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ON MINIMAL COMPLEXES

JOSEPH ZAKS

An ^-complex K is called p.w.l. minimal in Ed if each
proper subcomplex of K is p.w.l. is embeddable in Ed. The main
purpose of this paper is to prove that for each n ^ 2, and each
d9 n + 1 ^ d ^ 2n, there are countably many nonhomeomorphic
^-complexes, each one of which is p.w.l. minimal in Ed and is
not p.w.l. embeddable there. From general position arguments
it follows that if an ^-complex K is p.w.l. minimal in E2n,
then for each xe \ K |, | K \ — {x} is embeddable topologically
in E2n; if an ^-complex K is p.w.l. minimal in En+d and is
not embeddable there, then the dimension of each maximal
simplex of K is at least d.

Here Ed denotes the Euclidean d-space, an ^-complex is a finite
^-dimensional simplicial complex. \K\ denotes the underlying point
set of the complex K in some Ed, and in case where there is no
confusion, |JSΓ| will be replaced by K. Cn

m denotes the complete n-
complex with m vertices.

A subset X of Ed is called cellular if there exists a sequence
{Qi}T=i of closed d-cells, such that Qi+ί(zIntQiy for each i, and X =
ΠΓ-i Qi] where Int means interior.

A cellular decomposition G of En is an upper semicontinuous
(u.s.c.) decomposition of En, such that each element of G is cellular;
an u.s.c. decomposition is finite if it has only finitely many nondegen-
erate elements, see [1],

2. There are precisely two 1-complexes which are p.w.l. minimal
in E2 and are not topologically embeddable there: these are the two
Kuratowski's nonplanar graphs, [6].

B. Grϋnbaum proved in [3] that all the ^-complexes of certain
form are not embeddable in E2n, and that one of them, for each n,
is geometrically minimal in E2n, where the geometrically minimal in
Ed means that each proper subcomplex can be rectilinearly (= affine
on each simplex) embedded in Ed. All of these ^-complexes were
proved by J. Zaks, in [10], to be p.w.l. minimal in E2n, and in certain
cases, for each n, to be geometrically minimal there. B. Grϋnbaum
proved in [4] that, indeed, each one of these ^-complexes is geometri-
cally minimal in E2n.

However, the number of these ^-complexes is finite, for each n.
Related to these results, we have the following.
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THEOREM 1. For each n ^ 2, there are countably many non-
homeomorphic n-complexes, each one of which is p.w.l. minimal in
E2n and is not p.w.l. embeddable there.

Moreover, we extend this to a

COROLLARY 1. For each n ^ 2 and each d, n + 1 <; d ^ 2n, there
are countably many nonhomeomorphic n-cornplexes, each one of which
is p.w.l. minimal in Ed and is not p.w.l. embeddable there.

3* Proof of Theorem 1. For the proof of this theorem, we need
certain lemmas, which seem to be obvious; our proofs make use of
some heavy techniques from combinatorial topology, see [8], [9] and
[11].

LEMMA 1. A polyhedral disk D in En is cellular.

Proof. Let K be a triangulation of D. There exists a triangula-
tion T of En and a subdivision KL of K such that K1 is a subcom-
plex of T. The disk D with the triangulation Kι can be shelled, by
[8], hence K1 collapses to a triangle, and therefore K1 is collapsible,
see [9], [11]. Using a theorem of J.H.C. Whitehead, [9], it follows
that st(β2K\ β2T)—the star of K1 in T, taken in the second bary-
centric subdivision of T—is an w-cell. Let Q{ = st(β2ίKι, β2iT), then
all the Q{ — s are w-cells, Qi+1 c Int Qι and D = Π£i Qi> Therefore
D is cellular.

LEMMA 2. If G is a finite cellular decomposition of En, then
the decomposition space En/G of G is homeomorphic to En.

This lemma is a particular and simple case of L. V. Keldysh's
Theorem 1 of [5], because of the finiteness of G. We would like to
mention the difference between the usual definition of cellularity, and
that of [5]. Theorem 1 of [5] was proved later as part of Theorem
1.4 of [7].

It follows from Lemma 2 that if a is a polyhedral simple (closed-)
arc in the interior of an ^-simplex dn in Ed, then the space obtained
from dn by shrinking a to a point ("δn modulo a") is homeomorphic
to δn. This will be stated as

LEMMA 3. Let δn be an n-simplex in Ed, and let G be a finite
u.s.c. decomposition of δn having only polyhedral simple arcs in
Int δn for its nondegenerate elements, then δn/G is homeomorphic to δn.
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LEMMA 4. For each n, Cζn+3 is not embeddable topologically in
E2n; however, there exists a maps f: C?Λ+3 —» E2n, which is affine on
each simplex, and has only one inverse set, which contains only two
points. (An inverse set of a map f:X—+Y is f~ι{f{x)), provided

The nonembeddability of Cζu+S in E2n is a well known result, due
to A. Flores [2], and the map / is described in [3], [4] (see also [10]).

LEMMA 5. For each n and each point xe\Cfn+3\, |C?Λ + 3 | — {x}
is embeddable in E2n.

This lemma will later be extended, see Theorem 2.

Proof. In the case where x is an interior point of some ^-simplex,
we can use the map / as given in Lemma 4. Otherwise, let Vx be
a small neighborhood of x in C?w+3. By pushing each point of Vx — {x}
away from x, it follows that | C?Λ+31 — {x} is homeomorphic to a subset
of I C?w+31 — {y}, where y is an interior point of some ^-simplex, hence,
by the first part of this proof, | C?n+31 — {y} is embeddable in E2n,
and therefore | C?w+31 — {x} is embeddable there, too. This completes
the proof of Lemma 5.

Proof of Theorem 1. For each n ^ 2, let us first define induc-
tively a sequence {Kn(m)}2=i of ^-complexes as follows: let δn be a
fixed ^-simplex of C?Λ+3. Kn(l) is obtained from C?%+3 as follows:

Step 1. Subdivide C?n+3 in such a way that δn will contain as a
subcomplex a simple are Al Aζ A% Al, consisting of three edges, all
of them in Int δn, and both of Al and A™ are in the star of no vertex
in the new complex.

Step 2. Identify Al = AT,
Step 3. Add a new triangle B, having the new circuit AlAlAl

as its boundary.
Kn(m) is obtain from Kn(m — 1) by a similar way, where we

pick the new arc of Step 1 to be disjoint from all the previously
added triangles B of Step 3, and keep the triangles B of Step 3
"untouched.

Since n ^ 2, and we add only 2-simplexes, Kn(m) is an ^-complex.

Main claim. For each m, Kn{m) is not p.w.l. embeddable in E2n.

Proof. Suppose this is false, then for some n and some m we
have a p.w.l. embedding /
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f:Kn(m)->E2n .

Let B19 « ,2?m be the added triangles of Kn(m), as described in
Step 3, and let G be the decomposition of E2n, having /(J5<), 1 ^ i ^
m, as the only non-degenerate elements.

By Lemma 1, each /(I?*) is cellular in E2n, since / is a p.w.l.
embedding; therefore G is a cellular decomposition of E2n, and it is
finite, hence by Lemma 2 there exists a homeomorphism /r. E2n/G —> E2n.
Let p: E2n —> J52*/G be the natural projection, related to the decom-
position G.

Let g: C?Λ+3 —* Kn(m) be the map which identifies the m pairs of
points, as described in Step 2, and is the identity elsewhere.

In the following diagram

C?w+3 - ^ Kn(m) -^-+ E2n - ^ # 2 /G -^-> # 2 ,

the map p/gr shrinks the m polygonal simple arcs, as described in
Step 1, each one to a point, hence pfg(δn) is an w-cell, by Lemma 3,
therefore pfg(C%n+3) is homeorphic to C?Λ+3, and as a result hpfgiCζn+z)
is a subset of i?2% which is homeomorphic to C?w+3. This contradicts
Lemma 4, and hence completes the proof of the main claim.

Next, for each n ^ 2, let {If n(m)}£=1 be the sequence, obtained
from {Kn{m)}Z=ι as follows: if Kn(m) is p.w.l. minimal in E2n, we let
Kn(m) = Kn(m); otherwise we define Kn{m) to be a subcomplex of
Kn{m) which is not p.w.l. embeddable in E2n, and is p.w.l. minimal
there. Using Lemmas 4 and 5, and the fact that our construction of
Kn(m) from C2

w

w+3 can be performed in a small neighborhood of any
point of C?Λ+3, it follows that the only simplexes of Kn(m) which are
not in Kn(m) are triangles, among the ones added in Step 3. In
particular, no point, which is the identification of two points of δn

t

by Step 2, can be deleted. These m points of Kn(m) have neighbor-
hoods which are topologically different from neighborhoods of other
points of Kn(m); therefore if m Φ m', Kn(m) and Kn{mf) are not
homeomorphic, and the proof of Theorem 1 is completed.

From Corollary 2 it will follow that for n Ξ> 3, no one of the m
added triangles of Kn(m), by Step 3, appears in Kn(m), and Kn(m) is
just the result of identifying m pairs of points in Int δ, each pair
to a point. Probably, this is the case for n = 2, too.

In order to obtain other ^-complexes, each one of which is p.w.l.
minimal in E2n and is not p.w.l. embeddable there, for n iΞ> 2, we can
use more than just one ^-simplex of C?n+3, or we can take, to begin
with, any other ^-complex from the list in [3], since they all share
the needed properties that C?%+3 does, by [3], [4], [10] and Theorem
2, here. Moreover, we can identify more than two point in our Step
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2, but then we have to make some obvious alterations.

Proof of Corollary 1. Let us first observe that if a complex K
is not p.w.l. embeddable in Ed, then KVCl is not p.w.l. 'embeddable
in Ed+1 and KVCl~ι is not p.w.l. embeddable in Ed+n, where KVL is
the join complex of K and L, see [11]. Moreover, if K is p.w.l.
minimal in Ed, then KVCl is p.w.l. minimal in Ed+\ by [10], and
therefore KVCl"1 is p.w.l. minimal in Ed+n.

Let n and d be given, where n ^ 2 and w + 2 ^ d ^ 2n. A sequ-
ence {Ln;d(m)}Z=i of nonhomeomorphic ^-complexes, each one of which
being p.w.l. minimal in Ed and not p.w.l. embeddable there, can be
obtained as follows: Ln'-d(m) = Kd"n(m)VClΐzd"\ where Kd~n(m) is
given by Theorem 1, which is applicable since d — n ^ 2.

ZΛ;d(m) is an ^-complex, because (d — n) + (2% — d — 1) + 1 = n;
it is not p.w.l. embeddable in Ed, because Kd~n(m) is not p.w.l.
embeddable in E2{d-n), and 2(d - n) + (2w -~ d) = d.

For the case where % ̂  2 and d = n + 1, it is obviously enough
to deal with n = 2 and d = 3: L2;3(m) is the following complex: We
take a triangulated orientable closed 2-manifold of genus m, which
contains the shap "X" as a subcomplex, having OA, OB, OC and OD
as edges, where A, B, C, Z) are in a clockwise order. We add two
new vertices P and Q, the four triangles POA, POC, QOB, QOD,
together with their faces, and we add the edge PQ. It is very easy
to verify that L2;3(m) is not p.w.l. embeddable in i?3, and that it is
p.w.l. minimal there. (Moreover, if x is an interior point of one of
the added triangles, then L2y\m) — {x} is still not embeddable in E3.
Compare this comment with Theorem 2.)

4* The following is an extension to Lemma 5:

THEOREM 2. // an n-complex K is p.w.l. minimal in E2n, then
for each point xe\K\, \K\ — {x} is embeddable in E2n.

Proof. As it was shown in the proof of Lemma 5, we can assume,
without loss of generality, that x e Int δ, where J is a maximal
simplex of K. Since K is p.w.l. minimal in E2n, let /: | K - δ \ —> E2n

be a p.w.l. and general position embedding. Let A e E2n be in general
position with respect to f(\K— δ\).

Let F: \K\->E2n be defined as follows

f(z) if ze\K- δ\

XA + (1 - λ)/(z') if z e Int δ and z = Xbδ + (1 - \)z' ,
where bδ is the barycenter of δ ,
and z' e I Bdδ I , 0 < λ ^ 1 .
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F is a well defined immersion (= locally embedding) of \K\, and
its singularities are those of i*\Int δ), together with the possible inter-
sections of F(\ δ I) with F(\ K - δ |). Let s be the dimension of δ,
then from general position arguments it follows that the dimensions
of these singularities are either <Ξ; 2S - 2n or ^ s + t — 2n, for some
1 ^ t ^ n, and since s <£ n, they are ^ 0. Hence the singularities of
F consists of finitely many points, each point z of which has at least
one point of F~ι(z) in Int<5.

Therefore, there exists a t, 0 < t < 1, such that F is an embedd-
ing when restricted to

\K\~ {Xbδ + (1 - X)x 11 < λ ^ 1 and α? e

which is homeomorphic to | JBΓ | — {x}, and the proof is completed.

COROLLARY 2. // an n-complex K is p.w.l. minimal in En+d

and is not embeddable there, then the dimension of each maximal
simplex of K is at least d.

In particular, if d = n, then these dimensions are equal to n.

Proof. Let δ be a maximal s-simplex of K, which among all the
maximal simplexes of K is of minimal dimension.

Let F: \K\-+En+d be the extension of a p.w.l. and general posi-
tion embedding of K — δ in En+d, similar to the one described in the
proof Theorem 2. The dimensions of the singularities of F are
^ s + t — (n + d), with s ^ t ^ n; however it is never ^ — 1 because
K is not embeddable in En+d. Therefore

min [s + t — (n + d)] = 2s - n — d ^ 0

and since s ^ n it follows that s ^ d, and the proof is completed.

The author of this paper wishes to express his grateful acknow-
ledge to Professor Branko Griinbaum for many helpful discussions
and, in particular, for his excellent encouragement.
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