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ANALYTIC SHEAF COHOMOLOGY GROUPS OF
DIMENSION n OF ^-DIMENSIONAL

NONCOMPACT COMPLEX MANIFOLDS

YUM-TθNG SlU

In this paper the following question is considered: if X is
a (/-compact noncompact complex manifold of dimension n and
j ^ ~ is a coherent analytic sheaf on X, does Hn(X, j^") always
vanish? The answer is in the affirmative.

This question was first proposed by Malgrange in [6] and in the
same paper he gave the affirmative answer for the special case when
^ is locally free.

THEOREM. If X is an n-dimensional o-compact noncompact com-
plex manifold and J^ is a coherent analytic sheaf on X, then

Proof. I. For 0 ^ p ^ n let s*f{0>p) denote the sheaf of germs
of C°° (0, p)-forms on X and & denote the structure-sheaf of X. Since
at a point in a complex number space the ring of C°° function-germs
as a module over the ring of holomorphic function-germs is flat ([7],
Ths, 1 and 2 bis), the sequence

0 ϋ

obtained by tensoring

with ^ over ^ is exact (cf. [8], Th. 3).
The theorem follows if we can prove that

βx: Γ(X, j ^ ( 0 ^ - 1 } <g) &~) > Γ(X,

induced from

3':

is surjective.
II. Suppose 0 ^ p ^ n and

^ r ~ -̂> ̂ s -^-> ̂ ^ > 0

is an exact sequence of sheaf-homomorphisms on an open subset U of

407
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X which is biholomorphic to an open subset of C*. Tensoring the
sequence with j ^ { 0 ' p ) over έ?, we obtain an exact sequence

Since Im^' and Ker^' are fine sheaves,

Γ(U, (J^ { 0 ' p ) ) r ) — -̂> Γ{U, J*fί0>p))s) -̂ —> Γ(U, jy ( 0 ' p ) 0 ^) > 0

is exact. Γ(Ϊ7, (j^ί0»lϊ))β) is a Frechet space if it is given the topology
of uniform convergence of derivatives of coefficients on compact sub-
sets. Since φ is defined by a matrix of holomorphic functions, by
paragraph 1 of [7], I m ^ is a closed subspace of Γ(U9 (J^iOtP))a) (cf.
[8], Th. 5). We give Γ(U, jy ( 0 ' p ) 0 ^ J^) the quotient topology and
it becomes a Frechet space.

Suppose G is an open subset of X. We can find a countable Stein
open cover {{7fc}~=1 of G such that Uk is biholomorphic to an open sub-
set of Cn and on Uk we have an exact sequence of sheaf-homomorphisms

We give Γ(G, Ssf{0>p) ® ^ ^) the smallest topology that makes every
restriction map Γ(G, j ^ ( 0 ' p ) ®^ ^ " ) -> Π ^ , j y (0^} ® ^ J ^ ) continuous.
This topology of Γ(G, j^{0>p) ® ^ ^~) is independent of the choices of
{Uk},{Φkh and { t J . Γ(G, J^{0>p) ®* &~) is a Frechet space.

/9G: Γ(G, J / 1 0 ' ^ 1 1 (g) ^ " ) > Γ(G,

induced from

is continuous (cf. [8], pp. 21-24).

III. Suppose G is an open subset of X. Denote the strong dual
of Γ(G, j ^ i 0 ' p ) ® ^ ^r) by (Γ(G, s*?{0>p) 0 ^ ^ " ) ) * , 0 ^ p ^ w. Suppose
Te(Γ(G, J*f<°>p)(g)*^~))*. The support of Γ, denoted by Supp T, is
defined as the complement in G of the largest open subset H such
that, if α e Γ(G, j^{0>p) 0 ^ ^ * ) and Supp αczH, then Γ(α) - 0. Supp T
is well-defined, because H exists by partition of unity. Observe that,
if αk e Γ(G, jzf{*>p) 0 ^ ^~) and for every compact subset K of
G(U?=m S u p p α A ; ) Π ^ = 0 f ° r some m depending on K, then αk—^0
in Γ(G, j ^ ί 0 ' p ) 0 ^ ^ " ) . We have:

( 1 ) If V is a bounded subset of (Γ(G, j ^ { 0 ' p ) ®^ ^~))*, then there
is a compact subset K of G such that Supp Γ c K for T eV.

IV. Suppose G is an open subset of X. Fix
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and let Supp TβG = K. Let K denote the union of K together with
all the components of G — K relatively compact in G. We are going
to prove that Supp T c K. Let L be a component of G — K not
relatively compact in G. We need only prove that L f] Supp T = 0 .
Suppose the contrary. Since L is not relatively compact in
G, Lςt Supp T (Supp T is compact by (1)). Supp T has a boundary
point ^0 in L. We would have a contradiction if we can prove:
(2) Every boundary point x of Supp T is a boundary point of

Supp TβG.
To prove (2) we suppose that x is a boundary point of Supp T and x is

not a boundary point of Supp TβG. Since Supp Γ/SGcSupp T,xeX —
Supp T/3G. On some connected open neighborhood D of x in X — Supp TβG

we have a sheaf-epimorphism 0: ̂ s —> ^~. Tensoring it with
over έ?, we obtain a sheaf-epimorphism θ'v\ (Jϊ?ί0>p))s —• j ^ 0 ^ 0
ΘP:Γ(D, (J^{O>P))S)-+Γ(D, J^{0'p) (g)^ ̂ ) induced by 0; is surjective.

Let {Nk}t=i be a sequence of compact subsets of D such that
NkczIntNk+1 and U?=iN* = D. Let Γ ^ φ , (j^(0'p))β) be the set of
all elements of Γ(D, (J^{0'p))s) having supports contained in Nk. Give
ΓNk(D, J^i0>p))s) the topology induced from Γ(D, (JV{O-P))8). Give
Γ^ίD, (J^ ( 0 'p )) s) = U ^ i ^ ( i 5 , (j^ ί0'p))β) the topology as the strict in-
ductive limit of {ΓNk(D, J^i0'p))s)}. Γ*(D, (J^(0'p))β) and its topology
are independent of the choice of {Nk}.

For aeΓ*(D, (J&ί0'p)y), since Supp #p(α) c JD is compact, ^(α) can
be trivially extended to an element φp{a))' e Γ(G, S$fi0>p) ®^ &~). The
map £p:Γ*φ,(j^ ( 0 '* J)β)-+ Γ(G, J^ ( 0 '*1(8)^^ -) defined by fp(α) = (^(α)))f

is a continuous linear map.
(3) If 6 e Γ(G, J^ ( O 'P ) ®^ ^^) and Supp 6 is a compact subset of Z),

then belmξp.
The following diagram is commutative:

- I
Γ(G,

Since Supp (Tβ0) n ΰ = 0 , Tfn3 - Tβσξn^ - 0. Γ£n can be repre-
sented by an s-tuple of distribution-^, 0)-forms on D (cf. the argu-
ment on p. 42, [2]). TξJ) = 0 implies that Tξn can be represented
by an s-tuple of holomorphic (w,0)-forms on D. Since Supp Tί^cSupp T
and D ςt Supp T, the s-tuple of holomorphic forms representing Tξn

must be identically zero. Hence Tξn = 0. By (3) Supp T is disjoint
from all compact subsets of ΰ . x is not a boundary point of Supp T.



410 Y. T. SIU

Hence (2) is proved. We have:

(4) Supp T c (8uppTββ) for T e (Γ(G,
Denote the transpose of βG by (β0)*. (4) implies that
(5) (βG)* is injective,
because every component of G is noncompact.

V. By Lemma 3, [6], we have:
(6) For every point x of X there is an open neighborhood U of x in

X such that Hn{ W, &~) = 0 for every open subset W of U.
Suppose if is a compact subset of X. By (6) we can find two

finite collections 31,28 = {Bk}™=l of relatively compact open Stein sub-
sets of X such that (i) both 51 and 33 cover K; (ii) intersections of
subcollections of 31 and intersections of subcollections of 93 are Stein;
(iii) the closure of any member of SI is contained in some member of
S3; and (iv) for any open subset Wof any Bkyl<^k^m,Hn{W, ^) = 0.

Let G and H be respectively the union of all the members of SI
and S3. Define inductively Go = G and Gk = Gk^ U ^ H ^ m .
H*(Gk, J T ) — H*(Gk-l9 JT) φ H*(Bk, jr)-+H«{Gk^ n Bk, j T ) is exact
(Part a of §17, [1]). Hn(Gk^ Π Bk, J H = 0 implies that the restric-
tion map Hn{Gk,^)^Hn(Gk^^) is surjective for 1 ^ k ^ m.
Since if = Gm, the restriction map Hn(H, ^)—^Hn{G, ^~) is surjec-
tive. Hn(G,^) is finite-dimensional (cf. Proof of Th. 11, §17, [1]).
Since H*(G, J?~) ̂  Coker βGy Im βG is closed. Im (βσ)* is weakly closed
([5], Preliminaires, §3, Th. 2). Therefore we have:
(7 ) Every compact subset K of X has an open neighborhood G in X

such that Im (/3G)* is weakly closed.
VI. By (5) and Th. 2, §3, Preliminaires, [5], the theorem follows

if we can prove that the intersection of Im (βz)* with every weakly
compact sebset of (Γ(X, Stf{0>n-1] (gu ^))* is weakly compact. Sup-
pose V is a weakly compact subset of (Γ(X, j*f{Q>n~ι) (g)-, J^ψ. V is
strongly bounded ([3], Th. 3). By (1) there exists a compact subset
K of X such that
(8) S u p p S c K for Se V.

K is compact ([5], Chap. IV, §3, Lemma 3). By (7) there exists
an open neighbourhood G of K in X such that Im (βG)* is weakly
closed. By (4) and (8) we have:
(9 ) Supp T c K if Te (Γ(X, J^{0>n) ®^ Jr)Y and Tβx e V.

Let g be a C°° function on G having compact support and being
identically one on some neighborhood of K. Suppose 0 ^ p ^ n. Let
σp:Γ(G, j ^ ( 0 ^ ( ^ J^)-->Γ(X, J ^ ( o ^ (g)̂  _^") be defined by trivial
extension after multiplication by fir. σp is continuous. Let
pp: Γ{X, j^{0>p) (g)^ ̂ ) ~>Γ(G, j ^ ( 0 ' p > (g). ^ ^ ) be the restriction map.
(10) If R G (Γ(X, Jϊf{0>p) (g)*^))* and S u p p E c ^ , then Rσppp = i2.

To prove that Im (/3X)* Π V is weakly compact, it suffices to prove
that it is weakly closed. Suppose {S<}ίez is a net in Im (βz)* Π V con-
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verging weakly to SeV. By (8) Supp SaK. Si = Tβx for some
Tie(Γ(X, J^iQ>n) ®#^))*. By (9) S u p p l e IT. Supp T X e l f and
Supp Stfw_i c Ẑ . The following diagram is commutative:

Γ(X,

pn-i\ pn

Γ(G, j ^ ( 0 ' w - υ (g) J^) -^-> Γ(G,

Take a e Γ(G, J^{Q>n-1] (g)* &~). Let b = σn^(a) e Γ(X,
Then ρn-ί(b) = ^α. Since ^ Π Supp /Ŝ (α — ga) = 0 ,

^φ) = Ttβz(b)

by (10). Since i£n Supp (α - ^a)^= 0 ,

Sσ^Λa) - Sσn^(ga) = Sσ^p^φ) - S(6) .

Since ^ ^ ( 6 ) -> S(6), T^&(a) — Sσn^(a). Hence T.σ^o — Sσ^ in
the weak topology of (Γ(G, J^ ( 0 'w-1 } (g)̂  ̂ ^ ) ) * . Since lm(ββ)* is
weakly closed, there exists T e (Γ(G, s*f{Q>n) <£)„ J^))* such that
r/9G = S σ ^ . Let Γ - T'pn. Then

Selm (βz)* ΓΊ V. Im (/3X)* n F is weakly closed.
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