 1 <J ΐ ^ n (let j = k = i) and
so by [1], Th. 4.3b), 7~T(1) is the Jacobson radical of viti(C(Xn)).
Since μ«fin®Titj»yitί{f) = 7ίf ,•(/), it is clear that

7ίfi(SΪ) = μ«en ® Γif ^ T , , ,(51) . This yields

PROPOSITION 1.3. S(v, 33) is the direct sum of Jacobson radicals
of commutative Banach algebras and "rotations" of these radicals.

Note that vifj{f) — vi}i(f)vifj(en)J and so the continuity of the
vitj, and hence the continuity of v, depends only on the continuity
of the diagonal homomorphisms viti. Coupling this fact with Theorem
4.5 of [1], we observe that if all the Jacobson radicals of the closures
of the images of the diagonal homomorphisms are nil ideals, then the
homomorphism is continuous.

2. Homomorphisms of J3*-algebras* Let 21 be a i5*-algebra,
and let v : 21 —> S3 be a Banach algebra homomorphism, with S(v, 93)
defined as in § 1.

DEFINITION 2.1.

= {» e 2t I ̂ (α).S(y, SB) = (0)} ,

= (0)} .

DEFINITION 2.2.

- {x 6 211 sup || v(xz) || <
i lsll^i

= {x e 211 sup || v(zx) \\ <
l i l l

and ^ are all two-sided ideals in 21 (see [4]
and [6]), and in a recent paper [4] Johnson has shown that JΓΓ is a
cofinite ideal in 21, and observes that, if one could show v \ 3rL is
continuous, one would have a direct extension of the Bade-Curtis
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theory to arbitrary J3*-algebras. An examination of this problem,
coupled with an analysis of these ideals, constitutes the body of this
section.

We first note that j ^ c ^ I . For, if x£^L then there is an
s e S(v, S3) such that v(x)s Φ 0, and consequently l{xn} c 2ί such that
xn —> 0, v{xn) —> s, and so v(xxn) —> i?(#)s ̂  0. Given M > 0, choose #Λ

such that

II >i
Δ1V1

Then

has norm one and

and so α ; ^ ^ . Similarly
Repeated use throughout this section will be made of the follow-

ing lemma and its corollaries.

LEMMA 2.1. Let {/„}, {gn} be sequences from SI such that m Φ
n =^ 9m9n — 0, gnfm = 0. Then there is an integer N such that

Proof. Suppose not, and renumber to obtain a sequence such that
gnfn £ IR for any n. Then for each n choose xneVL such that || xn || ̂  1,

Let

x = Σ (1/2*
fc = l

then clearly a? e 21. We also have

*/. = Σ
Jfc = l

and so

= \\v(xngnfn)\\/2«\\gn\\>n\\v(fn)\\ ,

which implies || v(x) \\ > n, a contradiction.

COROLLARY 2.1.1. // {gn}, {/J c 21 satisfy gmgn = 0, ^ Λ - Λ,
3iV such that n^ N=^fne
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COROLLARY 2.1.2. // {/w}e2t satisfies fmfn = 0, then 3iV
that n^N=*f£e IR.

COROLLARY 2.1.3. // {/Λ}, {^} c 21
3iV swc/z, that n ;> N=>fngneIL.

* = 0, / m ^ = 0,

We can now combine these results with those of Johnson ([4], Th.
2.1) to see that, if 21 is a £>*-algebra, J?" is a cofinite ideal. The
advantage of using j ^ can be seen from the following.

PROPOSITION 2.1. Let v\% —>^d be a Banach algebra homomor-
phism, and let 11 be a closed linear subspace of J^. Then

sup{||i;(B2/)|i|α:,2/elt, | |α?|| ^ 1, \\y\\ ^ 1} < <χ> .

Proof. For ze%, let Lz and Rz map 21 into 35 and be defined by
Lz(x) = v{zx), Rz{x) = v(xz) these are clearly linear. If zz^F, then
both Lz and Rz are continuous. For, if xn —> 0 and Lz(xn) -** 0, we can
assume || Lz(xn) || ^ δ > 0. Given M > 0, choose *τ% such that

then

M χ

δ

\ π <
, "n il = M '

^ M ;

since this can be done for any M it contradicts z e
each x e U,

Now, for

|| <£ 1} - s u p {
IseSI, | | s | | ̂  1} < oo

By the Uniform Boundedness Principle ([3], 2.3.21)since

and so

sup{|| y(^) || I «,a?eU, || 2 || ^ 1 , | | a? || ^ 1 } < -

completing the proof.

PROPOSITION 2.2. Let % be a C*-algebra, and let U g
closed two-sided ideal. Then v \ U is continuous.

be a

Proof. Let UeU, and recall that U is a *-ideal. Use the polar
decomposition to write U = TP, where T is a partial isometry (hence
|| T\\ = 1) and P is a positive operator satisfying P 2 = U*U. Assume
)| U\\ = l, then since P is self-adjoint, | | P | | 2 = || P * P | | = | | P 2 | | =
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|| i7*UΊ| = || £7|Γ = 1, so | | P | | = 1. Since P is self-adjoint, it has a
square root QeU, so we can write U = (TQ)Q, where TQ,QeUf

\\TQ\\ ̂  || Γ || || Q || ^ 1, | | Q | | ̂  1. So, by Proposition 2.1,

suv{\\v(U)\\\UeU\ UeU,\\U\\ g 1}

^ sup {|| v(^) || | x, y e U, || x \\ ^ 1, || y || g 1} < co ,

and so y I U is continuous.

If U is a commutative i?*-algebra, Proposition 2.2 shows that, if
N is a closed neighborhood of the Bade-Curtis singularity set, v is
continuous on the ideal of all functions vanishing on N, and Proposi-
tion 2.2 can be regarded as the analogue for B*-algebras of that
theorem, especially in view of the remarks following Corollary 2.1.3.
However, it appears to be a difficult problem to obtain the full strength
of the Bade-Curtis results using these methods, but if a method is
found there is a good chance that it would generalize the Bade-Curtis
results to arbitrary I?*-algebras.

We now turn our attention to C(X), where X is a compact Haus-
dorff space. The notation of § 1 applies.

PROPOSITION 2.3. T(F) £ ^ , and if J^ is closed, v is continuous.

Proof. Let / vanish on a neighborhood of F. If / ί J?, l{gn} e C(X)
such that \\gn \\ £ 1, || v(fgn) \\ ^ n\ Let hn = l/ngn, then hnf—>0,
and since v is continuous on T(F), v(hnf)—+0. But

a contradiction.

—
n

If ^ is closed, M(F) = Ί\F) S J?~, and by Proposition 2.2,
v I M(F) is continuous. Using the technique of Theorem 4.1 of [1],
v is continuous.

Since T(F) S ^ and, if K denotes the kernel of v, K n T(F) =
K Π T(F) ([7], 2.3), one might wish to show that K Π J? = K (clearly
JSΓSw^"). If feϊCΠ^, then gn-+0=>v(gnf)-+0. Let g e I ( F ) ,
and choose a sequence {gw} from Γ(i^) such that gn—+g. Then
gnfeKf] T{F) £ iΓ, and so

v(ftf) = lim i;(flrw/) - 0 .

So
If SI = C(X), Corollary 2.1.2 can be strengthened so the conclu-

sion is 3iV such that n 2> N=>fne <J?~. If this integer N is independent
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of the sequence {/Λ}, then the homomorphism is continuous, if X is
such that every point is a G5. We first note that, if {En \ n = 1, 2, •}
is a disjoint sequence of open sets, then n ^ N, f(Eή) — Q=>fe<J^;
this is a clear consequence of Corollary 2β1.2. The goal will be to
show that, if N is independent of sequence, then M(F) ' £ J?, as in
Proposition 2.3 this will show v is continuous. Choose open sets
E,GQX such that E f] G = F, and let fe M(F). Let

Ak = \xeX\\f(x)\ ^i-

and let J5Λ = Ak Π G then J5A is closed and disjoint from E for all
k. By Urysohn's Lemma, choose a function ^ such that 0 ^ gk ig> 1,
gk(E) = 1, (/,(£,) - 0. We assert that {gnf\n = 1, 2,. •} is Cauchy.
Assume n > m, and look at || # Λ / — gmf\\. This value is the maximum
of the supremums of | gnf(x) — gmf(x) | on the sets E, Bm} and Km =
X ~ (Bm U 2?). This supremum is clearly 0 on £ (since gn(E) =
.gw(i?) = 1) and on Bm (since n > m=> Bm Q Bn), and clearly

sup I gj(x) - gmf(x) | ^ — + — < — ,

so the sequence is Cauchy, and there is an h 6 C(X) such that jj gnf —
h\\—>0. h(E) = f ( E ) , s i n c e g n ( E ) = 1 f o r a l l w . I f X G G a n d
J f(x) I > 0, there is an integer K such that k >̂ if =* a; G AA ==> x e Bk =>
^ / W = 0 if /(α) = 0 gkf{x) = 0 for all fc, and so fe(G) = 0.

Now choose sequences of disjoint open sets {En}, {Gn} (the En are
not necessarily disjoint from the Gn) such that F ^ En Π Gn1 E ^ E£,
and G 2 GΛ- If ^ G C(X), (/(Gi) = 0 => g e ^ , or (/(^ ) = 0 => gr e J?,
so fe(G) = 0 => h e JF\ similarly (h - f)(E) = 0 => h - / G ̂ ^ , so / =
h + (f — h) e J^. Thus ikf(.F) £ ^ " , completing the proof. A similar
idea also works for von Neumann algebras by reducing it to a con-
sideration of φ,ι : C(X) —* 33 defined by φAf) ~ ^(<(/®/,)>).
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