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THE GEOMETRY OF RELATIVISTIC n PARTICLE
INTERACTIONS

RICHARD ARENS AND DONALD G. BABBITT

In this paper we investigate several mathematical versions
of what might be understood by the term "relativistic n particle
interactions."

There has been substantial interest in such interactions in recent
years. (See for example [4, 5, 6, 8, 9].)

The present treatment involves the idea that for each observer
(more concretely, each space-like hyperplane in space-time) there is a
separate phase space. There is no natural geometric way to identify
these phase spaces with each other. Once this situation is clarified,
the central problem emerges of organizing (in the sense of categori-
cal algebra) the various correspondences which do arise between phase
spaces. It turns out that there are really two conceptually distinct
classes of such correspondences, the kinematic and the dynamic.

We feel that the interplay of these concepts is fully understood
only when the coordinate-free language is used. It might be remarked
that this point of view led us to discover a class of nontrivial relativ-
istically invariant w-particle interaction.1

As remarked already, we present several mathematical versions of
of what might be understood by the term 'n particle interaction'.
One motive for this is to enable us to define what is meant by the
relativistic invariance of an interaction, rather than limit the discus-
sion to such invariant interactions ab initio.

Presuming that some of these versions do reflect the ideas underly-
ing various discussions in the literature, another motive is to show
to what extent one can pass from one to the other.

The most obvious version of an ^-particle interaction is that in
which an interaction is characterized by the class of ?i-tuples of world
lines to which it gives rise.

The second version places its emphasis on the dynamic correspon-
dence between the phase spaces of all pairs of Lorentz observers (more
precisely, space-like hyperplanes) to which the interaction gives rise.
In this case there arises a family of transformations U(g), g ranging
over the Poincare group, in the phase space of any one observer. It
turns out that relativistic invariance is characterized by the functional
equation

1 These of course cannot be described in terms of usual Hamiltonian formalism
[4, 9].
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U{gg') = U(g)U(g') .

In any case, an interaction in the second sense gives rise to ^-tuples
of world lines and in fact to an interaction in the first sense (and
conversely). In variance, if any, is passed from one to the other.

In the third version we concentrate on what takes place in the
phase space of one observer, and discover conditions ensuring that this
local (in a sense) action can be extended to produce the type of dy-
namic correspondence between all the phase spaces as required by the
second version. This third version, in as much as it involves only
one (arbitrarily chosen!) phase space, is susceptible of an infinitesimaliza-
tion in which actions of groups are replaced by actions of Lie algebras,
and so forth.

In these remarks, 'phase space' is not limited to its usual meaning.
When so limited, and the relevant transformations are contact trans-
formations, we have the special case of Hamiltonian interactions. When
coordinates are introduced, the zero interaction theorem of Currie,
Jordan and Sudarshan as well as Leutwyler fits in here and says that
if the interaction is invariant, then the world lines are straight lines.

2* Interactions in terms of world lines* The purpose of this
section is to define the concept of relativistic interaction (2.7 below).
This requires recalling several well-known definitions, propositions, and
lemmas.

Some of the latter will be proved, mainly in order to illustrate
the manner in which the concepts defined do reflect the familiar intui-
tive notions.

An affine Lorentzian space ^/£, more fully {^/ί', ^£', (,), S, C+} is
a system consisting of a point set ^ (the space time manifold), a
four-dimensional real vector space ^ on which there is defined a
bilinear form (,) of signature 1, 3 and a map2

(2.0.1) S: ^f x ^ T > ^

such that for p, q, and r in ^/ί

(2.0.2) S(p, g) + S(q, r) = S(p, r) .

This requirement is easily remembered if we denote s(p, q) by p — q,
as we often will. We will sometimes need to mention the maps
Sq: ^ —* Λ? each of which is defined by Sq(p) = P ~ q. In particular
we require that for each q in ^f, Sg is a one-to-one mapping of ^/έ
onto ^ (i.e., a bijection). C is the set of ("time-like") vectors in

described by {v:ve ^ ' , (v, v) > 0}. The specification of the affine

2 Thus our treatment is that of Eberlein [10, p. 425, Example 2].
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Lorentz space is completed by selecting one of the two components
of C which is denoted by C+.

Now ^/έ has an obvious manifold structure, and any one of the
Sq carries this structure back to ^/f giving ^// a manifold structure
(which is the same for all q). The collection of vectors in ^ (the
tangent bundle) can be naturally identified with ^/S x ^ ^ , and we
shall refer to the latter as the tangent bundle of ^//.

DEFINITION 2.1. A space-like hyperplane in ^// is a subset of
^/? of the form {p: p e ^/S, (p — pQ, t0) = 0} for some fixed p0, tQ where
Vo e Λ? and tQ e ^t where (t0, t0) = 1.

We denote such a set by σ(pύ, tQ), but confine this notation only
to the case in which tQ e C+. Thus σ(pu ίx) coincides with p(p2, t2)
precisely when tx = t2 and pγeσ(p2, t2) or p2eσ(ply tj.

We may speak of σ(p0, t0) as the space-like hyperplane passing
through p0 and perpendicular to t0. The totality of all these σ(p0, t0)
we will denote by S^.

DEFINITION 2.2. Let W be a one-dimensional ^7°° submanifold of
^/f. Then W shall be called time-like if every nonzero vector tangent
to W is time-like. In symbols, let i be the inclusion map of W into
^/^. Then (di)p maps the tangent space Wp of W at p. We have
identified ^ v with ^ί and hence the definition requires that

(di)p(Wp)c:{0}\jC

for each p on W. We call W a world line if

(2.2.1) W is a time-like submanifold

and

(2.2.2) W intersects each σ belonging to S^ in exactly one point3.

It is convenient to observe the following characterization. W is
a world line if 2.2.1 holds and also

3 A characterization (which we will not prove because we will not need it) of
world lines is the following. A world line W is a connected time-like submanifold
of -# which is complete in the Riemannian structure induced on W, and conversely.
The structure here mentioned is the Lorentz structure inherited by W from ^
which is, however, Riemannian (i.e., positive definite) because W is time-like. In this
paper, 'world line' has not extra dynamical signification it has in [2] and [3],
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(2.2.3) There is a t0 in C+ such that W meets in exactly one
point all those space-like hyper planes perpendicular to t0.

Of course 2.2.2 implies 2.2.3.

Now we will consider the Riemannian structure of space-like hyper-
planes. Each σ m 6^ is in fact an affine Euclidean space, a concept
defined just as the affine Lorentz space was defined above, except that

(a) the inner product has to be positive definite and
(b) C is connected and hence may be ignored in the definition,

To fix the notation, let σ e £f be of the form σ(p, f) where t is a unit
vector in C+ as agreed above. Let a be the set

{w.ue^f, (u, t) = 0} .

For u, υ in a define (u, v)σ = — (w, v). Using the original S of ^/ί
(restricted to σ without change of notation) we arrive at {σ, <7, (,), S}
which evidently satisfies the definition of affine Euclidean space.

The vector space a is naturally isomorphic to the tangent space
of σ at each point, whence arises a natural identification of σ x σ
with the tangent bundle of σ. Let B(σ) denote the open unit ball of
a1, that is the class of vectors of length less than 1. The unit ball
bundle of σ can and shall be identified with σ x B(σ).

PROPOSITION 2.3. Let W be world line intersecting σ in the point
p. Then there is exactly one vector which

(2.3.1) is tangent to W at p

(2.3.2) is of the form vλ]

o + t where σ = σ(p, t) and vj ea.

(2.3.3) Moreover, vΛ

σ e B(σ) .

Proof. Select any nonzero tangent w to W at p. Then w has
the form Xt + v, where v e σ, because the vector space generated by
σ and t is four-dimensional. Now λ Φ 0 because w is time-like. Hence
we may select w such that w = t + vj. This last vector is evidently
unique for otherwise we would have a nonzero tangent to W at p
lying in a. To show (2.3.3), we observe that, since w is time-like
(writing v for vj),

0 < (ii7, w) = (t + υ,t + v) = (t, t) + 2(ί, ϋ) + (ι;, υ)

= 1 + (ϋ, υ) = 1 - (ι;, Ό)β

whence (r, v)a < 1, as asserted.
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We emphasize: vj is not tangent to W, nor does it depend only
on W and p. We call it the

(2.3.4) velocity of W relative to σ .

As its interpretation will require, the magnitude (vσ

v, vjyj2 is always
less than 1.

We come now to the central notion of a relativistic symmetry
(of ^/S). To begin with, let ^2^ be the component of the identity of
the Lie group of automorphisms of {^£', (,)}. J*?Q is, of course, the
restricted Lorentz group. The transformations g of vf̂  act in ^t,
not ./f.

DEFINITION 2.4. Let g be a one-to-one mapping of ^ yf onto itself
for which there exists a g in >i, such that

(2.4.1) S(g(p), g(q)) = g(S(p, q)) for all p, q in ^ .

Then g shall be called a relativistic symmetry.
Given (/, there is evidently only one g such that (2.4.1) holds. We

denote it by γ(g). We denote the group of relativistic symmetries by
S/\ the restricted Poincare group.

PROPOSITION 2.4.2. The map γι & —> 7..^0 is a komomorphism
whose image is all of . 2^Q. The kernel J/"~ (the "translations") of ψ
is the image of ^ under a homomorphism

φ: ^/S > ώ/ 5

which is one-to-one and satisfies (in terms of 2.01)

(2.4.3) Sp(φ(u)(q)) - Sp(q) + u

for each ue^^ and every p, q in ,,//.

Proof. From (2.4.1) one sees at once that ^ is a homomorphism.
Moreover, given g, select q in _Λ and use the formula

g(p) = S?(Sq(p))

which defines a g e .ζ? for which ψ(g) = g (and incidentally, for which
g(q) = q). Thus ψ(.^) = ^ 0 .

We define p̂ by letting φ(u)(q) = Sql(u). Denote the right side
by r, so £ί — Sg(r). Interchanging p and r in (2.01) gives us Sq(r) =
Sg(r) + 5,(g) or S,(r) - Sp(q) + ^. This proves (2.4.3).

Denote φ(u)(q) by qf and ^(α)(?1) by r'. Wτrite down Equation
(2.4.3) for q and for r and subtract. This yields
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(2.4.4) Sp(ί') - S^r') - SM - Sp(r) .

From (2.0.1) we see that the right side is S(q, p). A similar thing is
true for the left side, whence (2.4.1) holds (with p, q replaced by q, r)
and g being the identity. Thus φ(u) lies in the kernel of ψ.

On the other hand suppose g does lie in that kernel. Then we
obtain (2.4.4) at once where q' = g(q) and rf — g(r). From this we
obtain (2.4.3) with u = Sp(r') — Sp(r), and conclude that g = φ(u).

Finally, (2.4.3) shows that φ is one-to-one.
Having thus established (2.4.2) we may identify ^ with the group

φ(*^f). In other words we identify each "translation" in ^€ with a
vector in the vector space ^0 in which the Lorentz group is defined.

Return to a space-like section σ = σ(p, t) where, of course, t is a
unit vector of ^£'. Evidently {τt: — oo < r < oo} is a 1-parameter
subgroup of ^ and thus of &. It shall be called the flow of time
perpendicular to a. It enables us to describe how an element g of
& transforms one space-like section into another.

LEMMA 2.5. Let σ be a space-like section, σ = σ(p, f). Then
g(σ) = σ(g(p), ψ(g)t), for each g in &>.

Proof. Suppose q € σ(p, t). Then S(q, p) 1 t. Thus

, p) ± ψ(g)t .

By (2.4.1), S(g(q),g(p)) 1 ψ(g)t. This says that g(q)eσ(g(p), ψ(g)t).
This shows one inclution, and the reversal of this argument shows
the other, and completes the proof of 2.5.

PROPOSITION 2.5.1. The action of & on Sf given in 2.5 is
transitive.

Proof. To achieve g(σ(p, t)) = σ(q, u) we first select gx so that
ψ(gt)t = u. This gι exists because «5f0 acts transitively on the unit
vectors in C+. Thus gι(σ(pJ t)) = σ(ply u). Now let g2 be the translation
(by) S(q9 pj. g = g2gi will do.

This proof calls attention to the subgroup of & of those g such
that g(σ) — σ. (This does not require that each point of σ be fixed.)
This group, to be called ifσ is readily identified with the proper
Euclidean group of the Euclidean space {σ, σ, (,)σ, S} and has thus the
structure of a Lie group. Using any desired space-like section σ, form
the ^ ^ manifold of left cosets ^/g" σ . This is in natural one-to-one
correspondence with £f because

(1) g7, is the subgroup of stability of σ and
( 2 ) & acts transitively on S^.
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Thus Sf can be given a C°° structure compatible with the action of
&. This structure is actually independent of the choice of σ.

We turn now to the action of & on world lines.

PROPOSITION 2.5.2. Let W be a world line and let g belong to
£P. Then g(W) is also a world line.

Proof. g(W) is of course meant to designate the set of points
g(p),p£ W. Now g(W) is surely a 1-dimensional submanifold. Any
tangent v of g(W) is the image under ijr(g) of a tangent u of W.
Now ueC and ψ(g) e £/ y

0 so v eC. Finally, how often does g(W) meet
<7? Evidently as often as W meets g~ι(σ), which is, once. Thus 2.5.2
is proved.

The central concept of this paper can now be defined. Let W"
be the class of all world lines. Then W~ x x W" (the w-fold
Cartesian product, also denoted by W'n) is the class of ordered n-
tuples of world lines. Suppose that ^ is a subset of W 'n

(2.6.0) JF c -//'"« = W" x x CW

having the following property: given σ e S^ and n points of σ:

(2.6.1) (p19pi9 . . . , p j e σ

and also n vectors length less than 1:

(2.6.2) (i;,, . . . , p , ) e B ( ( ? r

then there is exactly one element (Wu •••, Wn) in ^ such that, for
each i

(2.6.3) the intersection of Wt with σ is p{ and (see 2.3.4)

(2.6.4) the velocity of W{ relative to σ is Vi .

Then we call ^ a

(2.7) second-order n particle relativistic interaction .

In this paper we abbreviate this to interaction.

There is nothing in this definition that requires ^ to be relativ-
istically invariant. Indeed, we will call

(2.8) relativistically invariant

if, whenever (Wl9 , Wn) e J" then (g( TΓJ, , flr( Wn)) e J" for every
g e ^ .

Examples of such invariant interactions easy to make.
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Let us call a world line W a free world line if it is an ordinary
straight line ^/S (indefinitely extended in both directions) with a
tangent (or direction) vector belonging to C (i.e., which is time-like).

2.9. The free interaction ^,n shall consist of all ^-tuples
, •••, Wn) where each W, b is a free world line.
This is evidently an invariant interaction.
The Definition 2.7 obviously does allow n = 1, although then the

word "interaction" is misleading. However, an invariant relativistic
one particle "interaction" has to be ^Γo>1 that is to say, free.

3* Interactions in terms of functors* The following observation
about an interaction J? forms the basis for a more general concept,
to which the present section is devoted.

Let σ be a space-like section (i.e., σeS^), and let

Bn(σ) = σn x B(σ)n .

Then each point of Bn(σ) is a pair ((2.6.1), (2.6.2)) which determines
a (Wu , Wn) from ^ / \ Now let σL be another element of S?. The
(Wlf ' ,Wn) just found determines a point of Bn(σ1). Thus ^
determines a map from Bn(σ) to Bn(σ1). This map embodies the dyna-
mics defined by ^f. We have to fill in more structural elements into
this picture in order to be able to define relativistic invariance in
such terms, namely the way in which £?, quite apart from ^ ,
also defines a map from Bn(σ) to Bn{σ^).

To do this abstractly and conveniently, it seems desirable to use
the terms, although hardly any of the theorems, of homological algebra
in particular the concepts of categories and functors. The discussion
of these in any introductory text (cf. [10]) suffices as a basis for our
presentation.

In fact, we will consider two categories SίΓ and £^. The class
of objects in each shall be the set £f. For :3Γ, the class Horn (σ1? σ2)
shall be the set of elements g of .ζy* for which σ2 = g(σ^) (see 2.5).
The operation from Horn (σ2, σs) x Horn (σlf σ2) which the definition of
category requires shall be just the multiplication in &\ (h, g) to hog
or hg. Note that in particular, Horn (σ, σ) = C£Ό. For ^ , Horn (σlf σ2)
shall consist of the single ordered pair (σu σ2) and the multiplication
is to be defined by (σ2, σ3) o (σl9 σ2) = (σ17 σ3).

3^ and ϋ ^ are categories.4 They shall be called the kinematic
and the dynamic categories, respectively.

Let ,../S«/ denote the category of ^ ^ manifolds and their ^°°

4 In fact, each is isomorphic to concrete category [10, p. 64]. One takes ί%(σ) =
for 5f and f£{σ) = {σ} for j ^ , and morphisms as above.
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mappings.

DEFINITION 3.1. A second order, n particle, S^-interaction is a
pair of functors /c, δ from SίΓ and ϋ^, respectively, to ^-/ίί*/''satisfying
the conditions 3.1.1-3.1.6.

3.1.1. For each σ e S^, tc(σ) is a (^' °° fibre space over σn = σ x « σ,
and n^l.

One should think of the points of κ(σ) as being the states of the
n particle system in question, for the observer associated with σ.

Let πσ denote the projection of κ(σ) on σn. Note that for g e ,ζp
one has g:σ-+g(σ) and this induces a map g x ••• x g: σn —>g(σ)n =
g(σ) x x g(σ).

3.1.2. For each σ and g e 3P there shall he commutativity of
the diagram

tc(σ) > fc(g(σ))

g{σγ .
(3.1.3) For each cr , δ(σ) = κ(σ) .

Now let a G φ ) , and ge&. Then o(σ, ^~"1(σ))(a;) is an element
of tfOΓ"1^)) whence

(3.1.3.1) C/σ(̂ )(α;) - ιc(g)δ(σ, g

is an element of fc(σ) again. Thus for fixed σ the map (3.1.3.1) defines
a map5

(3.1.3.2) Uσ: .9' x ιc(σ) > ιc(σ) .

Concerning these constructions we impose a regularity condition.

3.1.4. Uσ shall be a ^°° map for each σ e ,9*'.

Whenever we have a product space Aγ x x i , we denote the
Cartesian projection on the i-th factor by πj. The symbol πj will be
used without further suffixes whether the product in question is σn or
g(σ)», etc.

We formulate a world line condition.

3.1.5. Suppose σ and σ' belong to ,9* and that they intersect.
Suppose π3(πσ(x)) lies in σf for some j(l ^ j ^ n) and x e /c(σ). Then

5 See 4.4.
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πj(πσ(x)) shall coincide with πj(πσ,(δ(σ, σ')(x)).
Finally, we impose a condition that the system shall be describable

in terms of second order equations for each Lorentz frame.
3.1.6. Let σ = σ(p, t) be any element of £^, and let x e κ(σ).

For each real τ define (using (3.1.3.1) with g — τt)

As τ varies, πj(φ(x, τ)) describes a path in σ whose position for τ = 0
is πj(πσ(x)) and whose velocity for τ — 0,

(3.1.6.1) -£ϊ[π''Mx> τ))]τ=°

is an element vj of a. Define

Φσ: fc(σ) >σn x σn ,

by

Φσ(x) = (π\πa(

We require Φσ to be a ^°° homeomorphism tc(σ) onto σn xB(σn) .
Note that 3.1.6 insures that dim fc(σ) is 6n.

Any functor tz satisfying 3.1.1 and 3.1.2 will be called a kinematic
functor. A pair Λ:, δ satisfying 3.1.1-3.1.6 shall be called the kine-
matic and dynamic (respectively) functors of the system which they
define. The simple structure of the category & implies that
(3.1.7) there is exactly one dynamic map δ(σ, σ') from κ(σ) to

(3.1.8) d(σ, σ) = 1 {the identity map) ,

and

(3.1.9) δ(σlf σz) = δ(σ2, σ3) o δ(σu σ3) .

Of these, (3.1.7) is the principle of determinacy.

Turning to kinematic functors we remark that these involve purely
geometric mappings. To anyone acquainted with fiber bundles, the
mappings κ{g) for g e & will be automatically suggested when the
objects tc(σ) have been identified. The following example support this.

3.2. The standard kinematic functor ιcs. For each σ e 6^,
fcs(σ) = σn x B(σ)n. F o r ge^ l e t tcs(g) b e t h e m a p t h a t s e n d s

( P i , - - - , P n > v l y •• , ι ? J
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to

(ffPl, , 9Pn), Ψ(9)Vl, '", Ψ(Φn

This functor corresponds to the conception that a state is a list
of n points and n velocities, the speeds being less than 1. If on the
other hand we conceive a state to be a list of n points and n momenta
(usually called covectors) we come to the next example. It involves
the dual linear space σ* of the vector space a.

3.3. The phase space functor tcs*. For each σ e 6^, κs*{σ) is
σn x (σ*)n while for geέ?,

where φ(g)*:σ* -+σ* is the transpose of ψ(g):σ ~-+σ.
The notion of Hamiltonian ^-interaction which we will now define

is based on the second type of kinematics. We must recall that ιcs*(σ),
being the cotangent bundle of σn has an invariantly defined symplectic
structure giving rise to (or 'consisting of7, if preferred) a Poisson
bracket {,}σ̂ . We call contact transformation any W°° map between
two contangent bundles which preserves all bracket relations / = {fly f2}.
In these terms, we will say that an ^-interaction fc, δ is a

(3.4) Hamiltonian ^-interaction

only if K — κs*, while δ(σ, σr) is a contact transformation for each pair
σ, σf of members of £f. (See also 3.9 below.)

We return now to the remarks made at the beginning of this
section, which were intended to motivate the concept of ^-interaction.
We will now show that an ^-interaction does have associated with
it an interaction of type (2.7). Ultimately we establish also the con-
verse namely in the presence of certain mild regularity conditions, an
interaction of type (2.7) really defines an ^-interaction.

T H E O R E M 3.5. Let (/r, b) he an SS-interaction. Select σ e y and

an x from k(σ). Say σ = (p, t). For - c o < τ < co let στ be the

parallel translate (zt)(σ) of σ, and define wt, * ,wn by

wd(x, τ) - πs{πaβ(σ, στ){x))) .

For a fixed x let Wό{x) be the set of all Wj{x, τ), τ eR. Then

under the manifold structure defined by the
(3o5.1)

parameter τ, W5{x) is a world line in ^f ,
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the collection of n tuples (W^x), •••, Wn(x))

(3.5.2) for all x e fc(σ) is an interaction

(£, d), which depends only on tc, o .

Proof. The first thing to observe is that wd(x, τ) is τt[πj(φ(x, τ))]
where φ is defined in 3.1.6 in terms of (3.1.3.2). By the regularity
condition 3.1.4 we are assured that w5{x, τ) depends in a ^°° way on
r, whence we may consider the vector dw3-(x, τ)/dτ. Its component per-
pendicular to σ is tE. Thus the vector itself is never zero, which ensures
that Wj(x) is a submanifold of ^-/f.

We now examine the vector more closely to see that it is timelike.
Using (3.1.9) one can easily verify that

wd(x, τ + ε) — Wj(x, ε)

where x = δ(σ, στ)x and the x3- is just like w5 except that σ has been
replaced by σT. Therefore

Wj(x, τ + ε) = et[n*cp(x, ε)] .

At this point it is useful to remain aware of the fact εt[πj(φ(x, ε)] is
the displacement of πJ(φ(x, ε), a point of σr, by a pure translation of
magnitude ε in the direction t which is perpendicular to σ~. There-
fore the vector

Wj(x, τ + ε)
dε

is a sum t + vj where t is perpendicular to a. and vj lies in σz and
is the vector (3.1.6.1) with σ replaced by σ~. Since 3.1.6 applies to
σ7, we must have vj inside the unit ball B(σ7). Now t is a time-like
unit vector, while v3 is perpendicular to it and of length less than 1.
Hence the sum is time-like. An appeal to (2.2.3) now completes the
proof of (3.5.1).

Let W(σ) be the class of all n tuples (W^x), •••, Wn(x)) obtain-
able by letting x range over tc(σ). We will next show that

(3.5.3) W(σ) - W(σ')

whenever σ, σ' e S^. We can be more explicit and show that

(3.5.4) Wj(#, T) = wd{δ(σ, σr)x, z5) for some τL, , τn

whenever τ, σ, σr and x e κ(σ) are given.

Select a translate σ5 — σί of σ9 which goes through the point

Wj(x, τ) = πj(πσtδ(σ, στ)x) .
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By applying the world line condition to σz and σά we obtain

wd(x, τ) = π''(πσ.δ(σr, σd)δ(σ, στ)x)

= πj{πσ.δ{σ, σd)x)

= πj(πσ.δ(σ', σd)δ(σ9 σf)x)

= wό{δ{σ, σ')x, τά) ,

which is (3.5.4). Thus (3.5.3) is also established.
Accordingly we may denote W(σ) by ^(K, δ). It remains to show

that it is an interaction (see 2.7). To do so, consider a σeS^. We
use (3.5.3) in noting that Jf{κ, δ) is W(σ) for that σ. The initial
conditions (2.6.1), (2.6.2) are mapped, via the inverse of the map Φσ

of 3.1.6 into a point x of ιc(σ). As will be expected, (W^x), , Wn(x))
is a set of world lines satisfying (2.6.3), (2.6.4). This can be readily
verified from (3.1.6.1) and the observation already used before, that
w3-(x, τ) — τt[πjφ(x, τ)]. Thus this x provides a set of world lines of
the desired sort. No other element y of κ(σ) will do because then
the initial conditions Φo{y) would be different.

This concludes the proof of 3.5.
Now we consider the converse. Suppose ^f is an interaction. We

are going to make an ^-interaction out of ^ . For the kinematic
functor we choose (3.2), so that fc(σ) is σn x B(o)n. For the dynamic
functor δ, we proceed as follows. Suppose σ and σ' are elements of
Sf. Suppose

(3.5.5) x = (pίy '",pnjυlf •• , ι ;J

and

(3.5.6) α?' = (pl, •• ,p;,tf, •••,*;)

are elements of fc(σ) and tc(σr) respectively. We will say that they
are δj-(σ, σr)-related if there is an element (Wu •••, Wn) in J? such
that (2.6.3) and (2.6.4) hold for σ as well as for σ\ From (2.7) it
follows that δjr(σ, σ') is a one-to-one mapping of κ(σ) onto fc(σ'). More-
over, (3.1.7)-(3.1.9) hold. Even (3.1.6) holds. However, the differenti-
ability requirements on ^f are not nearly enough to ensure such
global properties as (3.1.4), or even to ensure that δ(σ, σ') is a ^°°
map. Accordingly we make a definition.

3.6. An interaction ^J? will be called regular only if

ύj (σ, σ') is a ^°° homeomorphism for each pair
(3.6.1)

o", σ' of elements of i/%

and

(3.6.2) (κs, δj) satisfies (3.1.4) .
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THEOREM 3.7. Let ^ he a regular interaction. Then (κs, δ^) is
an S^-interaction.

Proof. (3.1.1), (3.1.2) hold for κs. (3.1.3) holds because of (3.6.1)
and (3.1.4) because of (3.6.2). (3.1.6) is obvious. There remains only
(3.1.5), whose description as the world line condition seems to make
it obvious. πj(πσ(x)) is where the j-ih curve in some (Wly •••, Wn) in
^ hits σ. πj{πa,δ{σ, σr)x) is where it hits σ'. Thus (3.1.5) is indeed
obvious.

PROPOSITION 3.8. Let ^ be a regular interaction. Form (κs,
Then the interaction ^{its, δj) {defined in 3.5) coincides with

The proof requires no techniques not already exhibited and hence
may be omitted.

We come to a final definition for this section, whose natural place
was between 3.2 and 3.4 but which has been postponed in order that
we can use some notation needed in any case. In an interaction (tc, δ)
in which /c — fcs and therefore tc(σ) is the space of positions and velo-
cities, one would expect that if we start with a point (say (3.5.5) for
example) that the velocity of the j-th corresponding path (3.1.6.1)
should be vjm Of course this is not implied in 'standard kinematic
functor' as the definition does not involve any ^-interaction. Con-
sequently the following satisfies a real need, and forms a natural com-
pletion of the three concepts 3.2, 3.3, 3.4.

DEFINITION 3.9. Let (/c, δ) be an ^-interaction in which K is κs

(see 3.2) and for which Φσ (in condition (3.1.6.1)) is the identity map
for each σ. Then we may call {tc, δ) a standard ^-interaction.

4* Invariant interactions*

DEFINITION 4.1. An interaction ^ will be called invariant (more
fully, Lorentz invariant, relativistically invariant, or perhaps better
Poincare invariant) only if for each g in & and for (Wu , Wn) e ^
one has also (gW19 ~-,gWn)e^ (cf. [2, p. 1346]).

What property of {fcs, δj) is the counterpart of 4.1?

THEOREM 4.2. An interaction J? is invariant if and only if
for all σ, σf in <y and g in & the following diagram is commutative-.

Ks{σ) _ Λ ± i f ! _ Ks{σ>)
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Proof. Assume that ^JF is invariant. Assume that x in fcs(σ) and
xr in fcs(σ') are δj- related. This means that the statements made about
(3.5.5), (3.5.6) hold in the present context. Now (gWu , gWn) e
so that

(4.2.1) (gfa), , g(pn), f

and

(4.2.2) (g(p[), . . . , g(p'n), γ

are also o^ related. The commutativity of the diagram becomes
apparent when it is recognized from 3.2, that (4.2.1) is /cs(g)x and
(4.2.2) is κs(g)x'.

The converse argument, from the commutativity of the diagram
deducing the invariance of ^ is an immediate consequence of 3.8 and
Proposition 4.4 below. Hence we may regard 4.2 as established.

DEFINITION 4.3. An ^-interaction (/r, δ) will be called invariant
only if for all σ, σf in Sf and g in & the following diagram is com-
mutative [3, 2.7, 2.8]

δ(σ,σf)

tc(σ) > /c(σ>)

δ(gσ,gσ')

/c(gσ) > κ(gσ') .

PROPOSITION 4.4. Let (/c, δ) be an invariant S^-interaction. Then
/r, δ) is also invariant.

Proof. Copy down the diagram of 4.3 with σ' = στ. It is im-
portant that then gσf is {gσ)τ. The commutativity now says that

δ(gσ, (gσ)τ)ιc(g) = κ(g)δ(σ, σz) .

Evaluate these mappings on an x of κ(σ), and to the result apply
π(gσ)T. Taking into account the general formula

w(x, τ) = (w^x, τ), , wn(x, τ)) = πστ(δ(σ, σz)x)

applied to the special case where a is replaced by gσ and x by /c(g)x,
we obtain on the left hand side,

w(κ(g)x, T) .

On the right side we obtain
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Using the diagram of 3.1.2 this can be rewritten as gnτϊσ_δ(σ1 σz)x,
where we have used again that g~\(go)τ) is σ7. Thus the right side
is gnw(x, τ). This shows that

(w1(fc(g)x9 τ), , wn(fc(g)x, τ)) is (gw^x, τ), , gwn(x, τ)) .

Now the former of these belongs to W(gσ) and thus to ^(K, δ), its
transform under g is also in ^f(ιc, <?). This is, of course, the asser-
tion of 4.4, according to 4.1.

THEOREM 4.5. An S^-interaction (fc, δ) is invariant if and only
if for every σ e S^ and any two, g, h in £P one has (see (3.1.3.1))

(4.5.1) Uσ(gh)= Uσ(g)Uσ(h).

Proof. Upon inserting h for g in the diagram, and replacing σ

by h~ισ and σf by h~γg~ισ, one obtains

tc{h)δ{h~ισ, h~ιg-]σ) - δ(σ, g-ισ)ιc(h) .

Now let us expand.

Uσ(gh) = tc(gh)δ(σ, hrιg'ισ)

= fc(g)/c(h)δ(h-1σ1 h-'g-tyδiσ, h~ισ)

= ιc(g)δ(σ, g-'σMtήδiσ, Jr'a)

= Ua(9)Uo(h) .

This establishes the 'only if.
Retracing these steps gives the commuting of the diagram at least

for pairs σ, σ' which are related in the manner of h~~ισ, hrιg~ισ. By
2.5.1, this takes care of every possible pair σ, σf and 4.5 is proved.

A mapping of the type (3.1.3.2) for which formula (4.5.1) holds
is technically called an action of the group in question, here denoted
by &. Thus 4.5 says that if (ιc,δ) is invariant, then the corre-
sponding Uσ is an action. Whether we have invariance or not, when
Uo is restricted to CSΌ, we do have an action—this is nothing more
than the functorial property of K. The action of gfσ in κ(σ) is generally
nontrivial.

PROPOSITION 4.5.2. When (/c,δ) is invariant for each σe^, Uσ

defines an action of & in κ(o) which is an extension of the action
of g% in κ(σ).

This proposition (just proved) says roughly, "kinematic functor +
invariant dynamics yields action of & extending the action of gfσ.
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We now prove that kinematic functor + action of 3P extending
action of gfσ gives rise to an invariant dynamics. It is to be noted that
we require this action for only one σ.

THEOREM 4.6. Let tc be a kinematic functor. Let σ e S^ be
fixed. Suppose there is a ^°° action

(4.6.1) V: & x fc(σ) • κ(σ)

which extends the action of gfσ:

(4.6.2) g e & implies V(g) = tc(g) .

Suppose also that

if xe κ(σ) and g(πj(πσx)) e σ then

The final condition involves the t for which σ = σ(p, t). Suppose
that the mapping Φv: fc(σ) —• σ* x σn defined by

Φv(x) = (π\πox)9 , πn(πσx), v\ . . , vn)

where

(4.6.4) υ' = -lL{π>'(πσ(V(-τt)x))}t=0 ,
dτ

is a r^°° homeomorphism onto σn x B(an). Then there exists a functor
δ such that (/c, δ) is an invariant S^-interaction with Uσ = V.

Proof. Suppose gσ = hσ for g, h e &. Then κ{h~ιg) = V{h-ιg) by
(4.6.2). From (4.6.1) we obtain ιc(g)V{g~ι) = ic^Vih-1). Thus δ(σ,σ') =
fc{Q)V{g~~ι) for any g such that gσ = σr defines δ(σ, &) unambiguously
for every σf 6 &*. For any other pair σly σ2 from &* define δ(σίf σ2)
as δ(σ, oι

2)δ(σ1 σ j" 1 . This assures 3.1.7-3.1.9 and makes δ a functor
on Sf.

We consider now the condition 3.1.4. We have it of course for
the special σ. For σr = hσ we obtain from 3.1.3.1

Uσ.(g) = tc(h)V{h-ιgh)ιc{h-1) .

From this, 3.1.4 is evident.
The two unused hypotheses (4.6.3), (4.6.4) are needed only to

establish the world line and second order conditions (3.1.5), (3.1.6). In
fact, (4.6.4) is itself the explicit assertion of (3.1.6) for the case of
the special σ of our theorem. To derive from it (3.1.6) for other
space-like sections requires only the use of the functorial properties
of /r, and we may omit it. We turn to the world line condition.
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Suppose the σ and σr of (3.1.5) are gσ and hσ. We may take the
x there to be ιc(g)y, y e tc(σ). So the hypothesis of (3.1.5) is that
πj(π,!σfc(g)y) e hσ. Using 3.1.2 we obtain h~\πjπσy) e σ. From (4.6.3)
we obtain

h~'g(πjπσy) = πjπσV{hrιg)y

or

(4.6.5) g(π>πσy) = hτJ

Now 3.1.5 requires us to show that

(4.6.6) πj(πgσκ(g)y) = πJ'(πhσo(gσ, hσ)κ(g)y) .

From 3.1.2 it follows that the left side in (4.6.6) is the left side in
(4.6.5). We evaluate the right side of (4.6.6). Now

o(gσ, hσ) = o(σ, hσ)δ(gσ, σ) =

so the right side is

which, by 3.1.2, is exactly the right side of (4.6.5). Thus 3.1.5 is
established. It is clear that Uσ = V, and by 4.5 the (/c, δ) is invariant.
Our proof of 4.6 is thus complete.

On the basis of 4.6, we are justified in making a definition as
follows.

DEFINITION 4.7. Let tc be a kinematic functor, and let V be a
r^°° action satisfying (4.6.1)-(4.6.4), relative to some σ e S^. Then
(tc, V) may be be called an invariant σ-interaction.

Note that we do not define 'σ-interaction' and 'invariant' separately.
The reason is that without the property V(gh) = V(g)V(h), which in-
sures invariance, one cannot even define a noninvariant dynamic functor
in terms of tt and V.

Now we want to characterize those invariant (/-interactions which
give rise to invariant standard ^-interactions, (3.1.9). In order to
facilitate the application of such a characterization we will examine
the form taken by (4.6.3) and (4.6.4) when the special properties of
fcs (3.2) are taken into account.

PROPOSITION 4.7.1. / / tc — fcs then (4.6.3) is equivalent to: Suppose

V(g)(ply - ,pn,vu , vn) = (qu '- ,qn,wl9 , wn) .
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In case gp5 e σ for some j then gp5 = qjy for that j .

As to (4.6.4), the problem is not merely to satisfy it, but to in-
sure that Φv is the identity map, as 3.9 will unavoidably require.
What it comes down to is obviously the following. For

(4.7.2) x = (Pl, . . . , pn, Όl vn) 6 σn x B{σγ

where σ = σ(p, t), if V(τt)(x) = {p,(τ), . . . , pn(τ), •) then

4dτ

DEFINITION 4.8. Suppose (tc, V) is an invariant ^-interaction in
which tc = tcs while (4.7.1), (4.7.2) hold. Then (tc, V) may be called a
standard invariant <τ-interaction.

DEFINITION 4.8.1. Suppose (Λ:, V) is an invariant σ-interaction in
which fc = κs* (see 3.3) and V(g) for each g e & is a contact trans-
formation. Then we may say that (/r, V) is a Hamiltonian invariant
σ-inter action.

THEOREM 4.9. Let σ eS^ and suppose (/c, V) is either a standard
or Hamiltonian o-interaction. Then there exists an invariant £f-
interaction (K, δ) such that V = Uσ and which is standard or Hamil-
tonian, respectively.

The proof for the standard case is perfectly clear. In the Hamil-
tonian case one needs only to observe that (cf. 3.3)

fcs*(g) is a contact transformation, for

each g e^ .

This is a classical theorem.6 [1, 14.16,14.17,14.30] and has nothing to
do with the special properties of g.

In the same way one can also prove the following.

PROPOSITION 4.9.2. Let σ e Sf. Let (/c, δ) be an ^-interaction.
Then it is either standard invariant or Hamiltonian invariant if
and only if (tc, Uσ) is a standard invariant or Hamiltonian invariant
σ-interaction, respectively.

5* Reduction and decomposition of interactions* Consider the
free interaction (2.9). It is obvious that this is a composition of in-

6 Roughly "point transformations always define contact transformation."
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dividual (n = 1) interactions. This concept will now be made precise.
Let ^ i be a second-order nt particle interaction (see 2.7). Let

^ 2 be a second-order w2 particle interaction. Let ^ be the class
of all (W» •••, TF%0, TF.1+1, ..-, ^ J + % 2 ) where

(Wlf •••, T ^ )

and

PROPOSITION. T%ΐs ^ ^ is a second-order nλ + n2 particle in-
teraction.

Proof. The verification (2.6)-(2.6.4) is elementary.

DEFINITION 5.1. ^f may be denoted by ^ Ί φ ^ / i and called7

the composition of ^ ^ and f̂2. Conversely, an interaction ^ f of
this type may be called decomposable. This definition may be extended
to the case in which the (Wly , Wn) are interspersed in some more
general way among some permutation of the elements of ^ 2 rather
than merely placed in front.

DEFINITION 5.2. Let ^ be a second-order n particle interaction.
Suppose for some k < n there is some subset il9 , ik of the integers
1, 2, , n such that if we form the class of A -tuples {Wh, , Wik)
which can be lifted out of the ^-tuples (Wu , Wn) in ^ then
these ά-tuples from a second-order k particle interaction ^ \ then
^ F 1 may be called a constituent of ^ , and ^ maybe called reducible.

Evidently a decomposable interaction is reducible. These definitions
suggest two questions.

5.2.1. Is a reducible invariant second order interaction neces-
sarily decomposable'!

5.2.2. Are there any irreducible invariant second order n par-
ticle interactions with n > 1?

We will show that the answers are 'no' and 'yes', in that order. The
second question forms the subject of a paper by Wigner and van Dam
[12]. However, it is not clear from their exposition whether the affirma-
tive given there applies to interactions of the specific sort considered
by us. We therefore give our own examples. We begin by answering
5.2.1, introducing a concept which will be useful also for answering

7 or, the direct sum.
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5.2.2, to be called a geodesic helix in Rk. The case k — 4 is the one
of interest to us.

Think of Rk as E + R where E is j£ f c l with the usual Cartesian
metric. It is clear what the orthogonal group in E is, which we will
denote by O(E) for the moment. We shall be wanting to introduce
new Riemannian metrics p into E where

(5.3) p is O(E) invariant ,

(5.3.1) but the geodesies relative to p are not merely straight lines .

To be specific, consider the "paraboloid of revolution"

Se: xx =

in Rk. Here ε is a real parameter. Now E is the hyperplane, xk = 0.
There is an obvious projection of Sε on E, and this projection
becomes an isometry if the metric of Sε induced thereon by the
Euclidean metric of Rk is carried down into a metric p(e) for E. Note
that when ε Φ 0, the metric p(e) satisfies (5.3), (5.3.1), while ^(0) is
just the Cartesian metric of E. Moreover

(5.3.2) p(ε) depends analytically on ε .

Suppose now that p is any Riemannian metric satisfying (5.3).
Let (/i(τ), , Λ-i(τ)) describe a complete geodesic in E (relative to p),
so parametrized that

(5.3.3) //(r)2 + . . . +Λ'_1(r)2 is a constant a2.

Choose a number 6 such that α, b are not both zero. Then let Γ be
the curve in Rk described by

(5.3.4) (Λ(τ), •• ,Λ-1(r),6r).

This Γ may be called a geodesic helix in Rk {relative to p). It may
be called time-like if b/a > 1.

Now let ^€ be a general affine Lorentzian space and let T be
an affine Lorentzian map of RA onto ^//, where we have in mind that
affine Lorentzian structure in J?4 associated in the familiar way with
the quadratic form — x\ — x\ — x\ + x\. Let Γ be a geodesic helix in
i24. Then the curve W — T(Γ) may be called a geodesic helix in ^/ί
about the line L (L being the image under T of the x4 axis.) When
needed the phrase "relative to p" may be affixed, as well as "time-
like", if Γ is time-like.

A special case of a time-like geodesic helix about the line L is a
line W parallel to L. This highly desirable limiting case is that at
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which a = 0 in (5.3.3).
In the rest of this section, the p shall be one of the p(e) already

described, so that we are not pretending to make deep assertions about
geodesies in general.

PROPOSITION 5.4. Let (p, t) be a point of ^/S x ^£ (see 2.2),
where t is time-like. Let L be any time-like line in ^/ί. Then
there is exactly one time-like geodesic helix W about L in ^Sf which
passes through p and ivhose tangent there is t.

Proof. Select any Lorentzian map T which maps the .τ4 axis onto
L, and maps E onto a set σL which contains p. Then the inverse
image u of t under T is a vector in R^ which may be resolved into
its E component v and an α?4 component b. Let the length of v be a.
Now there is exactly one geodesic in E, passing through T~\p), with
tangent v at that point, and it can be parametrized in just one way
if (5.3.3) is to hold and the sense of the parameter is to agree with
the sense of v. Using the b mentioned we form Γ and let W — T(Γ).
This W is the desired object. There remains the question of its unique-
ness, for the map T is not unique. However, different T are related
by O(E) and so (5.3) assures the uniqueness of W.

THEOREM 5.5. There exists a reducible yet indecomposible in-
variant second order binary interaction.

Proof. This interaction shall be called J?\ and requires first that
an ε be chosen, ε > 0 (otherwise the result will be ^^. With the
corresponding p(ε) in mind, we let ^ ε consist of all pairs (Wl9 W2)
where W is a time-like straight line in ^/S = R* endowed with the
usual affine Lorentzian structure, and W2 is a time-like geodesic helix
in ^f about Wx.

We must now test the Definition 2.7. Let σ be given, and also
pl9 p2 in σ and vly v2 in σ, as (2.6.1) and (2.6.2) require us to consider.
Supposing that a is σ(p, t) we construct the vectors uu u2 where I*; =
Vi + t (compare 2.3). We now abandon the original σ and work with
0\ = o(p2, Uj), which passes through p2y but is perpendicular to w1#

For W1 we take the time-like line L through p2 and tangent to u2.
Thus there is one and only one pair (Wl9 W2) in ^ £ satisfying the
required "initial77 conditions.

This ^ ε is surely reducible because the Wλ by themselves form
the free 1 particle interaction. If it were decomposable, the same
would be true of the W2, but some of these (since ε Φ 0) are not
straight lines, because of (5.3.1). (See 2.9.) Thus 5.5 is proved and
5.2.1 is answered.
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We now proceed to answer 5.2.2.

THEOREM 5.6. There exists an irreducible invariant second order
binary interaction.

For this example we need to select a ^°° real valued function η
of a real variable such that

(5.6.1) )7(1) - 0 , η(2) Φ 0

(5.6.2) -η vanishes in a neighborhood of 2 .

We will call the interaction ^ . To describe the pairs (Wly W2)
in ^fv we have to observe the following.

5.6.3. Let If be a time-like geodesic helix about L and suppose
uί9 u2 are vectors tangent to L and W respectively, normalized to
unit vectors and oriented to belong to C+. Then the inner product
(uly u2) depends only on L and W.

We will denote it by L o W. Evidently L o W ^ 1 and for each L
one can pick W so that Lo W is as large as desired.

Now ^ shall consist of all pairs (WU]W2) where either

W2 is a time-like geodesic helix about W2

relative to the metric piviW^W,)) and W2°W1

or

WΊ is a time-like geodesic helix about W2 relative

to the metric ρ(7](Wt- W,)) and Wt W1 ^ 2 .

These conditions overlap when WΊ W2 = 2 but then rj is 0 and
thus (Wu W2) is a pair of free lines.

Let us verify that ^ η has the properties annouced in 5.6.3. We
begin as for 5.5 and calculate ux and u2. We evaluate A — (uίt u2).
If A ^ 2 we continue as in the case of 5.5. If A ^ 2 we make Wt

be the helix about W2.
In this way we have insured that some Wx is not a free world

line and some W2 is not a free world line. Thus ^ ^ is an example
with the properties claimed.

REMARK 5.6.6. In the conventional terminology of physical ex-
plications, one could say that depending on the initial conditions vu v2,
if vγ v2 ^ i/ 5 then the first particle ignores the second while if
Vί'V2 ^ l /5 then the second ignores the first.

PROPOSITION 5.7. The interactions ^ ε and ^Tj are regular (3.6).



266 R. ARENS AND D. G. BABBITT

It is to make sure of this that we stipulated (5.3.2) and that we
required η to be a ΐ^°° function. The proof of 5.7 is purely technical
and we will omit it.

The notions of composition and reduction can be applied to the
^-interactions (see 3.1). Suppose we had two second order ^-interac-
tions (K, δ) and (Λ;', δ') where the "particle numbers" are n and n'
respectively. Suppose K! is a subfunctor of tc and δ' is a subfunctor
of δ [10, p. 26], In this case we may say that

(fc' δ') is a constituent of (/c, δ) and
(5.8)

(Λ;, δ) is reducible .

Now suppose (ic^ δj and (κ21 δ2) are two second order ^-interac-
tions as before. Let tc(σ) be the Cartesian product ιcx(σ) x fc^σ) which
has a natural projection πσ on σWl+ίl2 which makes it into a fibre
space. For g in & let Λ;(#) = Λ;^) X κ2(g), and for σ, of in ^ let
g(α, of) = 5x(σ, σ') x <52(σ, σ'). This merely a case of products of func-
tors [10, p. 528].

PROPOSITION 5.9. (/c, δ) satisfies 3.1.1-3.1.6.

The proof is so simple that we omit it. The interaction (k, δ)
may be called

(5.9.1) The product interaction (fcλ1 δ:) x (/c2, δ2) .

If an interaction is a product interaction we may call it decomposable.

6. Infinitesimal interactions* Our first task in this section is
to obtain infinitesimal counterparts to the properties (4.6.1)-(4.6.4).
More fully, if (fc, V) satisfies 4.7, what does (K, dV) satisfy? The
consequences should be as strong as possible, but still of a local
character.

To begin with, (4.6.1) implies that for each Z in p, the Lie algebra
of ^ , there is a vector field Z+ defined by ([7, p. 112]) Z+ = dV(Z)
where

t-*o T

for each / e c^~(κ(σ)) and each x in ιc(σ), and

dV is a Lie algebra homomorphism of p into the Lie

algebra i(/c(σ)) of ^°° vector fields on tc(σ) .

Corresponding to (4.6.2) we have



THE GEOMETRY OF RELATIVISTIC n PARTICLE INTERACTIONS 267

(6.0.2) dV\tσ = dfC.

It will surely be granted that the infinitesimal analogue of (4.6.3)
is that if the curve (exp τZ)(πj(πσx)) starts off by being tangent to σ,
then the (geometric) velocity of that curve with respect to the para-
meter r, should be the same, at τ = 0, as the velocity of the curve
πj(πσV(expτZ)x). This analogue is in fact a consequence of (4.6.3),
in the presence of the regularity assumption in 4.6. It merely remains
to state it in terms of dV.

The velocity of the second curve is

dπ>'(dπa(dV(Z) \x))

where dV(Z) \x is simply the notation for the vector attached to x by
the field dV(Z), while dπσ is the projection of vectors in /c(σ) to vectors
in σ x x σ and dπj gives the component in the i-th factor. The
velocity of the first curve is

dW{Z)\πHπσX)

where we have adopted W as the name of the action of & in ^\

W(g, p) = W(g)(p) = gp .

It seems a pity to bring in such a letter, so we merely refer to d W(Z)
as the image of Z in ^£. We have arrived at the following.

(6.0.3) Suppose that the image of Z in ̂  is tangent to a at the
point πj(πσx). Then the image of Z'm^/S at that point coincides with
dπj(dπσ(dV(Z) |,)).

The final condition, (4.6.4) is itself infinitesimal in form. Let us
use Tσ as the generator of the one parameter time-like translation
group in question, exprT σ = τt, where σ — σ(p, t).

The map Φv by which
( 6 Φv(x) = (π\πβx), . . . , ϋ 1 , . . . ) ,

wherein

v' = dπ*(-dV(Tσ)\x)),

is a &*" homeomorphism of κ(σ) onto σn x B(σ)n.

DEFINITION 6.1. Let σ eS^ and let tc be a kinematic functor.
Suppose (Λ:, V) satisfy 6.0.1-6.0.4 with dV replaced by V. Then (k, V)
may be called an infinitesimal invariant (n particle σ^interaction.
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Our definition was intended to make obvious the following, of
course.

PROPOSITION 6.2. // (tc, V) is an invariant σ-inter action, then
(/r, dV) is an infinitesimal invariant interaction.

In order to define infinitesimal invariant standard interactions
fairly, we have to bear in mind the comment made above, just prior
to (4.7.2). In fact (4.7.2) says

(6.2.1) for x = (ply , pn, Ό19 , vn) e ιcs(σ), a = σ(p, t) ,

one has

(6.2.2) dV{- To) \x = (vl9 , υn, Au , An) .

There is a special name for vector fields on tangent bundles which
have this property, more abstractly that

dπ(W\x) = x .

They are called basic [11], so we reformulate (6.2.1) as

(6.2.3) dV(-To) is a basic vector field in σn x B{σ)n = /cs(σ).

If an infinitesimal invariant interaction (/c, V) has K = κs, and if
(6.3.2) holds (in addition to (6.0.1) to (6.0.4) with V inserted for dV,
then we may call (£, V) a standard infinitesimal invariant interac-
tion or S.I.I.I.

We will now explore this concept by means of coordinates. Choose
a Lorentzian coordinate system (ί, x1, x2, xz) so that σ is the hyperplane
on which t = 0. This allows us to make the following identifications.

(6.3) σ = {pe^e:t(p) = 0}.
(6.3.1) ^Jt and Λt are identified with i?4 in such a way that

for (α°, a\ a\ α3) and (6°, δ1, b\ V) in ^ T we have aΨ - aΨ - aΨ - aΨ
as the value of the bilinear form for these vectors.

(6.3.2) σ and σ are identified with R3.
(6.3.3) A point (α, 6, c) of Rz is identified with (0, α, 6, c) in R\
(6.3.4) & is the usual Poincare group, generated by the transla-

tions and the restricted Lorentz group.
(6.3.5) The generators of p or rather their images in ^ Γ (see

the remark just prior to (6.0.3)) are these ten:

For Tσ we have 3/3*. For the xa translation we have 3/dxa (a =
1, 2, 3). For the rotations in the af, xb plane we have
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dxb dx«

For the rotation in the t, xa plane we have

dt δxa

Now the ten vector fields V'(Tσ), •••, V'(ZZ) which we will com-
pute in coordinate form are vector fields in σn x B{an). The latter
is a part of R6n and we will denote the cartesian coordinate system
by (Xi, - *,%n,Ui, * ,w») where xλ is the triple (x\,x*,xl) and uλ is
(u\, u\, u]) with λ = 1, , n. (Thus for example u\ is the y component
of the velocity of the fourth particle.) We use the summation con-
vention for Roman indices, from 1 to 3. For Greek indices, repeated
or not, we sum from 1 to n, unless otherwise stated.

PROPOSITION 6.4. Let (tc, V) be a standard infinitesimal invariant
interaction in the situation just described. Then there is a uniquely
determined set

{Aa

λ: a = 1, 2, 3; λ = 1, 2, . . . , n}

of Sn functions such that

(6.4.1) T
dt / ' dxa

λ ' ou\

(6.4.2) V'(^-) = —
V dxa J dx)

(6.4.3) V'(Mab) = x\J- -
3x\ dx\ ou\ du\

(6.4.4) V'(Ze) - - s ^ -A- + (g; - u\u\ - xlAD^L- .
dxa

λ oua

}

Proof. (6.4.1) is nothing but (6.2.3) explicity written out as in
(6.2.2). Next, (6.2.4) and (6.4.3) are consequences of (6.0.2). The terms
in u reflect the fact that under linear transformations, velocity com-
ponents transforms as the coordinates.

The task set by (6.4.4) is to discover the b and B in

(6.4.5) V'(ZC) = A ^
3xa

λ

Choose a point p = (p\ p\ pz) in σ. There is an element of p whose
image in ^t is Zc — pc(δ/dt) i.e.,
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and this is evidently tangent to σ at p. Select a j" (1 ^ j ^ %) and
let & be arbitrary except that it shall have (p1, p2, p3) in the (x), x), x))
place, respectively. Thus πj(πσx) — p and (6.0.3) applies. It tells us
that

because Zύ — pc(d/dt) is in fact 0 at p. In general, for a vector W
such as that displayed in (6.4.5), dπj(dπσ(W)) is baj(d/dx*), with no sum
on j . Thus in the case at hand,

&*_!_ + p^-4- = 0

with no sum on j , at the point a?. This implies that

from which it follows that the first half of the terms of (6.4.4) have
been correctly stated.

We now recall that [d/3ί, Zc] = d/dxΰ. It follows from (6.0.1)
that

\v>(-4-\ v(zΛ = WUT) .

We invite the reader to insert here (6.4.1), (6.4.2), and what we already
know about (6.4.5), namely that the h\ are as stated in (6.4.4). We
ask the reader to calculate the xj component on each side. The
equation which results will be

uc

3u) + Ajx'j - Bj = dc

d

with no sum on i. This establishes (6.4.4) and thereby concludes the
proof of 6.4.

By computing and equating also the uj components in the com-
mutation relation just considered, we obtain the Currie-Hill relations
[4, 8].

COROLLARY 6.5. In a standard I.I.I., the A's of (6.4.1) must
satisfy for each j(l ^ j ^ n) and each d(= 1,2,3) and each c(= 1,2,3)
the relation (no sum on j)
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2ue

3Aj {
oxa

7
?) Λd

+ (Sj - u%u\ + {x) - »5)A5)-^- - 0 .

It should be remarked that in spite of the minus signs in (6.4.1),
the A] is the d-th component of the acceleration of the i-th particle.
This can be proved by tracing the development back to § 2. However,
it is plausible on the face of it because the coefficient of δ/δx7} in
(6.4.1) is minus the time rate of x% whence the coefficient of d/δu"
should be minus the time rate of u*. The minus sign would not have
appeared had one replaced g by g~ι in (3.1.3.1), but then the factors
on the right of (4.5.1) would have become interchanged.

The relations of 6.5 are not the only ones that the A's have to
satisfy. Others are obtained by exploiting the other commutation
relations of p. Several of them again yield the relations of 6.5 while
the others merely testify to their Euclidean invariance.

We shall now discuss how the well-known zero-interaction theorems
of the Hamiltonian theory fit into the framework developed in this
paper. In particular let (tcs*, V) be an (invariant ^-particle) Hamiltonian
σ-interaction. Let (ιcs*, dV) be the corresponding infinitesimal interac-
tion. dV(Z) is clearly and infinitesimal contact transformation on
κs*(σ) for each Zep. Since the set Hί(ιcs*(σ)) of infinitesimal contact trans-
formation on tcs*(σ) is a Lie sub-algebra of ι(/cs*(σ)), dV, is in fact a
representation of p in &(fcs*(σ)).

In the usual treatments of infinitesimal Hamiltonian interactions,
one usually considers a representation of p in the Lie algebra ^^(/Cg^σ))
where the Lie algebra operation in ^^(/c^σ)) is just the Poisson
brackt {,}. We obtain such a representation from (κs*, dV) as follows:
Pick a Lorentzian coordinate system (t, x\ x2, x3) for ^ such that σ —
{p e ^f: t(p) = 0}. This induces a coordinate system (xu , xn, p1, ,
pn) [where xλ = (x\, x2

λ, x\) and pλ = (p{, p?

2, pi)] on σ x (σ*)n. We define

the Lie algebra homomorphism

ζ: ^ ° ° ( t f

by

dpi δx\ δx) δpl

It is known that this is surjective. Pick H, Pa, Ka, (a = 1, 2, 3), Jab,
(l^a<b^3erέ?°°(fcs«(σ))) such that ζ(H) = dV(Ta), ξ(Pa) = dV(d/dxa),
ζ(Ka) = dV(a), (a = 1, 2, 3), ζ(Jah) = dF(ilfβ6), (1 ^ α < δ ^ 3) where Tβ,
δ/δxa, Zu, (a = 1, 2, 3), Mah, (1 ^ α < 6 <̂  3), are the ten generators for
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p which were defined in (6.3.5). This is possible since ζ is surjective.
Define

by

dVξ(Tσ) = H, , dVζ(Mab) = Jab(l £ a < b ^ 3)

and extend to all of p by linearity. Using the fact that the kernel
of ς is R (the constant functions on ιcs*{σ)) it is straightforward to
check that dVξ is in fact a Lie algebra homomorphism. The world
line condition (6.0.3) and the properties of ξ(H) assure us that the
following important property holds for all ^-tuples {(t, xtf)), •••,(£,
for world lines for (KS*V):

^*L = {X*, {Xί, H}}

where

Xί(xlt --,xn,V\ " M ) β ) - xί:j = 1,2,3, λ = 1,2, . . . , ^ .

Finally the world line condition (6.0.3) implies t h a t

{Xt, Kb} = XhΛXa

λH) .

We now summarize the preceding discussion. Given a Hamiltonian
^-interaction (Ks*, V) and a Lorentzian coordinate system (ί, x\ x2, x3)
for ^f such that σ = {p e ^€\ t(p) = 0}, there exists

(6.5) H, Pa, KΛ, (a = 1, 2, 3) Jah1 (1 ^ α < b £ 3)

in ^ " ( I ζ s ίtf)) such that

(6.5.1) {£T, Pa} = 0, {H, JK:.} = Pa (α = 1, 2, 3)

(6.5.2) {if, Jαδ} = 0, {P6, i f j - δ?£Γ , {Ka, Kb} = Jα 6, (1 ^ α < 6 ^ 3)

(0 if α, &, e are distinct
(o.o.d) {Aβ, Jbc\ = i

(JSΓβ if α = 6

(6.5.4) {Xf, iΓδ} - X / W , i ϊ } (α, δ = 1, 2, 3 and λ = 1, 2, , w)

and such that if

(6.5.5) {(ί,&i(ί)), ••-,(«,».(«))}

is an ^-tuple of world lines (κs*(σ), V), then

i g l = {X/, {Xί, H}} .
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Now the zero-interaction theorem of Currie, et al [6, 9], says that
(6.5.1), (6.5.2), (6.5.3), and (6.5.4) imply that

(6.5.6) {XI, {XL H}} = 0

for all j — 1, 2, 3, λ = 1, 2, , n. We translate this conclusion in
terms of the framework of this paper (see (3.5.2) and 2.9).

THEOREM 6.6. // {ιcs*iσ)i V) is a Hamίltonίan (n-partίcle in-
variant) interaction then

ιcs*, V) = ^f0 θ Θ J"* = J"*, n in summands) .

Proof. From (6.5.5) and (6.5.6) we conclude

dzYj

~W ' ' ' ' '"
for any

This of course says the world lines are straight lines, which is what
was to be proved.

It should be remarked that the answer to the following question
is not known: if (ιcs*(σ), V) is a σ-interaction such that V{ttσ) is a
contact transformation for each real number t8, is the associated second
order interaction ^ C 5 * ) F ) a zero interaction? Since such interactions
have Hamiltonians, they presumably could be quantized and thus if
nontrivial examples existed they would certainly be worth investigating.
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