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ON APPROXIMATION BY DILATIONS
OF DISTRIBUTIONS

S. R. HARASYMIV

Let E he a locally convex space of temperate distributions
and suppose that ue E. We attempt to characterize the closed
vector subspace of E generated by the set of all distributions
having the form u{βιXι + bίt , anxn + bn) where alf , an,
bu " ,bn are real numbers with alf , an being nonzero. The
characterization is effected in the case when the topology on
E satisfies certain conditions.

1* Notation* The underlying topological group in all our analysis
is the additive group Rn with the usual topology. Addition and
multiplication in Rn, are defined component-wise, in the usual manner.
We identify the Pontryagin character group of Rn with Rn. Typical
elements of Rn will be denoted by x,y, , or, when we are thinking
of Rn as its own character group, by χ, ς, • ••. If χeRn, then the
bounded continuous character of Rn corresponding to χ is defined by

(1.1) (xly , xn) -»exp {-2πί(χ1x1 + + χnxn)} .

The ordinary Lebesgue measure on Rn is denoted by dx, or by dχ if
we think of Rn as its own character group. With the identification
expressed in (1.1), the Fourier Inversion Formula holds without any
multiplicative constants.

Throughout, we adopt the usual conventions and notations of the
calculus of n variables; see, for example, Hormander ([5], p. 4). If
x e Rn, and k ^ n is a positive integer, we write xk for the λ -th
component of x. If a is a multi-index, then the function j a on Rn

is defined by ja(x) = xp a£» for all x e Rn.
Rs will denote the set Rn\{xeRn: xk = 0 for some k}.
Let W be an open set in Rn. We write C°°(W) for the set of

all complex valued functions which are defined in W and are indefinitely
differentiable there. D( W) will denote the set of functions which are
indefinitely differentiable and have compact support in W. The space
of distributions with support in W is denoted by D'(W). For an
account of these spaces, see Schwartz [6] and [7].

The space of rapidly decreasing indefinitely differentiable functions
on Rn is designated by S(Rn). The topological dual S'(Rn) of S(Bn)
is the space of temperate distributions on Rn. We shall always assume
that S'(Rn) is equipped with the strong topology β(S', S).

Finally, let φ e D(Rn) and suppose that b e Rn. Then the function
φb e D{Rn) defined by
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φb(x) — φ(x + b) for all x e Rn

is called a translate of φ. If a e R\ then the function φa e D{Rn)
defined by

φa(x) = φ(ax) for all xeRn

is called a dilation of φ. For an arbitrary distribution ueD'(Rn),
we define the dilation ua and translate ub of u by making use of the
ad joints of the mappings φ-^φa~λ and φ—+φb; we write ua(φ) =

l/i(α)|. (̂̂ >α~1) and δ̂(cp) = u(φb) for all φeD'(Rn). It is easy to
verify that if % is a function, then ua and ^ δ are also functions; and
that ua(x) = t&(a#) and t&δ(α) = tc(x + b) in this case. [The identification
of a function with a distribution is made via the integral, in the usual
way.] We notice that for any distribution u, supp ua = a~ι. supp u;
and if u is a temperate distribution on Rn, then ua is a temperate

distribution and ua— \ l/j(a) \ -ua~Ύ. The last equality may be established
by an easy computation, or by reference to equation (5. 15. 14) in
Edwards [2].

A vector subspace F of D'(Rn) is said to be dilation-invariant
[resp. translation-invariant] if ua e F[ub e F] for all ue F and all
α e f f [all beRn].

2. c-admissible spaces. In this section we shall define the dis-
tribution spaces which form the setting for our approximation problems.
We shall only consider vector subspaces of S'(Rn) which contain S(Rn).
To avoid repetition, it will always be understood that whenever we
speak of a space of temperate distributions, we mean a vector sub-
space of S'(Rn) which contains S(Rn).

We begin by introducing a modified version of a definition which
appears in Yoshinaga and Ogata [8].

DEFINITION 2.1. (cf. Yoshinaga and Ogata [8], p. 17.) Suppose
that E is a locally convex space of temperate distributions. We say
that E is an admissible space if the following conditions are satisfied.

( i ) S(Rn) is dense in E.
(ii) The injections S(Rn) —> E-> S\Rn) are continuous.

REMARKS. (1) It is easy to see that the topological dual Ef of
an admissible space E is [isomorphic to] a vector subspace of Sf(Rn)
which contains S(Rn); thus we can identify Ef with a space of tem-
perate distributions. If this identification is made in the obvious way,
then

(2.1) (u, φy = u*φ(p) for all ueE
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(2.2) ζφ, v} = φ*v(o) for all v e Ef

whenever φeS(Rn). [Here and elsewhere, <, y denotes the bilinear
form on E x 23" arising from the natural pairing of 2? and £".] In
view of (2.2), the topology on 2? is necessarily Hausdorff.

(2) We also remark that if E is admissible according to Defini-
tion 2.1, then E is admissible in the sense of Yoshinaga and Ogata
[8] This is easily demonstrated if we notice that the injections
D{Rn) ~> S{Rn) and S'(Rn) -* D'(Rn) are continuous.

We shall need the following simple result about admissible spaces.

THEOREM 2.2. (a) Let E be a translation-invariant admissible
space. If for some beRn the mapping u—>uh of E {with its usual
topology) into E (with the weak topology σ (E, E')) is continuous,
then vb e E' for all veEr and

<(u, vby — (ubJ vy for all ueE and all veE' .

(b) Let E be a dilation-invariant admissible space. If for some
aeR* the mapping u—+ua of E (with its usual topology) into E (with
the weak topology σ (E, E')) is continuous, then va~λ e Ef for all v e 23"
and

ζu, va~xy = I j(a) I <V, vy for all ueE and all veE' .

Proof. We shall prove (b); the proof (a) is similar. Suppose that
the mapping u —> ua is continuous for the stated topologies on E. Let
v G Έ1. Then the mapping u—*ua—>\j(a) \. <V, vy defines a continuous
linear functional on E, and so is represented by an element w e E'.
Now, if φeS(Rn), then in view of (2.2)

φ*w(θ) = ζφ, W>y

= \j(a)\-φa*v(o)

= φ*Va~l(θ)

the last equality being a consequence of the definition of va~x. There-
fore w — va~x as a temperate distribution, and so va~1eEr. Since
veE' was arbitrary, the proof is complete.

DEFINITION 2.3. Suppose that E is an admissible space. We say
that E is c-admissible if it satisfies conditions (i)-(iii) below.

( i ) E is translation-invariant.
(ii) For each xeRn, the mapping u~+ux of E (with its usual

topology) into E (with the weak topology σ(E, E')) is continuous.
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(iii) For each ueE and each veEr, the mapping x—*(ux,vy
defines a continuous function which is a temperate distribution on R'\

A c-admissible space which satisfies conditions ((iv)-(vi)) beloŵ  is
called a dilation space.

(iv) E is dilation-invariant.
(v) For each xeR*, the mapping u—>ux of E (with its usual

topology) into E (with the weak topology σ(E, E')) is continuous.
(vi) For each u e E, the mapping x —> u* of i? into E is continuous

for the σ(E, Er) topology on E.
Dilation spaces form the background against which we shall

delineate our approximation problems. This is done in § 3. The
remainder of this section is devoted to the derivation of results about
c-admissible spaces which we shall need in what follows. Throughout
the rest of this paper, if E is a c-admissible space and ueE,veE',
then u o v will denote the temperate distribution generated by the
function x—*ζuXJvy (xeRn), as in condition (iii) of Definition 2.3. If
we consider u o v as a function, then u o v(x) = <(ux,vy = ζμ,vxy
(by Theorem 2.2 (a)).

THEOREM 2.4. (a) If E is a c-admissible space, then Er is
translation-invariant; moreover, for each b e Rn

u o vb = uh o v = (u o v)h (ueE,ve E') .

(b) If E is a dilation space, then E' is dilation-invariant; more-
over, for each ae R*

u o va~ι = ] j(a) I (ua o v)a~ι (ueE,ve E') .

Proof. We shall prove (b); a very similar argument will establish
(a).

Assume that E is a dilation space. Then the dilation invariance
of W follows at once from Theorem 2.2 (b). Moreover, Theorem 2.2 (b)
implies that if a e R\ then for all x e Rn

u o val~(x) = <nx, val~y

— \j(a) \-ua O v{a~ιx)

= \j(a)\-(uaov)a~\x)

which is the result we set out to establish.

THEOREM 2.5. Let E be a barrelled c-admissible space. Then
for each v e Ef, the mapping u —> u o v of E into S'(Rn) is continuous.
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Proof. In view of the fact that E is barrelled and S'(Rn) is
incomplete (Edwards [2], Proposition 8.10.7), the proof of Theorem
2.5 will be complete if we succeed in showing that the graph of the
mapping u-+u o v is closed in E x S'(Rn); see Edwards [2], Theorem
8.9.4 and the first remark following it.

Thus, assume that ueE,we S'(Rn) and (t&t ) is a net in E such
that lim; % = u in E and lim^ u{ o v — w in S'(Rn). We have to show
that u O v = w.

We first observe that condition (ii) in Definition 2.3 and Theorem
2.2 (a) together imply that the mapping x —>vx of Rn into Ef is con-
tinuous for the weak topology on E'. Therefore, if KaRn is compact,
then the set {vx: x e K] is a weakly compact, and hence weakly bounded,
subset of Er. Since E is barrelled, reference to Edwards [2], Theorem
7.1.1 (b), assures us that the set {vx:xeK} is equicontinuous. In
view of the remark on p. 504 (third paragraph) of Edwards [2], we
now infer that

lim Ui o v(x) = lim ζuiy vxy
i i

= u o v(x)

uniformly for xeK. The arbitrary nature of the compact set KaRn

leads us to the conclusion that lim^u iov = uov uniformly on compact
sets.

Now suppose that φeD(R%). If we keep in mind the remarks
made above, it is easy to see that

• o
r

U O V(φ) = I U '
J R

= lim 1 Ui O v(x)φ( — x)dx
% J R

= lim Ui O v(φ)
i

= W(φ)

since lim^ û  o v = it? in S'(Rn). Thus w o v = ^ and so the graph of
the mapping u—+uov is closed, as we wished to show.

In § 4, we shall make repeated use of the following result, which
is a simple consequence of Theorem 2.5.

THEOREM 2.6. Let E be a barrelled c-admissible space. Then
Ef is a module over S(Rn) with respect to convolution. Moreover, if
φeS(Rn), then

(u o v)*φ — u o (v*φ) for all ueE and all veE' .
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Proof. Suppose that v e E' and that φ e S(Rn). By Theorem 2.5,
the mapping ueE —>uθv e S'(Rn) —> (u o v)*φ(o) defines a continuous
linear functional on E. This mapping is therefore represented by an
element weE\ thus

(2.3) ζu, wy = (u o v)*φ(o) for all ueE .

Next we notice that if ψeS(Rn), then ψθv — ψ*v; this is easily
verified if we bear in mind relation (2.2). Therefore, for each ^ e S(Rn)
we have

= (f O

This entails that w = -y*<pasa temperate distribution; whence v#£> e £".
Since v e Eτ and φ e >S(i2%) where arbitrarily chosen, we infer that E'
is a module over S{Rn).

To complete the proof, notice that (2.3) can now be written as

(2.4) <u, v*g>y= (nθ v)*φ(o) for all ueE .

Using (2,4) and Theorem 2.4 (a), we deduce that for xeRn

)*φ(x) = (Uθv)*φx(θ)

= (UxOv)*φ(θ)

— Uθ (V*φ)(x)

which is the required identity.

We end this section with the following theorem, which is of some
interest. The convolution to which we refer is defined in Chevalley

THEOREM 2.7. Let E he a barrelled dilation space and suppose
that veE' is such that u*v is defined (in Chevalley9s sense) for each
ueE and is a temperate distribution on Rn. Then uθv = u*v for
each ueE.

Proof. If v has the stated property, then Theorem 3 (2) and
Theorem 2 (2) in Yoshinaga and Ogata [8] together imply that the
mapping u—+u*v of E into S'(Rn) is continuous. According to Theorem
2.5, the mapping u—+uθvoΐE into S'(Rn) is also continuous. Since
these two mappings coincide (because of (2.2)) of the dense subset
S(Rn) of E, they are identical.
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3, Statement of the problem* Let E be a dilation space and
suppose that ueE. We denote by T[u] the closed vector subspace
of E generated by the set of distributions {(ub)

a: a e R\ b e Rn}. In
this paper, we shall be concerned with the task of characterizing T[u]
in the case when the topology on E is barrelled.

REMARKS. (1) We make the observation that if E is a semi-
reflexive dilation space, then Er is a barrelled dilation space when
equipped with its strong topology β(E', E). The fact that Er is bar-
relled is stated in Theorem 8.4.3. in Edwards [2], If we remember
that S(Rn) is reflexive, then the continuity of the injections S(Rn) —>
Er —* S'{Rn) is seen to follow from Proposition 8.6.5. in Edwards [2];
this is true whether E is semireflexive or not. The semireflixivity of
E together with relation (2.1) ensure that S(Rn) is dense in E\ Thus
Ef is admissible. The verification of conditions (i)-(vi) in Definition 2.3
is trivial. We refer to Proposition 8.6.5, Edwards [2] and Theorem 2.2
to assure ourselves that (ii) and (v) hold; and the remaining conditions
follow from Theorem 2.2.

(2) Suppose that E is a dilation space, u e E; and that A is a
dense subset of i? and B is a dense subset of R'\ Then the closed
vector subspace of E generated by the set of distributions

{(ub)
a: aeA,beB}

coincides with T[u\. This is a consequence of the Hahn-Banach
theorem, in view of the separate continuity of the map (x, y) —> (uy)

x

of 22* x Rn into E for the weak topology on E.

4* A preliminary lemma* Consider any function φeD(Rn).
Then if xeR\ it is clear that φx"1eD(Ri). If u is any distribution
on Rn, we define a function u V φ on 22* by

u V φ(x) — u*φx~\o) for all x e R* .

Lemma 3.1 in Harasymiv [4] states that u V φ e C°°(iί*); and it is
easily shown by induction that for each multi-index a

(4.1) Ό\u Vφ) = (VJa) ΣiCβ uV UβDβψ)

where the cβ are constants depending only on a and β.
We shall prove the following result.

LEMMA 4.1. Let E be a barrelled dilation space. Suppose that
ueE,veE',φe D(R*), ψ e D(R*) and η e S(Rn). Then
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(4.2)

Proof. Let ueE. Then we can extract a net (k}) form S(Rn)
such that

(4.3) lim kλ — u in E .
.

We first show that if φeD(R*) and ψeD(R*), then

(4.4) lim £;. V ^-f = nV φ-ψ in

To do this, we argue as follows. Let a be any multi-index. The
Leibnitz formula for differentiation shows that Da[{kλ — u) V ψ ψ] is
a sum of terms of the form aβ Dβ[(kλ — u) \/ φ] Da~βΨ where aβ are
constants depending only on a and β and the summation is carried
out over all multi-indices β ^ a. Therefore the validity of (4.4) will
be established if we show that for each multi-index a

(4.5) lim Da[{kλ — u) V φ] = o uniformly on supp ψ .

Now, if a is any multi-index, then by relation (4.1)

Da[(kλ - β ) V φ ]

where the cβ are constants depending only on a and β. Since j is;
bounded away from zero on supp ψ, it will suffice, in order to establish.
(4.5), to show that for each function ηeD(R$).

(4.6) lim (ίcλ — u) V V — 0 uniformly on compact sets .

Thus, suppose that η e D(R*) and let K be a compact subset of
RK By virtue of the fact that the mapping x—*ήx of R* into E' is
continuous for the weak topology on E' (by Definition 2.3 and Theorem
2.2 (b)), the set {r)x:xeK} is weakly compact, and therefore weakly
bounded in E\ Since E is barrelled, this entails that {f}x: x e K] is.
an equicontinuous subset of Er (Edwards [2], Theorem 7.1.1 (b)).
Secondly, we notice that if A — sup {| l/j(x) \:xe K} (observe that
A < oo) then for each x e K we have

I (kλ -u)V η(x) I = I Φx ~ ϋ)*Ύ)*-\o) I
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In view of the above facts and relation (4.3), we infer (Edwards [2],
p. 504, third paragraph) that

lim (ίcλ — u) V V(χ) = 0 uniformly for x e K .

Since η and K were arbitrarily chosen, we have established (4.6),
whence (4.4) follows.

Using (4.4), we see that if veE', then for each ψeD(R^) and
each Ύ] e S(Rn) we have

u V φ V'
(4.7)

— V' ̂ (^ V φ Ψ)

= Umή.v(kλVφ Ψ)

= lim rj * v(kλ V φ Ψ)

Now, if xeRn, then

kλV φ-Ψ(x) =\ exp (-2πixχ)ίcλ V φ(χ)Ψ(X)dχ

= \ exp(-2πίxl)ir(χ){\ RtfM-

= ( exp (- 2πίxχ)ψ(χ){ \ k ίγJM -ξ) \ j(χ) \ dζldχ

(4.8) = ( φ(-ζ){\ exv(-2πixχ)-\j(χ)\ ir(χ)-M(χ)dχ\dζ

= ί ψ(-y){\ί\Ψ*K(χ)}dy

= ( ^(-^{lίίί*^'"^)-1/13(y) \}dy

= \ {φ(y)/\j(y) I) \ί\f*kr\%)dy .
jRn

Combining relations (4.7) and (4.8), we see that

V φ-V*v(ψ) = lim 1 39*v(x)[ίcλ V Φ |](-α;)da?u

9 ) r
= lim

λ jRn

— l i m \ φ(y) kλ*(\j

\}\j\ψ*y* kf~ι

λ JRn
v)y(o)dy

the last equality being a consequence of Theorem 2.4 (b) and relation
(2.2), since £" is a module over S(iτ!π) (by Theorem 2.6). Now, suppcp
is compact. Therefore, since for each w e Ef the mapping x —> wx of
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R* into Er is continuous for the weak topology on Ef (by Theorem
2.2 (b) and Definition 2.3), the set {(\j \ ψ*η*v)y: y e supp^} is weakly
compact and hence weakly bounded in E'. This set is therefore an
equicontinuous subset of Er (Edwards [2], Theorem 7.1.1 (b)) and so
(by the remark in Edwards [2], p. 504, third paragraph, and relation
(2.1))

\\mkλ*(\j\ ψ*η*v)v{o) = li

uniformly for y esuppφ. Using this in (4.9), we deduce that

= \ {φ(y)l\3(y)\)v<y~ι O (\ί\Ψ*η*v)(o)dy

= \ {φ(y)ί\j(y)\}-\J\ Ψ*v*(uy~1 ov)(o)dy

the last equality following from Theorem 2.6. This completes the
proof of Lemma 4.1.

COROLLARY. Let E be a barrelled dilation space. Suppose that
ueE and veE' are such that uaO v = 0 for all aei2*. Then for
each φeD(R*) and each ηe S(Rn), ύ V φ y v = 0 on RK

5* The main result* The result in the preceding section enables
us to prove the following theorem.

THEOREM 5.1. Let E be a barrelled dilation space with the follow-
ing property:

( i ) If veE' and supp v ft R* = 0 , then v = 0.
Then for each ueE such that

(ii) suppβ Π R* Φ 0
we have T[u] = E.

Proof. We first notice that if u e E is such that (ii) holds, then

since supp ua = a. supp u, we have

(5.1) JR# c U {supp vϊ: a e i?*} .

Now let v e Έ' be such that

(5.2) φihγ, v> = 0 for all aeR* and all beRn .
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We shall show that (5.2) implies that supp v Π R* = 0 . Condition (ii)
in the statement of Theorem 5.1 will then entail that v = 0; and an
application of the Hahn-Banach theorem will complete the proof.

Thus, suppose that χeRK By virtue of (5.1), there exists ceR*
such that χ e supp u\ Choose a relatively compact neighbourhood W
of χ such that WczR*, and a function η e S(Rn) such that fj = 1 on
W. Next we notice that since χ e supp u% there exists φ e D(W) such
that uc{φ) Φ 0; that is uc V <Px~\l) ^ 0. Now u°XJ φ is indefinitely
differentiate on i2*; whence (because of (5.3)) we infer that ύc V φ
is bounded away from zero on some neighborhood 7 c W of χ. There-
fore there exists a function feC°°(R*) such that / %c V <£> — 1 on V.

We can now show that supp v Π i?* = 0 if veE' satisfies (5.2).
It is immediate that if (5.2) holds then ua O v = 0 for all α e i2#. In
view of the choice of the functions rj and / above, we have for each
ψeD(V)

) (f ^ )

- 0

since ^c V φ^ η v = 0 on i2#, by the corollary to Lemma 4.1. Hence
we infer that v = 0 on F, and so χ g supp v. Since Z G JB* was arbi-
trarily chosen, it follows that supp v Π R* = 0 .

Theorem 5.1 has the following corollary.

THEOREM 5.2. Let Ebe a barrelled dilation space with the follow-
ing properties:

( i ) u*φ eC0(Rn) for all ueE and all φeD(Rn).
(ii) v*φeC0(Rn) for all veEf and all φeD(Rn).

Then for each u e E, u Φ 0, it is true that T[u] = E.

Proof. Suppose that v e Ef and that supp v Π R* = 0 . Then
supp φ v Γ\ R* = 0 for each φ e D(Rn). In view of condition (ii) above
we may argue as in the proof of Theorem 4.2 in Edwards [3] and
deduce that φ*v = 0 for all φeD(Rn). It now follows that v = 0
and so condition (i) of Theorem 5.1 is satisfied. Similarly, condition
(i) of Theorem 5.2 entails that supp u Π R* Φ 0 for each nonzero ue E.
Now apply Theorem 5.1.

The spaces C0(Rn) (with the uniform norm topology), Lb(Rn),
1 ^ P < °° (with the norm topology), DLp and Df

Lp, 1 <; p < co (see
Schwartz [7]) are some obvious examples of barrelled dilation spaces
which satisfy conditions (i) and (ii) in Theorem 5.2. Theorem 1 in
Harasymiv [4] is a particular case of Theorem 5.2 above.
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