DIFFERENCE EQUATIONS FOR SOME ORTHOGONAL POLYNOMIALS

$$
\begin{align*}
& \text { H. L. KRALL AND I. M. SHEFFER } \\
& \text { It is well-known that every orthogonal polynomial set } \\
& \left\{P_{n}(x)\right\} \text { satisfies a 3-term recurrence relation of the form } \\
& (1.1) \quad P_{n+1}(x)=\left(a_{n} x+b_{n}\right) P_{n}(x)+c_{n} P_{n-1}(x) \quad(n=1,2, \cdots) \text {. } \\
& \text { Some orthogonal sets (polynomials of Jacobi, Hermite and so } \\
& \text { on) are solutions of differential equations. It will be shown } \\
& \text { that there exist orthogonal polynomial sets that satisfy 3-term } \\
& \text { difference equations of the form } \\
& \text { (1.2) } \quad A(x) y(x+\alpha)+B(x) y(x-\alpha)+C(x) y(x)=\lambda y(x) \tag{1.2}\\
& \text { where } A, B, C \text { are polynomials of degree } \leqq 2 \text { and } \lambda \text { is a para- } \\
& \text { meter. }
\end{align*}
$$

Consider the difference equation

$$
\begin{equation*}
A(x) y(x+\alpha)+B(x) y(x+\beta)+C(x) y(x)=\lambda y(x) \tag{1.3}
\end{equation*}
$$

where A, B, C are real polynomials, λ is a parameter, and $\alpha, \beta, 0$ are distinct and real. We examine two cases, according as A, B, C are of degree $\leqq 1$:
(a) $A(x)=a_{1} x+a_{0}, B(x)=b_{1} x+b_{0}, C(x)=c_{1} x$, or are of degree $\leqq 2$:
(b) $A(x)=a_{2} x^{2}+a_{1} x+a_{0}, B(x)=b_{2} x^{2}+b_{1} x+b_{0}, C(x)=c_{2} x^{2}+c_{1} x$ (a_{2}, b_{2}, c_{2} not all zero). We shall use the notation (1.3a), (1.3b) to denote equation (1.3) for the respective conditions (a), (b).

Equation (1.3) will be termed admissible if there exists a real sequence $\left\{\lambda_{n}\right\}(n=0,1, \cdots)$ such that for $\lambda=\lambda_{n}$ there is a polynomial solution $y_{n}(x)$, unique to within a multiplicative constant, and $y_{n}(x)$ is of degree (exactly) n. It follows that admissibility implies that

$$
\begin{equation*}
\lambda_{m} \neq \lambda_{n}(m \neq n) . \tag{1.4}
\end{equation*}
$$

Lemma 1.1. Equation (1.3a) is admissible if and only if

$$
\begin{equation*}
a_{1}+b_{1}+c_{1}=0, \quad \delta \equiv a_{1} \alpha+b_{1} \beta \neq 0 \tag{1.5}
\end{equation*}
$$

And in this case we have

$$
\lambda_{n}=\left(a_{0}+b_{0}\right)+n\left(a_{1} \alpha+b_{1} \beta\right) \quad(n=0,1, \cdots)
$$

Proof. Let n be arbitrary. If we substitute the nth degree polynomial

$$
\begin{equation*}
y(x)=x^{n}+\sum_{j=0}^{n-1} p_{\jmath} x^{j} \tag{1.7}
\end{equation*}
$$

into (1.3a), a necessary and sufficient condition that $y(x)$ be a solution is that coefficients of x^{n+1}, x^{n}, \cdots agree on both sides. The coefficient of x^{n+1} yields the first of (1.5), that of x^{n} gives $\lambda=\lambda_{n}$ as in (1.6); and those of x^{n-1}, \cdots, x^{0} give successive equations for p_{n-1}, \cdots, p_{0}. In these equations the coefficients of p_{n-1}, \cdots, p_{0} are respectively $\lambda_{n}-\lambda_{n-1}, \lambda_{n}-\lambda_{n-2}, \cdots, \lambda_{n}-\lambda_{0}$, so there is one and only one choice of the p_{j} 's if and only if $\lambda_{n} \neq \lambda_{j}(j \leqq n-1)$. This condition is equivalent to the second part of (1.5); and the lemma is established.

Lemma 1.2. Equation (1.3b) is admissible if and only if

$$
\begin{array}{ll}
a_{2}+b_{2}+c_{2}=0, \quad a_{1}+b_{1}+c_{1}=0, & a_{2} \alpha+b_{2} \beta=0 ; \\
2\left(a_{1} \alpha+b_{1} \beta\right)+n\left(a_{2} \alpha^{2}+b_{2} \beta^{2}\right) \neq 0 \quad(n=0,1, \cdots) \tag{1.9}
\end{array}
$$

And in this case λ_{n} is given by

$$
\begin{align*}
& \lambda_{n}=\left(a_{0}+b_{0}\right)+n\left(a_{1} \alpha+b_{1} \beta\right)+n(n-1)\left(a_{2} \alpha^{2}+b_{2} \beta^{2}\right) / 2 \tag{1.10}\\
& (n=0,1, \cdots) .
\end{align*}
$$

Proof. Substituting (1.7) into (1.3b) and equating like terms (as a necessary and sufficient condition for a solution) we find that the terms in x^{n+2}, x^{n+1} give (1.8), the x^{n} term gives $\lambda=\lambda_{n}$ as in (1.10), and p_{n-1}, \cdots, p_{0} again are uniquely determined if and only if $\lambda_{n} \neq \lambda_{j}$ $(j \leqq n-1)$. Now the condition $\lambda_{m} \neq \lambda_{n}(m \neq n)$ is seen to reduce to (1.9); so the lemma is proved.

In the proofs of Lemmas 1.1, 1.2 it was seen that if a polynomial $y(x)$ of degree n satisfies (1.3 a or b) then the corresponding value of λ is λ_{n} as given by (1.6) or (1.10); so we have the

Corollary. If (1.3a) or (1.3b) is admissible then for each $\lambda \neq \lambda_{n}$ $(n=0,1, \cdots)$ the only polynomial solution is $y(x) \equiv 0$.

Let (1.3a) or (1.3b) be admissible. In both cases the solution for $n=1$ is

$$
\begin{equation*}
y_{1}(x)=x+\left(a_{0} \alpha+b_{0} \beta\right) \delta^{-1} \tag{1.11}
\end{equation*}
$$

where δ is given in (1.5). If we set

$$
x+d=x^{*}, z\left(x^{*}\right)=y\left(x^{*}-d\right)
$$

with

$$
d=\left(a_{0} \alpha+b_{0} \beta\right) \delta^{-1}
$$

the equation in $z\left(x^{*}\right)$ will also be admissible and will have the form (1.3a) or (1.3b) after the constant term in $C\left(x^{*}\right)$ has been absorbed into the λ. Moreover, for $n=1$ we have

$$
z_{1}\left(x^{*}\right)=x^{*}
$$

An admissible equation (1.3a) or (1.3b) in which for $n=1$ the solution contains no constant term will be called canonical. It is no restriction to limit ourselves to canonical equations.

From (1.11) we obtain
Lemma 1.3. The admissible equation (1.3a) or (1.3b) is canonical if and only if

$$
\begin{equation*}
a_{0} \alpha+b_{0} \beta=0 \tag{1.12}
\end{equation*}
$$

2. Orthogonality for case (1.3a). We consider the problem of determining those canonical equations (1.3a) $[(1.3 \mathrm{~b})$ in §3] whose polynomial solutions form an orthogonal set. For all polynomials $y(x)$ we have

$$
\begin{equation*}
y(x+u)=\sum_{k=0}^{\infty} y^{(k)}(x) u^{k} / k! \tag{2.1}
\end{equation*}
$$

so (1.3a) is equivalent, with respect to polynomial solutions, to the differential equation of infinite order

$$
\begin{equation*}
x y^{\prime}(x)+\sum_{k=2}^{\infty} H_{k}(x) y^{(k)}(x) / k!=\sigma y(x) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{k}(x)=r_{k}+s_{k} x=\left(a_{0} \alpha^{k}+b_{0} \beta^{k}\right) \delta^{-1}+\left(a_{1} \alpha^{k}+b_{1} \beta^{k}\right) \delta^{-1} x \tag{2.3}
\end{equation*}
$$

$(k=1,2, \cdots)$ with $\sigma=\left\{\lambda-\left(a_{0}+b_{0}\right)\right\} 0^{-1}$. Using (1.6) we find that the sequence $\left\{\sigma_{n}\right\}$ for which there are polynomial solutions is given by $\sigma_{n}=n$.

Equation (2.2) is identical with equation (3.1) of [1]. In Remark (i) ([1], p. 151) it is shown that if $r_{2}=0$ the polynomial solutions do not form an orthogonal set. We therefore assume $r_{2} \neq 0$. In this case, Theorem 3.1 ([1], p. 151) states that the solutions of (our present) equation (2.2), hence of cononical equation (1.3a), form a weak orthogonal set if and only if

$$
\begin{array}{ll}
r_{2 p+1}=0, & s_{2 p+1}=s_{3}^{p}, \\
r_{2 p+2}=r_{2} s_{3}^{p}, & s_{2 p+2}=s_{2} s_{3}^{p} \tag{2.4}
\end{array} \quad(p=0,1, \cdots)
$$

Moreover the weak orthogonal set is an orthogonal set when and only when one of the following two relations holds:

$$
\begin{equation*}
s_{2}^{2}-s_{3}=0 ; \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
s_{2}^{2}-s_{3} \neq 0 \quad \text { and } \quad 2 r_{2}\left(s_{2}^{2}-s_{3}\right)^{-1} \neq 0,1,2, \cdots \tag{2}
\end{equation*}
$$

The condition $r_{2 p+1}=0$ is

$$
\begin{equation*}
a_{0} \alpha^{2 p+1}+b_{0} \beta^{2 p+1}=0 \quad(p=0,1, \cdots) \tag{2.6}
\end{equation*}
$$

If $a_{0}=0$ or $b_{0}=0$ then both are zero since $\alpha \beta \neq 0$. But then $r_{2}=0$, contrary to assumption. So $a_{0} b_{0} \neq 0$. Taking $p=0,1$ in (2.6) we then get $\beta^{2}=\alpha^{2}$. Since α, β are distinct, then $\beta=-\alpha$; and again from (2.6) with $p=0: a_{0}=b_{0}$. Thus, if $r_{2} \neq 0$ then $r_{2 p+1}=0(p=0,1, \cdots)$ if and only if

$$
\begin{equation*}
\beta=-\alpha, a_{0}=b_{0} \neq 0 \tag{2.7}
\end{equation*}
$$

With (2.7) holding then

$$
\delta=\alpha\left(a_{1}-b_{1}\right) \neq 0
$$

so

$$
\begin{align*}
& r_{2 p+1}=0, s_{2 p+1}=\alpha^{2 p}, r_{2 p+2}=2 a_{0}\left(a_{1}-b_{1}\right)^{-1} \alpha^{2 p+1} \tag{2.8}\\
& s_{2 p+2}=\left(a_{1}+b_{1}\right)\left(a_{1}-b_{1}\right)^{-1} \alpha^{2 p+1}
\end{align*}
$$

Conditions (2.4) are seen to be satisfied. And (2.5 $)_{1}$, (2.5 5_{2} become respectively:

$$
\begin{align*}
& a_{1} b_{1}=0 \tag{1}\\
& a_{1} b_{1} \neq 0, a_{0}\left(a_{1}-b_{1}\right)\left(\alpha a_{1} b_{1}\right)^{-1} \neq 0,1, \cdots \tag{2}
\end{align*}
$$

To sum up:
Theorem 2.1. Let equation (1.3a) be canonical. Then its polynomial solutions from an orthogonal set if and only if (2.7) holds and one of $\left(2.9_{1}\right),\left(2.9_{2}\right)$ holds.

Remarks. (i) If (1.3a) is canonical its polynomial solutions form an orthogonal set if and only if it is of the form

$$
\begin{align*}
\left(a_{1} x+a_{0}\right) y(x+\alpha) & +\left(b_{1} x+a_{0}\right) y(x-\alpha) \\
& -\left(a_{1}+b_{1}\right) x y(x)=\lambda y(x) \tag{2.10}
\end{align*}
$$

with $a_{0} \neq 0, a_{1} \neq b_{1}, \alpha \neq 0$, and either (2.9 9_{1}) or (2.92) holding.
(ii) In (2.10) make the variable changes $x=\alpha x^{*}, z\left(x^{*}\right)=y\left(\alpha x^{*}\right)$. There results a similar difference equation in $z\left(x^{*}\right)$, in which α is replaced by 1. This equation has an orthogonal set of solutions when (2.10) does. It may be termed a standard canonical equation. After
dividing by a_{0} this equation has the form (dropping asterisks)

$$
\begin{align*}
\left(c_{1} x+1\right) z(x+1) & +\left(d_{1} x+1\right) z(x-1) \\
& -\left(c_{1}+d_{1}\right) x z(x)=\mu z(x) \tag{2.11}
\end{align*}
$$

with $c_{1}-d_{1} \neq 0$ and either $c_{1} d_{1}=0$ or

$$
c_{1} d_{1} \neq 0,\left(c_{1}-d_{1}\right)\left(c_{1} d_{1}\right)^{-1} \neq 0,1,2, \cdots
$$

3. Orthogonality for case (1.3b). Let equation (1.3b) be canonical, so that (1.12) holds. Putting (2.1) into (1.3b) we get an infinite order differential equation with polynomial coefficients of degree $\leqq 2$, which is equivalent to (1.3b) at least for polynomial solutions:

$$
\begin{equation*}
x y^{\prime}(x)+\sum_{k=2}^{\infty} T_{k}(x) y^{(k)}(x) / k!=\sigma y(x) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{align*}
T_{k}(x)= & r_{k}+s_{k} x+t_{k} x^{2}=\left(a_{0} \alpha^{k}+b_{0} \beta^{k}\right) \delta^{-1}+\left(a_{1} \alpha^{k}+b_{1} \beta^{k}\right) \delta^{-1} x \\
& +\left(a_{2} \alpha^{k}+b_{2} \beta^{k}\right) \delta^{-1} x^{2} \quad(k=2,3, \cdots) \tag{3.2}
\end{align*}
$$

and $\sigma=\left\{\lambda-\left(a_{0}+b_{0}\right)\right\} \delta^{-1}$ and δ is given by (1.5). From (1.10) we see that $\left\{\sigma_{n}\right\}$ is given by

$$
\sigma_{n}=n+n(n-1) t_{2} / 2 .
$$

Equations of the form (3.1), that is, with $\max _{k}\left\{\right.$ degree $\left.T_{k}(x)\right\}=2$ were considered in [1], but the results obtained were not as complete as for the case where the coefficients are of degree $\leqq 1$. We must therefore proceed differently. We first show that if canonical equation (1.3b), hence also (3.1), has an orthogonal set of solutions then $\beta=-\alpha$.

For suppose not. Then $|\alpha| \neq|\beta|$, since α, β are distinct. We may assume that $|\alpha|>|\beta|$. By Theorem 2.2 ([1], p. 148) there is a sequence of constants $\left\{\alpha_{n}\right\}$ (the moments of the weight function corresponding to the orthogonal set), with $\alpha_{0} \neq 0$, that satisfies the system of equations

$$
\begin{equation*}
d_{p+k}^{p}=0, D_{p+k}^{p}=0 \quad(p, k=0,1, \cdots) \tag{3.3}
\end{equation*}
$$

where (in our present case, as seen in [1], p. 153)

$$
\begin{align*}
d_{p+k}^{p}= & \sum_{i=k}^{2 k+2} \alpha_{i}\left[\begin{array}{c}
k \\
i-k
\end{array}\right) r_{2 p+2 k+1-i}+\binom{k}{i-k-1} s_{2 p+2 k+2-i} \tag{3.4}\\
& \left.+\binom{k}{i-k-2} t_{2 p+2 k+3-i}\right]
\end{align*}
$$

$$
\begin{align*}
D_{p+k}^{p}= & \sum_{i=k}^{2 k+3} \alpha_{i}\left[\frac{i+1}{k+1}\binom{k+1}{i-k} r_{2 p+2 k+2-i}\right. \\
& +\frac{i}{k+1}\binom{k+1}{i-k-1} s_{2 p+2 k+3-i} \tag{3.5}\\
& \left.+\frac{i-1}{k+1}\binom{k+1}{i-k-2} t_{2 p+2 k+4-i}\right] .
\end{align*}
$$

Here the convention is made that $\binom{m}{q}=0$ for $q<0$, and $r_{j}=s_{j}=$ $t_{j}=0$ for $j \leqq 0$ and $r_{1}=t_{1}=0, s_{1}=1$.

Putting the values of r_{k}, s_{k}, t_{k} from (3.2) into (3.3) we get

$$
\left\{\begin{array}{l}
\alpha^{2 p+2 k+1} U_{k}+\beta^{2 p+2 k+1} V_{k}=0 \tag{3.6}\\
\alpha^{2 p+2 k+2} W_{k}+\beta^{2 p+2 k+2} X_{k}=0
\end{array} \quad(p, k=0,1, \cdots)\right.
$$

where

$$
\begin{align*}
U_{k}= & \sum_{i=k}^{2 k+2} \alpha_{i}\left[\binom{k}{i-k} a_{0} \alpha^{-i}+\binom{k}{i-k-1} a_{1} \alpha^{-i+1}\right. \\
& \left.+\binom{k}{i-k-2} a_{2} \alpha^{-i+2}\right], \tag{3.7}\\
W_{k}= & \sum_{i=k}^{2 k+3} \alpha_{i}\left[\frac{i+1}{k+1}\binom{k+1}{i-k} \alpha_{0} \alpha^{-i}+\frac{i}{k+1}\binom{k+1}{i-k-1} a_{1} \alpha^{-i+1}\right. \\
+ & \left.\frac{i-1}{k+1}\binom{k+1}{i-k-2} a_{2} \alpha^{-i+2}\right],
\end{align*}
$$

and V_{k}, X_{k} are obtained from U_{k}, W_{k} be replacing

$$
a_{0}, a_{1}, a_{2}, \alpha \quad \text { by } \quad b_{0}, b_{1}, b_{2}, \beta
$$

Let k be arbitrary but fixed. If we divide (3.6) by $\alpha^{2 p+2 k+1}, \alpha^{2 p+2 k+2}$ respectively and let $p \rightarrow \infty$, then since $|\beta / \alpha|<1$ we get

$$
\begin{equation*}
U_{k}=0, W_{k}=0 \quad(k=0,1, \cdots) \tag{3.8}
\end{equation*}
$$

And from (3.6) we then have

$$
\begin{equation*}
V_{k}=0, X_{k}=0 \quad(k=0,1, \cdots) \tag{3.9}
\end{equation*}
$$

For $k=0,(3.8)$, (3.9) reduce to

$$
\begin{align*}
& \alpha_{0} a_{0}+\alpha_{1} a_{1}+\alpha_{2} a_{2}=0, \alpha_{1} a_{0}+\alpha_{2} a_{1}+\alpha_{3} a_{2}=0 \tag{3.10}\\
& \alpha_{0} b_{0}+\alpha_{1} b_{1}+\alpha_{2} b_{2}=0, \alpha_{1} b_{0}+\alpha_{2} b_{1}+\alpha_{3} b_{2}=0
\end{align*}
$$

Now from (3.3) with $p=k=0$ we have

$$
\alpha_{0} r_{1}+\alpha_{1} s_{1}+\alpha_{2} t_{1}=0
$$

But $r_{1}=t_{1}=0, s_{1}=1$; hence

$$
\alpha_{1}=0
$$

So (3.10) becomes

$$
\begin{align*}
& \alpha_{0} a_{0}+\alpha_{2} a_{2}=0, \alpha_{2} a_{1}+\alpha_{3} a_{2}=0 \\
& \alpha_{0} b_{0}+\alpha_{2} b_{2}=0, \alpha_{2} b_{1}+\alpha_{3} b_{2}=0 \tag{3.11}
\end{align*}
$$

Now $a_{2} b_{2} \neq 0$. For if a_{2} or b_{2} is zero then from $a_{2} \alpha+b_{2} \beta=0$ (in (1.8)) and $\alpha \beta \neq 0$ we get $\alpha_{2}=b_{2}=0$. Hence (again from (1.8)) $c_{2}=$ 0 ; so all coefficients in (1.3b) are of degree <2, contrary to assumption. Again, $a_{0} b_{0} \neq 0$. For if a_{0} or b_{0} is zero then (3.11) implies that $\alpha_{2}=$ 0 . Since we already have $\alpha_{1}=0$, then $\Delta_{1}=\left|\begin{array}{c}\alpha_{0} \alpha_{1} \\ \alpha_{1} \alpha_{2}\end{array}\right|=0$. But for the moments $\left\{\alpha_{n}\right\}$ corresponding to an orthogonal set it is known [2] that

$$
\left.\Delta_{n} \equiv\left|\begin{array}{c}
\alpha_{0} \alpha_{1} \cdots \cdots \\
\alpha_{n} \\
\alpha_{1} \alpha_{2} \cdots
\end{array}\right| \alpha_{n+1} \right\rvert\, \neq 0 \quad(n=0,1, \cdots)
$$

so we have a contradiction. Thus,

$$
\begin{equation*}
a_{2} b_{2} \neq 0, a_{0} b_{0} \neq 0, \alpha_{2} \neq 0 \tag{3.12}
\end{equation*}
$$

The right hand equations in (3.11) give us

$$
-b_{1} a_{2}+a_{1} b_{2}=0
$$

This with

$$
\alpha a_{2}+\beta b_{2}=0
$$

from (1.8) implies

$$
\alpha a_{1}+\beta b_{1}=0
$$

contrary to (1.9) for $n=0$. So the assumption $\beta \neq-\alpha$ leads to a contradiction, and we have

$$
\begin{equation*}
\beta=-\alpha \tag{3.13}
\end{equation*}
$$

Then from (1.12):

$$
\begin{equation*}
a_{0}=b_{0} \tag{3.14}
\end{equation*}
$$

In (3.2) we now have

$$
\left\{\begin{array}{l}
r_{2 p}=2 a_{0} \delta^{-1} \alpha^{2 p}, s_{2 p}=\left(a_{1}+b_{1}\right) \delta^{-1} \alpha^{2 p}, t_{2 p}=\left(a_{2}+b_{2}\right) \delta^{-1} \alpha^{2 p} \tag{3.15}\\
r_{2 p+1}=0, s_{2 p+1}=\left(a_{1}-b_{1}\right) \delta^{-1} \alpha^{2 p+1}, t_{2 p+1}=\left(a_{2}-b_{2}\right) \delta^{-1} \alpha^{2 p+1}
\end{array}\right.
$$

($p=1,2, \cdots$), with $r_{1}=t_{1}=0, s_{1}=1$. (3.12) and (3.15) show that

$$
r_{2} \neq 0 .
$$

Let

$$
\begin{equation*}
u_{p}=s_{2 p+1}, v_{p}=t_{2 p+1}, w_{p}=t_{2 p+2} \tag{3.16}
\end{equation*}
$$

From $a_{2} \alpha+b_{2} \beta=0, \beta=-\alpha \neq 0$ we get

$$
\begin{equation*}
a_{2}=b_{2} . \tag{3.17}
\end{equation*}
$$

It is then readily seen that

$$
\begin{equation*}
v_{p}=0, w_{p}-t_{2} u_{p}=0 \quad(p=0,1,2, \cdots) \tag{3.18}
\end{equation*}
$$

Choose $r_{2}, s_{2}, t_{2}, s_{3}$ to satisfy the conditions

$$
\begin{equation*}
r_{2} \neq 0,2+k t_{2} \neq 0(k=0,1, \cdots), \Delta_{2} \neq 0 \tag{3.19}
\end{equation*}
$$

where $\alpha_{1}=0, \alpha_{2}, \alpha_{3}, \alpha_{4}$ are obtained from the equations

$$
\begin{equation*}
D_{0}^{0}=0, d_{1}^{0}=0, D_{1}^{0}=0 . \tag{3.20}
\end{equation*}
$$

(3.18)-(3.20) make Theorem 4.2 ([1], p. 158) applicable, so that the solutions of (1.3b) form a weak orthogonal set if and only if

$$
\left\{\begin{array}{l}
s_{2 p+1}=s_{3}^{p}, t_{2 p+1}=0, r_{2 p+1}=0 \tag{3.21}\\
s_{2 p+2}=s_{2} s_{3}^{p}, t_{2 p+2}=t_{2} s_{3}^{p}, r_{2 p+2}=r_{2} s_{3}^{p}
\end{array} \quad(p=0,1, \cdots) .\right.
$$

Now these conditions do hold in view of (3.14).
The first two conditions of (3.19) become

$$
\begin{equation*}
a_{0} \neq 0 ;\left(a_{1}-b_{1}\right)+k \alpha a_{2} \neq 0 \quad(k=0,1,2, \cdots) . \tag{3.22}
\end{equation*}
$$

Finally, for weak orthogonality to imply orthogonality it is necessary and sufficient ([1], pp. 161-162) that $t_{2} \notin S\left(r_{2}, s_{2}, s_{3}\right)$ where $S\left(r_{2}, s_{2}, s_{3}\right)$ is the set of all real values of t_{2} for which $\pi_{n}\left(r_{2}, s_{2}, s_{3}, t_{2}\right)=0$ for some $n>1$. The expression for π_{n} is lengthy, and we do not reproduce it here. We merely observe that for given r_{2}, s_{2}, s_{3} the set $S\left(r_{2}, s_{2}, s_{3}\right)$ is at most denumerable.

To sum up:
Theorem 3.1. Let the admissible equation (1.3b) be canonical. Its solutions form an orthogonal polynomial set if and only if:
(i) (3.12), (3.13), (3.14), (3.17), (3.19) hold.
(ii) $t_{2} \notin S\left(r_{2}, s_{2}, s_{3}\right)$.

Remarks. (a) If the canonical equation (1.3b) has an orthogonal polynomial set of solutions then it has the form

$$
\begin{align*}
\left(a_{2} x^{2}+a_{1} x+a_{0}\right) y(x+\alpha) & +\left(a_{2} x^{2}+b_{1} x+a_{0}\right) y(x-\alpha) \tag{3.23}\\
& -\left[2 a_{2} x^{2}+\left(a_{1}+b_{1}\right) x\right] y(x)=\lambda y(x)
\end{align*}
$$

with

$$
\begin{equation*}
a_{0} a_{2}\left(a_{1}-b_{1}\right) \alpha \neq 0 ;\left(a_{1}-b_{1}\right)+k \alpha a_{2} \neq 0 \quad(k=0,1, \cdots) . \tag{3.24}
\end{equation*}
$$

(b) As in § 2 the transformation $x=\alpha x^{*}, z\left(x^{*}\right)=y\left(\alpha x^{*}\right)$ carries (3.24) into a similar equation with α replaced by 1.
4. Two examples. If an orthogonal polynomial set $\left\{P_{n}(x)\right\}$ satisfies (2.10) with $\lambda=\lambda_{n}$ for $y=P_{n}(x)$ then from (1.6) we have

$$
\begin{equation*}
\lambda_{n}=2 a_{0}+n \alpha\left(a_{1}-b_{1}\right) \quad(n=0,1, \cdots) . \tag{4.1}
\end{equation*}
$$

Let $\left\{P_{n}(x)\right\},\left\{Q_{n}(x)\right\}$ be polynomial sets defined by the respective generating functions

$$
\begin{gather*}
e^{c t}(1-t)^{x+c}=\sum_{n=0}^{\infty} P_{n}(x) t^{n} \quad(c \neq 0), \tag{4.2}\\
(1-t)^{x-b d} \cdot(1-b t)^{-x+d}=\sum_{n=0}^{\infty} Q_{n}(x) t^{n} \quad(b \neq 0,1) . \tag{4.3}
\end{gather*}
$$

We shall show that these sets are orthogonal and satisfy an equation of the form (2.10).

Denote the left side of (2.10) by $L[y]$. If $G(x, t)$ is the generating function in (4.2) then

$$
\begin{equation*}
L[G]=G\left\{\left(a_{1} x+a_{0}\right)(1-t)^{\alpha}+\left(b_{1} x+a_{0}\right)(1-t)^{-\alpha}-\left(a_{1}+b_{1}\right) x\right\} \tag{4.4}
\end{equation*}
$$

Also,

$$
\begin{align*}
& \sum_{n=0}^{\infty} \lambda_{n} P_{n}(x) t^{n}=2 a_{0} G+\alpha\left(a_{1}-b_{1}\right) t \partial G / \partial t \tag{4.5}\\
& \quad=G\left\{2 a_{0}+\alpha\left(a_{1}-b_{1}\right) t\left[c-(x+c)(1-t)^{-1}\right]\right\}
\end{align*}
$$

$\left\{P_{n}(x)\right\}$ will satisfy (2.10) if (4.4) and (4.5) are identical. It is a straightforward computation to show that they are identical if

$$
\begin{equation*}
\alpha=1 ; a_{1}=0 ; b_{1}=a_{0} / c \tag{4.6}
\end{equation*}
$$

Hence $\left\{P_{n}(x)\right\}$ is an orthogonal set which satisfies the equation

$$
\begin{equation*}
P_{n}(x+1)+(x+c) P_{n}(x-1)-x P_{n}(x)=(2 c-n) P_{n}(x) . \tag{4.7}
\end{equation*}
$$

In the same way it is found that $\left\{Q_{n}(x)\right\}$ is an orthogonal set that is a solution of (2.10) for

$$
\begin{equation*}
\alpha=1 ; a_{1}=b b_{1} ; a_{n}=-b d b_{1} \tag{4.8}
\end{equation*}
$$

The equation reduces to

$$
\begin{gather*}
b(x-d) Q_{n}(x+1)+(x-b d) Q_{n}(x-1)-(b+1) x Q_{n}(x) \tag{4.9}\\
=\{-2 b d+n(b-1)\} Q_{n}(x)
\end{gather*}
$$

In the case of (4.9) the condition (2.92) is to hold. It reduces to

$$
\begin{equation*}
-d(b-1) \neq 0,1,2, \cdots \tag{4.10}
\end{equation*}
$$

References

1. H. L. Krall and I. M. Sheffer, Differential equations of infinite order for orthogonal polynomials, Annali di Matematica (4) 74 (1966), 135-172.
2. G. Szegö, Orthogonal polynomials, American Mathematical Society Colloquium Publications, vol. 23, 1959.

Received March 12, 1968.
Pennsylvania State University

