NILPOTENCY CLASS OF A MAP AND STASHEFF'S CRITERION

C. S. Hoo

Let $f: X \to Y$ be a map and let $e: \Sigma \Omega X \to X$ be the map whose adjoint is $1_{\Omega Z}$. Then we prove the following results.

THEOREM 1. nil $f \leq 1$ if and only if $feV: \Sigma \Omega X \vee \Sigma \Omega X \rightarrow Y$ can be extended to $\Sigma \Omega X \times \Sigma \Omega X$.

THEOREM 2. Let X be an H'-space. Then nil $f \leq 1$ if and only if $fV: X \lor X \to Y$ can be extended to $X \times X$.

THEOREM 3. nil f = nil(fe).

Theorem 1 may be regarded as an extension of Stasheff's criterion for a loop space to be homotopy-commutative. These theorems may all be regarded as extensions of Stasheff's criterion in various ways. We also discuss the duals of these results. Theorem 3 dualises, but the others do not. A sample result in the dual situation is

THEOREM. conil $f \leq \Sigma w \operatorname{cat}(e'f)$ where $e': Y \rightarrow \Omega \Sigma Y$ is the adjoint of $1_{\Sigma Y}$.

In this paper we shall work in the category \mathcal{T} of spaces with base point and having the homotopy type of countable CW complexes. All maps and homotopies shall respect base points. The maps of our category \mathcal{T} shall be homotopy classes of maps, but for simplicity we shall use the same symbol for a map and its homotopy class. Given spaces X, Y, we denote the set of homotopy classes of maps from X to Y by [X, Y]. We have an isomorphism $\tau: [\Sigma X, Y] \rightarrow [X, \Omega Y]$ where Σ, Ω are the suspension and loop functors respectively. We denote $\tau(1_{\Sigma X})$ by e' and $\tau^{-1}(1_{\varrho X})$ by e.

1. For convenience let us recall some notions of Peterson's theory of structures [7]. We shall follow the definitions and notations of [4]. Let \mathscr{C} be a category. By a left structure system \mathscr{L} over \mathscr{C} we mean $\mathscr{L} = (L, W, S; d, j)$ where $L, W, S: \mathscr{C} \to \mathscr{T}$ are covariant functors and $d: W \to L, j: W \to S$ are natural transformations. Given an object X of \mathscr{C} we say that X is \mathscr{L} -structured if there exists a map $\varphi: SX \to LX$ such that $\varphi j(X) \simeq d(X)$. Given a category \mathscr{C} , we have a category \mathscr{C}^2 of pairs. An object of \mathscr{C}^2 is a map $f: X \to Y$ of \mathscr{C} , and given objects $f: X_1 \to X_2, g: Y_1 \to Y_2$ of \mathscr{C}^2 , a map (u, v): $f \to g$ is a pair of maps $u: X_1 \to Y_1, v: X_2 \to Y_2$ such that gu = vf. We have convariant functors $D_0, D_1: \mathscr{C}^2 \to \mathscr{C}$ given by $D_0(f) = Y, D_1(f) =$ X where $f: X \to Y$. Also given $(u, v): f \to g$, we have $D_0(u, v) = v$, $D_1(u, v) = u$. We have a natural transformation $G: D_1 \to D_0$ given by G(f) = f for $f \in \mathscr{C}^2$. Given a left structure $\mathscr{L} = (L, W, S; d, j)$ over \mathscr{C} , we have a left structure $\mathscr{L}^2 = (LD_0, WD_1, SD_1; (dD_0)(WG), jD_1)$ over \mathscr{C}^2 . Given an object f of \mathscr{C}^2 , we shall say that f is \mathscr{L} -structured if it is \mathscr{L}^2 -structured. It is easily seen that if $f: X \to Y$ is an object of \mathscr{C}^2 , and X or Y is \mathscr{L} -structured, then f is \mathscr{L} -structured.

We have the left structure $H = (1, \bigvee_{i=1}^{2}, \prod_{i=1}^{2}, \mathcal{V}, j)$ over \mathcal{S} , where 1 is the identity functor of \mathcal{S} , $\bigvee_{i=1}^{2}$ is the wedge product, $\prod_{i=1}^{2}$ is the cartesian product and \mathcal{V}, j are the folding and inclusion natural transformations respectively. We observe that a space X is H-structured precisely if it is an H-space. Also a map $f: X \to Y$ is H-structured if and only if $f\mathcal{V}: X \lor X \to Y$ extends to $X \times X$.

2. Let $\mathscr{L} = (L, W, S; d, j)$ be a left structure system over a category \mathscr{C} . Let $f: X \to Y, g: Y \to Z$ be maps. Then it is easily seen that if f is \mathscr{L} -structured or g is \mathscr{L} -structured, then gf is \mathscr{L} -structured.

We recall that in [1], there is defined a generalized Whitehead product $[,]: [\Sigma A, X] \times [\Sigma B, X] \rightarrow [\Sigma(A \land B), X]$ where A, B, X are spaces and $A \land B$ is the smashed product. Now suppose X is an Hspace. Then we have a generalized Samelson product (see [2]) \langle , \rangle : $[A, X] \times [B, X] \rightarrow [A \land B, X]$. These homotopy operations are related in the following way. Suppose α is an element of $[\Sigma A, X], \beta$ is an element of $[\Sigma B, X]$ where A, B, X are spaces. Then

$$\tau[\alpha, \beta] = \langle \tau(\alpha), \tau(\beta) \rangle$$
.

We shall also make the following convention. Let $f: X \to Y$ be a map. Then we have an *H*-map $\Omega f: \Omega X \to \Omega Y$. We shall write nil f for nil Ωf (see [3] for definitions). Similarly, we have an *H'*-map $\Sigma f: \Sigma X \to \Sigma Y$. We shall write conil f for conil Σf .

THEOREM 1. Let $f: X \to Y$ be a map. Then nil $f \leq 1$ if and only if fe7: $\Sigma \Omega X \vee \Sigma \Omega X \to Y$ can be extended to $\Sigma \Omega X \times \Sigma \Omega X$.

Proof. Let $c: \Omega X \times \Omega X \to \Omega X$ be the basic commutator of ΩX . Then nil $f \leq 1$ if and only if $(\Omega f) c \simeq *$. Let $i_1, i_2: \Sigma \Omega X \to \Sigma \Omega X \vee \Sigma \Omega X$ be the inclusions in the first and second coordinates respectively. Then we have a generalized Whitehead product

$$[i_1, i_2] \in [\varSigma(\Omega X \land \Omega X), \varSigma\Omega X \lor \varSigma\Omega X]$$
 .

Now $\Sigma \Omega X \times \Sigma \Omega X$ is homotopically equivalent to

$$(arsigma arOmega X ee arSigma arOmega X) igcup_{[i_1,i_2]} C arSigma (arOmega X imes arOmega X)$$

(see [1]), so that $fe\mathcal{P}$ extends to $\Sigma\Omega X \times \Sigma\Omega X$ if and only if $fe\mathcal{P}[i_1, i_2] = 0$, that is, [fe, fe] = 0. Now $\tau[fe, fe] = \langle \Omega f, \Omega f \rangle$ and

$$q^{\sharp}\langle \Omega f, \Omega f \rangle = c(\Omega f \times \Omega f) \simeq (\Omega f)c$$

where the first c denotes the commutator $\Omega Y \times \Omega X \rightarrow \Omega Y$ and the second c denotes the commutor $\Omega X \times \Omega X \rightarrow \Omega X$ and $q: \Omega Y \times \Omega Y \Omega Y \wedge \Omega Y$ is the projection. Since τ is an isomorphism and q^* is a monomorphism, it follows that fe^{γ} extends to $\Sigma \Omega X \times \Sigma \Omega X$ if and only if nil $f \leq 1$.

REMARK. If we take f to be the identity map of X, then the theorem says that nil $X \leq 1$ if and only if $e^{\gamma}: \Sigma \Omega X \vee \Sigma \Omega X \to X$ extends to $\Sigma \Omega X \times \Sigma \Omega X$, which is just Stasheff's criterion for the homotopy-commutativity of a loop space (see [8]). We also observe that the statement that fe^{γ} extends to $\Sigma \Omega X \times \Sigma \Omega X$ is just the statement that fe can be H-structured.

THEOREM 2. Let $f: X \to Y$ be a map where X is an H'-space. Then nil $f \leq 1$ if and only if $fV: X \lor X \to Y$ can be extended to $X \times X$.

In view of the fact that fV can be extended if and only if f can be H structured, Theorem 2 will follow from Theorem 1 and the following lemma.

LEMMA. Let $f: X \to Y$ be a map where X is an H'-space. Then f is H-structured if and only if $fe: \Sigma \Omega X \to Y$ is H-structured.

Proof. We need only show that if fe is *H*-structured then f is *H*-structured. Suppose fe can be *H*-structured. Then we can find a map $\varphi: \Sigma\Omega X \times \Sigma\Omega X \to Y$ such that $\varphi j \simeq \overline{\nu}(fe \lor fe) = fe\overline{\nu}$. Since X is an *H*':space we have a map $s: X \to \Sigma\Omega X$ such that $es \simeq 1_x$. Then $\varphi(s \times s): X \times X \to Y$ is an *H*-structure for f. In fact $\varphi(s \times s)j = \varphi j(s \lor s) \simeq fe\overline{\nu}(s \lor s) = fes\overline{\nu} \simeq f\overline{\nu}$.

REMARK. Theorems 1 and 2 imply that nil $e \leq 1$ if and only if ΩX is homotopy-commutative, that is, if and only if nil $X \leq 1$. In fact, we always have nil X = nil e. This fact follows from the next result.

THEOREM 3. Let $f: X \rightarrow Y$ be a map. Then $\operatorname{nil} f = \operatorname{nil} (fe)$.

Proof. Since we always have nil $(fe) \leq nil f$, it suffices to show that nil $f \leq nil (fe)$. Suppose nil $(fe) \leq n$. Then $(\Omega f)(\Omega e)c_{n+1} \simeq *$

where $c_{n+1}: (\Omega \Sigma \Omega X)^{n+1} \longrightarrow \Omega \Sigma \Omega X$ is the commutator map of weight (n + 1). Then we have

$$(\Omega f)c_{n+1}(\Omega e \times \cdots \times \Omega e) \simeq *$$

where $c_{n+1}: (\Omega X)^{n+1} \to \Omega X$ is also the commutator map of weight (n+1). Consider the map $e': \Omega X \to \Omega \Sigma \Omega X$ such that $e' = \tau(1_{\Omega \Sigma X})$. Clearly $(\Omega e)e' = 1_{\Omega \Sigma}$. Hence we have $(\Omega f)c_{n+1} \simeq *$, that is, nil $f \leq n$. This proves the theorem.

3. We now consider the dual situation. It is clear that Theorem 3 dualises immediately to give the following result.

THEOREM 4. Let $f: X \to Y$ be a map and let $e': Y \to \Omega \Sigma Y$ be the adjoint of $1_{\Sigma X}$. Then could f = could(e'f).

Let us first define a right structure system over a category \mathscr{C} . By this we shall mean $\mathscr{R} = (R, P, T; d, j)$ where $R, P, T: \mathscr{C} \to \mathscr{T}$ are covariant functors and $d: R \to P, j: T \to P$ are natural transformations. Given an object $X \in \mathscr{C}$, we say that X is \mathscr{R} -structured if there exists a map $\varphi: RX \to TX$ such that $j(X)\varphi \simeq d(X)$. Given a right structure $\mathscr{R} = (R, P, T; d, j)$ over \mathscr{C} , we can form a right structure $\mathscr{R}^2 = (RD_1, PD_0, TD_0; (dD_0)(RG), jD_0)$ over \mathscr{C}^2 . We shall say that an element $f: X \to Y$ of \mathscr{C}^2 is \mathscr{R} -structured if it is \mathscr{R}^2 structured. It is easily checked that if X or Y is \mathscr{R} -structured, then f is \mathscr{R} -structured.

The dual of the *H*-structure is the *H'*-structure $(1, \prod_{i=1}^{2}, \bigvee_{i=1}^{2}; \Delta, j)$, a right structure over \mathscr{T} . Clearly a space X is *H'*-structured if and only if it is an *H'*-space. Also a map $f: X \to Y$ is *H'*-structured if and only if $\Delta f: X \to Y^2$ can be compressed into $Y \vee Y$. The dual of Theorem 1 would read: conil $f \leq 1$ if and only if $\Delta e'f: X \to (\Omega \Sigma Y)^2$ can be compressed into $\Omega \Sigma Y \vee \Omega \Sigma Y$. This, however, is false (see [5]). But in this case, we can generalize the *H'*-structure to another familiar right structure, namely the *n*-cat structure $(1, \prod_{i=1}^{n+1}; T_i, \Delta, j)$ over \mathscr{T} , where T_1 is the fat wedge functor. Thus the 1-cat structure is precisely the *H'*-structure. Given a space X, we have cat $X \leq n$ if there exists a map $\varphi: X \to T_1(X, \dots, X)$ such that $j\varphi \simeq \varDelta: X \to X^{n+1}$. Given a map $f: X \to Y$, we have cat $f \leq n$ if $\Delta f: X \to Y^{n+1}$ can be compressed into $T_1(Y, \dots, Y)$.

Given a right structure system $\mathscr{R} = (R, P, T; d, j)$ over \mathscr{C} , let us consider the cofibre of $j: T \to P$. Suppose the cofibre of j is $q: P \to Q$. Let $j_w \to P$ be the fibre of q. Then we obtain a right structure system $\mathscr{R}_w = (R, P, T_w; d, j_w)$ over \mathscr{C} , called the associated weak structure. We shall say that an object $X \in \mathscr{C}$ is weakly \mathscr{R} -

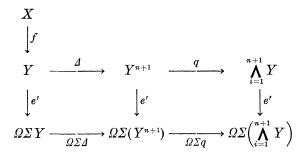
378

structured if it can be \mathscr{R}_w -structured. Clearly, given a map $f: X \to Y$ we have w cat $f \leq n$ if $q \leq f \simeq *$ where $q: Y^{n+1} \to \bigwedge_{i=1}^{n+1} Y$ is the projection onto the smashed product. Given a right structure $\mathscr{R} = (R, P, T; d, j)$ over \mathscr{C} , we have a right structure $\Sigma \mathscr{R} = (\Sigma R, \Sigma P, \Sigma T; \Sigma d, \Sigma f)$ over \mathscr{C} , where Σ is the suspension functor. Clearly, if f is \mathscr{R} structured, it is $\Sigma \mathscr{R}$ -structured and it is weakly \mathscr{R} -structured. Thus $\Sigma w \operatorname{cat} f \leq w \operatorname{cat} f \leq \operatorname{cat} f$ for any map f.

Let $f: X \to Y, g: Y \to Z$ be maps. Then it is easily seen that $\operatorname{cat}(gf) \leq \min \{\operatorname{cat} f, \operatorname{cat} g\}$ and $w \operatorname{cat}(gf) \leq \min \{w \operatorname{cat} f, w \operatorname{cat} g\}$.

THEOREM 5. Let $f: X \to Y$ be a map and let $e': Y \to \Omega \Sigma Y$ be the adjoint of $1_{\Sigma Y}$. Then could $f \leq \Sigma w \operatorname{cat}(e'f)$.

Proof. Suppose $\Sigma w \operatorname{cat} (e'f) \leq n$. Then $\Sigma(q \triangleleft e'f) \simeq *$ where $q: (\Omega \Sigma Y)^{n+1} \to \bigwedge_{i=1}^{n+1} \Omega \Sigma Y$ is the projection. Let $c: \Sigma Y \to \bigvee_{i=1}^{n+1} \Sigma Y$ be the commutator map of weight (n + 1) for ΣY . Then we can form a map $\overline{c}: Y^{n+1} \to \Omega(\bigvee_{i=1}^{n+1} \Sigma Y)$ such that $\overline{c} \triangleleft = \tau(c)$ (see [5]). Since $\Sigma(q \varDelta e'f) \simeq *$, applying τ we have $\Omega \Sigma(q \varDelta) e'f \simeq *$. Consider the following diagram where each square is homotopy-commutative.



We have then that $e'q_{\Delta}f \simeq *$. Using Lemmas 4.1_k and 4.2_k of [5], it follows that $\bar{c}_{\Delta}f \simeq *$, that is, $\tau(c)f \simeq *$. Hence $c(\Sigma f) \simeq *$, and hence could $f \leq n$. This proves that could $f \leq \Sigma w \operatorname{cat}(e'f)$.

THEOREM 6. Let $f: X \to Y$ be a map where Y is an H-space. Then $\operatorname{cat} f = \operatorname{cat} (e'f)$, $w \operatorname{cat} f = w \operatorname{cat} (e'f)$ where $e': Y \to \Omega \Sigma Y$ is the adjoint of $1_{\Sigma Y}$.

Proof. We need only show that $\operatorname{cat} f \leq \operatorname{cat} (e'f)$, and

$$w \operatorname{cat} f \leq w \operatorname{cat} (e'f)$$
.

Since Y is an H-space, we have a map $r: \Omega \Sigma Y \to Y$ such that $re' \simeq 1_Y$. Then $\operatorname{cat} f = \operatorname{cat} (re'f) \leq \operatorname{cat} (e'f)$ and $w \operatorname{cat} f = w \operatorname{cat} (re'f) \leq w \operatorname{cat} (e'f)$.

379

C. S. HOO

References

M. Arkowitz, The generalized Whitehead product, Pacific J. Math. 12 (1962), 7-23.
——, Homotopy products for H-spaces, Michigan Math. J. 10 (1963), 1-9.

I. Berstein and T. Ganea, Homotopical nilpotency, Illinois J. Math. 5 (1961), 99-130.
I. Berstein and P. J. Hilton, Homomorphisms of homotopy structures, Topologie et geometric differentielle, Séminaire Ehresmann, April, 1963.

5. T. Ganea, P. J. Hilton and F. P. Peterson, On the homotopy-commutativity of loop spaces and suspensions, Topology 1 (1962), 133-141.

6. C. S. Hoo, A note on a theorem of Ganea, Hilton and Peterson, Proc. Amer. Math. Soc. 19 (1968), 909-911.

7. F. P. Peterson, Numerical invariants of homotopy type, Colloquium on algebraic topology, Aarhus Universitet, 1962, 79-83.

8. J. Stasheff, On homotopy abelian H-spaces, Proc. Camb. Phil. Soc. 57 (1961), 734-745.

Received January 23, 1968. This research was supported by NRC Grant A-3026.

UNIVERSITY OF ALBERTA EDMONTON, ALBERTA, CANADA