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VECTOR VALUED ORLICZ SPACES, II

M. S. SKAFF

In this paper properties of linear spaces generated by GN-
functions, which are called vector valued Orlicz spaces, are
studied. The class of GΛΓ-functions were introduced and
studied by the author in the paper Vector Valued Orlicz
Spaces, I. This work extends the usual theory of Orlicz spaces
generated by real valued ΛΓ-functions of a real variable. In
particular, GN-functions are a generalization of the variable
N-functions used by Portnov and the nondecreasing N-functions
by Wang.

This paper is divided into four sections. In § 2 the concept of
an Orlicz class and its related Orlicz space will be introduced. Fur-
thermore, a norm is defined. It will be shown that the Orlicz space
is a Banach space relative to this norm. One of the main results of
§ 2 states that every Orlicz class is an Orlicz space if and only if
the GAΓ-function satisfies a generalized //-condition as defined in Part
I [7].

The concept of modular convergence is introduced in § 3 and
conditions when norm convergence is equivalent to modular convergence
are given. We also give a characterization of the //-condition in terms
of modulars. In § 4 we generalize some of the basic results involving
conjugate functions. In particular, a generalized Holder inequality is
given and an equivalent norm to that introduced in § 2 is defined. Finally,
we characterize all the continuous linear functions defined on the
Orlicz space under investigation. These theorems generalize the cor-
responding results which can be found in [1, 3, 5].

2* Vector valued Orlicz classes and spaces* Let us begin by
establishing some notation that will be used throughout this paper.
We denote by X the class of all measurable functions

x\x\t) (t in T, i = 1, ••-,?&)

where xi(t) are real valued functions. We will represent the functions
in X by the vector notation

x : x(t) (t in T)

whenever it is convenient to do so. For example, if x, y are functions
in X, and a, b are real numbers, the symbol ax + by denotes the
function
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ax + by: ax(t) + by(t) (t in T) .

Let us identify all functions x in X which are equal to zero for almost
all t in T. Then we denote by the same symbol, X, the set of
equivalence classes of functions defined by this identification.

Having established this notation, we now define an Orlicz class
for GiV-f unctions.

DEFINITION 2.1. Let M(t, x) be a GN-function. By an Orlicz
class LM we mean the set of all functions a; in I for which

( + ) RM{%) = \ M(t, x(t))dt < co .

It is easy to see that LM is a convex set of functions. On the
other hand, LM need not be a vector space in general. The next two
theorems give conditions when LM is linear.

THEOREM 2.1. LM is a vector space if and only if LM is closed
under positive scalar multiplication.

If LM is a vector space, the closure statement is clear. To show
the converse, we first show that if x is in LM, then — x is in LM.
By definition of a GiV-f unction there are constants K > 0 and d ^ 0
such that M(t, x) ^ KM(t, y) if d<L\x\<L\y\ (see, [7, Th. 2.2]).
This means, since | — x \ = \ x |, that if | x(t) \ ̂  d and x is in LM, then
— x is in LM. Moreover, if d > 0, then we know that M(t, d) is
integrable over T. Therefore, if \x(t)\ <d and x is in LM, we also
have — x in LM since M(t, — x(t)) ^ M(t, d).

Suppose now that α, b are any nonzero real numbers and x, y are
in LM. If ab > 0, then for each t in T we have

( 2 1 # 1 ) ax(t) + by(Q_ _ \ a \ x(t) _,_ 1 b \ y(t)

a + b \a\ + | 6 | \a\ + |ft |

If ab < 0, say a < 0 < ft, then

by(t) + \a\(-x(t)) _ by(t) , lα[(--α?ffl)
(2.1.2)

6 + lα b + \a\ ft+lαl

Since the sum of the coefficients of x and y on the right sides of
(2.1.1) and (2.1.2) is one, the convexity of LM and the fact that — x
is in LM yields that the left sides of these equations are in LM.
However, by hypothesis and the fact that either α + δ > 0 o r δ + | α | > 0 ,
we obtain ax + by in LM proving the theorem.
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THEOREM 2.2. LM is a vector space if and only if M(t, x) satisfies
a d-condition.

Suppose M(t, x) satisfies a //-condition (see, [7, Definition 3.1])
where δ(t) ^ 0. We show that LM is linear. However, according to
Theorem 2.1, it suffices to show that if x is in LMy 2x is in LM. Let
x be in LM and define

(x(t) if \x(t)\<δ(t)

JO otherwise ,

(x(t) if \x(t)\^δ(t)
h(t) = \

(0 otherwise .

This means g, h are in LM and

(2.2.1) M(t, 2x(t)) = M(t, 2g(t)) + M{t, 2h(t)) .

Since | h(t) | ^ δ(t) and 2 | g(t) \ < 2δ(t), the J-condition implies that

(2.2.1) reduces to

(2.2.2) M(t, 2x(t)) ^ M{t, 2δ(t)) + KM(t, h(t)) .

The right side of (2.2.2) being integrable over T yields the integrability
of M(t, 2x(t)). This means 2x is in LM.

We now show that if M(t, x) does not satisfy the J-condition, LM

is not linear. If M(t, x) does not satisfy a //-condition, there exists
a sequence of points {xk} in En tending to infinity and a set To of
finite positive measure such that

(2.2.3) M(t, 2xk) > 2kM(t, xk)

for all t in To and all k = 1, 2, . Moreover, we can assume by
considering a subsequence of {xk} that M(ί, %) >̂ 1 for all & and ί in
To. We will exhibit a function # in LM for which 2x is not in LM.

Let {ek} be any sequence of real numbers such that 0 < ek <g 1/22A.
Moreover, we choose a nonoverlapping sequence {Tk} of closed subsets
of To such that |Γfc | = | TQ \/2\ The notation | T\ denotes the measure
of T. Since M{t, x) is measurable in t for each x, given ê  we can
uniformly approximate M(t, xk) on a subset SA of Tk whose measure
is I Tk I — ek by a simple function ΛΓA(ί). That is, we can find

Nk(t) = Σ cMχΓi

where

V I TM - I T I ^
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and χE is a characteristic function of set E such that

I M(t, xk) - Nk(t) I ^ ek

for all t in Sk. We now choose disjoint subsets V\ of Tk such that
I Ή I = I 27 \/ekt and set F, - U< VI

Let us define the function x we need by

For

and

(2.2.

each k we have

[ M(t, xk)dt ^

Vll

f M(t, 2xk)dt

°J

(0

t*
Σ

>

if ί is in V*

otherwise .

[Nk(t)

[cki +

2k ϊvk

i

ΓTΠ 1

+ ek]dt

ek]\Vi\t

M(t,xk)dt

CH — &k i

1

(ft = 1, 2, •

^ _̂, cki + ek

~ *? cki

• >̂ Ok >Γ^ Γft

Tr* 1 "> 9^ X1 1
*' — ^ '

Therefore, summing (2.2.4) and (2.2.5) over all k yields

\ M(t, x{t))dt = Σ ί Λf(̂  »*)̂ < ^ Σ -^4^- < ^
JΓ Λ = l J F & *=1 2 f c ~ 1

and

[ M(t, 2x(t))dt = Σ i Λf(*, 2 ^ ) ώ ί

This proves that x is in Lm while 2x is not in LM completing the proof
of the theorem.

Using the results given in the preceding theorems, we define the
linear space we wish to consider in the remainder of this paper.

DEFINITION 2.2. Let M(t, x) be a GiV-function and let LM be its
associated Orlicz class. We call the closure of LM under positive scalar
multiplication a vector valued Orlicz space. It will be denoted by £fM.
By definition £fM is the set of functions x in X for which there is
some positive constant c such that ex is in
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Let us observe that, by Theorem 2.2, LM ~ SfM whenever the
GiV-function M(t, x) satisfies a J-condition. That is, the Orlicz classes
are linear spaces whenever the GiV-function defining them has a
restricted growth condition such as the J-eondition. By the second
part of Theorem 3.2, Part I [7] this means that M(t, x) does not grow
exponentially along lines which pass through the origin in En space.
We now introduce a norm for the linear space £?M. It will be defined
in terms of a quasi-norm or q-norm. By a g-norm we mean a real
valued function possessing all the usual properties of a norm except
it is only a positive homogeneous function.

THEOREM 2.3. Let M(t, x) be a GN-function and let £^M be defined
as in 2.2. Then

(2.3.1) ||® || = max( | |α | |+, | | - s | | + )

is a norm for

(2.3.2) || x ||+ = inf Ik > 0: ( M(tf ^ψ^jdt ^ l} .

Before proving this theorem let us note that

|| aj || = || a? | | + = | | - a ? | | +

if M(t, x) is an even function of x. That is, if M(t, x) is a real
valued N-function, then our norm | | $ | | reduces to | | # | | + which is the
standard Luxemburg norm. However, when we deal with GN-ίunctions
we no longer retain the property of symmetry relative to the origin
as with real valued N-functions. Therefore, \\x\\+ may not equal
|| — x\\+ and \\x\\+ is only a positive homogeneous function.

Suppose x(t) = 0 almost everywhere. Then, by definition of a

GN-ΐunction, we have \ M(t, x(t)jk)dt = 0 for all k > 0, hence || x \\+ =

0. On the other hand, assume \\x\\+ — 0. Then, for all k > 0, we
have RM(x/k) ^ 1. However, if we let k — 1/m, m = 1, 2, and use
the convexity of M(t, x) we arrive at RM(x) ^ 1/m for all m. There-
fore, M(t, x(t)) = 0 for almost all t in T. This means x(t) = 0 almost
everywhere since M(t, x) is a GN-ί unction. It is clear that || x | |+ ^ 0.
The positive homogeneity of | | # | | + follows from the equation

\ax |+ = a inf {— > 0: ( MU, ^Qλdt ^ 1 j = α
la h \ k / )

for a > 0.
We will complete the proof of Theorem 2.3 by showing that the

triangle inequality is valid. Let us assume x, y are in £fu and a =
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|| x \\+ > 0, b = || y | |+ > 0. For, if a = b = 0, there is nothing to prove.
Observe first that an application of Fatou's lemma yields

(2.3.3) ί M(t, 2®-)dt £ 1 , ( M(t,

From (2.3.3) we obtain, since | |a? | | ^ α, \\y\\ ̂  6,

(2.3.4) ί Λl(t, - ϊ Φ Λ ϊ ί ^ 1 , ( ilf ( ί , ~y&-)dt ^ 1 .
Jr V [I a; (I / )τ \ \\y\\ J

Set c — a + b. Then, by convexity, we have for each ί in T

(2.3.5) lift, * * > + *<*>) = Jtfft, iL »W + LV&
V c / V c α c b

< ? V α / c \ o /

If we integrate both sides of (2.3.5) over Γ, we attain using (2.3.3)

^ 1 .

That is, || a? + y \\+ ^ c = || x \\+ + || y \\+ proving the theorem.

We have just shown that equation (2.3.1) defines a norm for JέfM.
We raise the question as to whether the norm is affected by altering
the constant bounding the integral in equation (2.3.2). This is ans-
wered by the next theorem which states that all #-norms obtained by
changing the constants are equivalent.

THEOREM 2.4. Let M(t, x) be a GN-function. Suppose for x in
S^M we let \\x ||+ = inf k, k in Kc where c is a positive real number
and

Kc = \k > 0:

Then, if 0 < c ^ d, we have

(2.4.1) | | α ? | | + ^ | | α

If d ^ c > 0, then Kd contains Kc and the first inequality in
(2.4.1) is valid. Moreover, using the convexity of M(t, x) and the
definition of the g-norm | | α | | + , we obtain the inequalities
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|| x ||ί = inf k = inf \k 4-: \ MU, ^^λdt ^ 4
kίnκd I a IT \ kc / J

(2.4.2) ^ inf jifc -£-: A ( ilffί, *<&>* =g d}

^ A mf ίfc: ί M ( « , 4 ^ - V ^ 4 ^ 4 ii* ιι.+.
d I }τ \ k / ) a

This proves the second inequality of (2.4.1) and the theorem.

3* Modular convergence* We will now introduce a concept of
modular convergence for Orlicz spaces generated by GiV-functions.

DEFINITION 3.1. The functional RM(x) when defined on £?x is
called modular if RM(x) is defined as in Definition 2.1( + ). We say a
sequence of functions xk(t) in ^fM is modular convergent to xo(t) in
Sfu if

\imRM{xκ\-xQ) = 0 .
K =-00

The concept of modular convergence introduced here should not
be confused with the same terminology used in the literature. For
example, the same term is used by Musielak and Orlicz in [4, p. 50]
but with a different meaning.

The next result gives a characterization of the equivalence of
norm and modular convergence in terms of the modular RM(x).

THEOREM 3.1. A necessary and sufficient condition for norm
convergence to be equivalent to modular convergence is that

(3.1.1) lim RM(xk) — 0 implies limi2^(α^) = 0

for all real a.

Suppose the sequence {xk(t)} is modular convergent to zero and
modular convergence is equivalent to norm convergence. That is,
Rn(^k) —̂  0 if and only if || xk \\ —> 0 as k —> 00. However, if lim^eo \\xk\\ =
0, then limΛ=:oo || axk \\ — 0 for all real α. This, by assumption, means
lim^co RM(axk) = 0 for all real a which proves (3.1.1).

Let us observe that norm convergence always implies modular
convergence. For, suppose limk=oomk — 0 where mk — \\xk\\ and xk is
in ^fM. We can assume mk ^ 1 for all k. Using (2.3.4) and the
convexity of RM(x), we attain
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This means RM(xk) ^ mk for all k proving the assertion.
Suppose condition (3.1.1) is valid, lim^*,RM(xk) = 0, and \\xk\\ ^

a > 0 for all k sufficiently large. By (3.1.1) we must have
Umk=ooRM(xk/a) = 0. On the other hand, if || a^ || :> α > 0, then the
definition of the norm yields RM(xk/a) > 1 for all sufficiently large k.
This contradiction completes the proof of Theorem 3.1.

We note that condition (3.1.1) holds if and only if

(3.1.2) UmRM(xk) = 0 implies lim RM(axk) = 0

holds for some real a > 1. This observation is easy to show (see [6,
Th. 12.4]). Moreover, we might suspect that the J-condition and
condition (3.1.1) or (3.1.2) are related. Indeed, this is the case as
the next two theorems indicate.

THEOREM 3.2. Suppose M(t, x) is a GN-function satisfying a
A-condition and \ T\ < oo. Then RM(x) satisfies condition (3.1.2).

A result of this type can be found in the paper of Musielak and
Orlicz [4, Th. 2.32(b)] under slightly different conditions. However,
with minor modifications the proof carries over to our assumptions
which involve GN-ΐunctions, ^/-condition, and the specific modular
RM(x) (see, [6, Th. 12.5]).

Musielak and Orlicz have stated that the converse of Theorem
3.2 does not hold in general when RM(x) is any modular in their sense.
However, we observe that this is not the case when RM(x) is a modular
as defined in 3.1. This is the content of the next theorem.

THEOREM 3.3. If RM{x) is a modular as defined in 3.1 + which
satisfies (3.1.2), then the GN-function M(t, x) defining RM(x) satisfies
a A-condition.

We will assume that M(t, x) does not satisfy the ^-condition and
exhibit a sequence of functions {xk} for which (3.1.2) does not hold.
If the growth condition is not satisfied, then there exists a sequence
of points {xk} in En tending to infinity and a set TQ of finite positive
measure such that M(t, 2xk) > 2kM(t, xk). Let us define the sequences
{e*}, {Tk} as in the proof of Theorem 2.2. As in that theorem, given
ek > 0 we can uniformly approximate M(t, xk) on a subset Sk of Tk

whose measure is | Tk \ — ek by a simple function Nk(t). That is, we
can find
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Nk(t) = Σ ckiχτ{

where

i

such that

I M(t, xk) - Nk(t) I £ ek

for all t in Sk. Given any positive integer m, we choose for each
k = 1, 2, , m disjoint subsets F/j,m of Tj such that

and set Vk = \Ji Vk>m. Moreover, as in Theorem 2.2, we can assume
by considering a subsequence of {xk} that Λf(ί, α?fc) ^ 1 for all Jc and £
in Γo.

We now define for each m

xh if t is in Vk

m (k = 1, , m)

0 otherwise

For

and

<3.3

fixed

.1)

•2)

m, we have

Γ m /•
\ M(t, xk)dt < Σ Σ

> f 2* y C Λ ί ~ e

fc"=l i (jk/¥Yh

fft c)ko m 1
^ Δ &k «sjp 1

/ ι 2̂-1

5« + β* | Γ ί |

•Σ2*j AΓ(t,

m 1
A; 1 rpi 1 \ V̂ 1 I

<T' " \ 1 1 0 !
= ί a m2 fc-1

^ f e )cί ί

1 •* o 1

m

However, by definition of xn(t), we know that

(3.3.3) R(xm) - ( M(t, xm(t))dt - Σ ( mM(t, xk)dt
JT k = l JVk

and

(3.3.4) R(2xm) = \ M(t, 2xm(t))dt = ± \ mM(t, 2xk)dt .

If we combine inequalities (3.3.1) through (3.3.4) and take a limit as
in tends to infinity, we find limm=oo R(2xm) > 0 whereas limm=oo R(xm) = 0.
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This means, by Theorem 3.1, that condition (3.1.2) does not hold for
{xm} proving Theorem 3.3.

Let us conclude this section by noting some important observations.
Let BM be the closure of the set of bounded functions in Jzp

M. The
set of bounded functions is dense in the Orlicz class LM in the sense
of modular convergence if we assume M(t, c) is integrable in t for
each c. It follows that the set of bounded functions is dense in
LM = £fM if M(t,x) satisfies a J-eondition and \T\ is finite. For,
modular convergence and norm convergence are equivalent in this case.
This means that BM = LM = ̂ fM.

4* Conjugate functions and linear functionals. In developing
the Orlicz spaces j?fM generated by GiV-functions M(t, x) we have not
made use of the concept of a conjugate GiV-function. However, if
we wish to investigate the linear functionals defined on JΐfM, we will
need to employ these functions. Conjugate GiV-functions M*(t, x) were
defined in Part I of this study and some basic properties were given.

It should be noted from Part I that if M(t, x) is a GiV-function,
M*(t, x) may not be a GiV-function. Therefore, unless we further
restrict M(t, x) we can not define the corresponding conjugate Orlicz
space £?M+ generated by Λf *(£, x). It is for this reason we chose to
use the development given in § 2.

Let us introduce some additional notation for this section. Given
a conjugate GiV-function ikf*(£, x) we can define an Orlicz class LM*y

as was done in § 2, to be all x in X such that

RM+(x) = [ M*(t, x{t))dt < <χ, .
τ

When we can define a linear space J*fM*, as in § 2, RM*(x) becomes a

modular on J S ^ * . We denote the norm associated with j*fM* by \\x\\*

and set Q(x, y) — \ x(t)y(t)dt.

Since property (iv) in the definition of a GiV-function may not
hold for M*(£, x), we will assume M(t, x) is an even function of x.
In this case Λf *(ί, x) is an even function x as shown in Theorem 5.2
of Part I. If Λf *(ί, x) is an even function, then we can define the
linear space J*fM*.

We now prove a theorem which yields a generalized Holder in-
equality.

THEOREM 4.1. The inequality \ Q(x, z)\ ^2\\x\\\\z\\* holds for

any pair of functions x in JίfM and z in J^M*.

If we let x be in j ^ M and z in £fM* in § 5 inequality (+ + ) of
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Part I and if we integrate both sides over T, we obtain

sup I Q(x, z) I <: R(x) + 1 .

Substituting x = x(t)/\\x\\ into this inequality yields

(4.1.1) I Q(x, z) I g s u p I Q(x, z ) \ ^ 2

for all z such that RM*(z) <£ 1. However, when z = z(t)/\\ z\\* we have,
by (2.3.4), that R.Az(t)/\\z\\^) ^ 1. Substituting this value of z into
(4.1.1) yields

\Q(x,z)\^2\\x\\\\z\\* .

We can characterize the class of functions in j^fM by introducing
another norm. This norm is equivalent to the Orlicz norm introduced
in § 2. In the next few theorems we define the norm and state some
important properties.

THEOREM 4.2. Suppose x is in ^fM. Then

sup I Q(x, y) I < oo .

This theorem is proved in Krasnoselskii and Rutickii (see [3; p.
68]). Although it is proven there for real variable N-functions, the
proof carries over word for word to the class of functions here.

THEOREM 4.3. Let

\\χ\\o=R*uvJQ(χ,v)\

where x is in J^fM. Then \\x\\0 is a norm.

The axioms defining a norm are clearly satisfied by | | £ | | 0 .
The next theorem states that the gradient of M{t, x),

y\t) = M\ Mf(t, x(t); e%) , (i = 1, 2, , n)

belongs to LM* and RM*(v) ^ l

THEOREM 4.4. Suppose M(t, x) is an even GN-function for which
M(t, c) is integrable in t for all c and for which M'(t, x; y) is linear
in y. Then if x is in j ^ and \\ x ||0 ^ 1, y is in LM* and RM*(y) ^ 1
where y\t) — M'(t, x(t); e{) and e{ is a basis vector for En, i — 1, , n.

Observe first that
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(4.4.1) I Q(x, z) I ̂  j ° . ~

The first inequality in (4.4.1) follows by definition of | |a?| | 0. If

RA*) > 1, then

M*(t, z(t) ) £ M*(t' Z(t))

\ ' RM*(z)' RA*)

by convexity of M*(t, x) in x. Therefore, it follows that

^ 1 .

Substituting z = z(t)/RM*(z) into the first inequality of (4.4.1) produces
the second inequality.

Moreover, let us further observe that if x in JίfM is a bounded
function, then y is in LM* where

y'(t) = M'(t, x(t); e,) , (i = 1, 2, . . . , n) .

For, by convexity, we know that if | x(t) \ < d, then

M'(t, x(t); βi) ̂  M(t, x(t) + βt) - M(t, x(t))

^ M(t, x(t) + β*)

for all i = 1, •••, w. This means that there is a constant 1£ such
that I y(t) I ̂  KM(t, d + 1) from which it follows that

(4.4.2) ( I y(t) \dt^κ[ M(t, d + l)dt < ^ .
JT JT

Hence, we conclude, using Theorem 5.1, Part I [7] and (4.4.2), that

RAv) = ( x(t)y(t)dt - ( M(t, x(t))dt

^ ( x(t)y(t)dt ^ dί I y(t) \ dt < oo .

This means y is in L^*.
Suppose now | |g | | ^ 1. We set

X (t) = \X(t) ί f ! X(t) '
^ m ( (0 if I α(ί) I > m .

Since a?m(ί) are bounded functions, by what we have just shown above,
we know the vector ym(t) whose components are M'(t, xm(t), e*) is in
LM*. Suppose the conclusion of the theorem is false. Then there is
ra0 such that R3I*(ymQ) > 1. However, by Theorem 5.1, Part I, we
obtain
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M*(t, ymo(t)) < M*(t, ymo(t)) + M(t, xmo(t)) = xm,{t)ymo{t) .

This means that RM*(ymQ) < Q(xmo, ymQ) from which it follows, using
(4.4.1), that

1 < RM*(ymo) < Q(xmo, ym) ^ || xmo ||0 R,Avmo)

or

This contradiction proves the theorem.
We will now show that the norm \\x\\0 is equivalent to | |α; | | and

that it characterizes the space Jϊ?M.

THEOREM 4.5. Under the same assumptions on M(ty x) as in

Theorem 4.4 we know

•*• / I I I I = = I I I | 0 = = = ^ I I "V I I ?

( i i ) x is in £?M if and only if \\x\\ϋ < °° .

Let y\t) = M'(ty x(t); βj, i = 1, , n. Then by Theorem 4.4, we
know RM*(y) S 1. Since, according to Theorem 5.1, Part I, it is true
that

y(t)x(t) - M(t, x(t)) + M*(t, y{t)) ,

we have

(4.5.1) R M ( x ) ^ R M ( x ) + RM*(y) = Q(x, y ) ^ \ \ x \ \ 0 .

This means, when x — x(t)/\\ x\\, t h a t || x || ^ || x | |0. On the other hand,

by Theorem 4.1, we obtain

from which we get, whenever x — x(t)\\\ x\\, that || x ||0 g 2 || x \\ proving
statement (i). If x is in S^M, then by Theorem 4.2 we have || x ||0 < oo.
Conversely, if || x ||0 < ©o, then using (4.5.1), we arrive at RM(x/\\ x ||) ^
1. That is, x is in j^fM which proves (ii) and the theorem.

In the next result a class of linear functionals are defined for
SfM and are shown to form a total set. This means, according to a
theorem in Dunford and Schwartz [2; p. 421], that the linear func-
tionals defined on £?M which are continuous in the weak topology
generated by the total set of functionals are precisely the functionals
in the total set. We state the theorem now.

THEOREM 4.6. Let M(t, x) be a GN-function for which M'{t, x; y)
is a linear function of y. If we set
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= ( M'(t, X(t); y(t))dt ,
T

then for each x in J^M, lx(y) is a linear functional. Moreover, the
set of linear functionals lx form a total set.

It is clear that lx(y) is linear in y. Let us assume the set of
functionals lx do not form a total set. Then there is a y Φ 0 such
that lx(y) = 0 for all x. By convexity and the fact that lx(y) — 0 for
all x we have that

(4.6.1) R M ( x + y ) ^ R M ( x )

for all x. Hence, letting x — x — y in (4.6.1) yields

(4.6.2) RM{x) ^ RM(x - y) .

On the other hand, since lx(y) — lx(— y) = 0, inequalities (4.6.1) and

(4.6.2) are valid when y — — y. This means

RM(x - y ) ^ RM(x) ^ RM(x + y)

and, by (4.6.1) and (4.6.2),

RM(% + V) ^ RM(V) ^ RM(% - V)

from which it follows that

(4.6.3) RM(x + y) = RM(x) = RM(x - y)

for all x. Since lx(ay) = alx(y) = 0 for all real α, equation (4.6.3)
holds replacing y by ay. This means

M(ty x(t) + ay(t)) = Jlf(ί, a?(ί)) - ΛΓ(ί, x(t) - ay(t))

for almost all t and for all real a. Therefore, M(t, x(t)) is constant
in the direction ay(t) from x(t) which contradicts condition (iii) of
Definition 2.1 for GiV-functions in Part I. This completes the proof
of the theorem.

Before turning to the characterization of the continuous linear
functionals we wish to establish some notation. When we refer to
the vector valued characteristic function χE(t) we will means that set
function which assumes the vector

\V n1 ' V n.

if t is in E and zero otherwise. That is, we denote
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χE(t) = (tAt), •• ,χϊ(*))

where

( 1/Vn if t is in E
1%E(t) = I 0 otherwise .

This means | χE(t) | = 1.
We will prove that under certain restrictions on the GiV-function

M(t, x) the form of the continuous linear functionals on j*fM is Q(x, y)
where x is in £fu and y is in £fM*. Let us also denote Q(x, y) by
ly(x). If it is clear that the functional is determined by y we will
sometimes write l(x) in place of ly(x).

By definition of the norm of a linear functional we have

(4.6.4) | | ί | | = sup|Q(ίc,i/)| .

Moreover, the Holder inequality in Theorem 4.1 yields

(4.6.5) | | i | | ^ 2 | | y | U .

On the other hand, by Theorem 4.5(i) and (4.6.4), we obtain

(4.6.6) 2 || y |L ^ 21| y II, ̂  4 sup I Q(x, y)\£4\\l\\.
||x|Kl

If we combine (4.6.5) and (4.6.6), we achieve the relationship

(4.6.7) |μ||^2||y|L^4p||.

The inequalities (4.6.7) relate the conjugate space j*fM* and the space
of continuous linear functionals defined by ly(x) = l(x) — Q(x, y).

Let us now state and prove the representation theorem for con-
tinuous linear functionals defined on LM = £fM.

THEOREM 4.7. Suppose M(t, x) is an even GN-functίon satisfy-
ing a A-condition such that M(t, c) is integrable in t for each c.
Moreover, suppose Λf*r(ί, x; y) is linear in y. Then Q(χ, y) is the
general form of the continuous linear functionals defined on £^M

where x is in j2fM and y is in J5fM*.

Let us assume | T \ < c>o and that l(x) is any continuous linear
functional on LM. It suffices to consider only LM since M(t, x) satisfies
a zί-condition. We can define on the set of all measurable subsets E
of T the set function l(χE). Let us note that χE is in LM.

The set function l(χE) is a countably additive set function. For,
if {Ei} is a disjoint sequence of measurable subsets of E and
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E=\JEit
4 — 1

it follows that ΣΠ=i%it(*) = XΈ(t) for each j = 1, •-, w. Therefore,
ΣΠ=i %**(£) = lκ(t). The countable additivity now follows from the
linearity of l(x).

Let us observe also that l(χE) is an absolutely continuous set func-
tion. This follows since

(4.7.1) \l{χE)\ £ || Z || || χ* ||

and

(4.7.2) lim |lχ*| | = 0 .
\IE\\-O

Inequality (4.7.1) is obtained from (4.6.4). To see equation (4.7.2)
suppose it is not true. Then there is a constant d > 0 and a sequence
of sets {Ei} such that || χE. || ;> d for all i and lim^ | 2^ | = 0. However,
by definition of the norm, if \\χEi\\ ^ d, then

(4.7.3) ί Mf ί, % ^ V > 1

for all i. Moreover, it follows from (4.7.3) that

(4.7.4) 1 < ( M(t, —)dt for all i.
hi \ d/

Since M(t, c) is integrable in t for each c, the integral in (4.7.4) is
an absolutely continuous set function. This means the right side of
(4.7.4) tends to zero as the measure of the sets Ei tend to zero. This
contradiction proves (4.7.2).

Let us write χE(t) - Σ?=i%*,<(*) where χE>ί(t) = (0, , χi(ί), , 0).
It is clear from the above that l(χE>i) is an absolutely continuous
countably additive set function. By an application of the Radon-
Nikodym theorem there is a real valued function y\t) in Lί such that

(4.7.5) HχEti) = \y\t)dt - \/{t)tE{t)dt

for each i = 1, 9n. It follows from (4.7.5) that

(4.7.6) l(χε) - Σ KXπ.i) = ί v(t)χE(t)dt

where y(t) = (^(ί), * ,l/w(0). Moreover, if

(4.7.7) x(t) - Σ ^χ^.ίί)
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where {Ei} are disjoint measurable subsets of T, then it is easy to see
that (4.7.6) holds if we replace χE(t) by x(t). That is, we have for
any simple function x(t) given by (4.7.7)

(4.7.8) l(χ) = [y(t)x(t)dt .

Suppose x is any function in LM. Then by the remarks at the
end of §3, we know there exists a sequence {xm(t)} of bounded func-
tions which converges to x(t) almost everywhere such that | xm(t) | g
I x(t) I for each m and RM(x — xm) tends to zero as m approaches
infinity. Moreover, |[ xm || ^ || x || for each m and the sequence
{I %m(t)y(t) 1} converges to | x(t)y(t) | almost everywhere. Applying Fatou's
lemma and (4.7.8), we achieve

\Q(x,y)\ £liminf\\xm(t)y(t)\dt
(4.7.9) w J

for any x in LM. This means, if we apply the argument given in
Theorem 5.1, Part I, to J*fM , that y is in J^M*. For, if

xi(t) = M*'(t,y(t);ei), i = l , . . . , n ,

then

EAy) ^ RM*(V) + R(χ) = Q(«, i / ) < <*> .

This proves that (4.7.8) holds for all a? in LM = ̂ i and # in .^ i* .
Suppose now that T = \Jm Tm, Tm s Tm + 1, and | Tm \ < oo for each

m. Using (4.7.8) restricted to each Tm we obtain a sequence of func-
tions {ym(t)} in J2^* such that, by (4.7.9), || ym |U ^ P II,!/«(«) = 2Λ.+i(t)
if ί is in Tm and

(4.7.10) i (»J

for every function ί̂ m in LM which vanishes outside Tm. Moreover,
using (4.6.7), we have that | |Z m | | ^ | |Z | | and

for each m where lm is the functional defined by (4.7.10).
Let y(t) — limm=oo ym(t). Then y(t) is defined almost everywhere,

\\y\\* <>2\\l\\, and by (4.7.10) we have in the limit

= ( x(t)y(t)dt
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where x(t) = limml=oo xm(t) is in ^fM and y is in S^. This proves the
theorem.
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