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TORSION IN BBSO

JAMES D. STASHEFF

The cohomology of BBSO, the classifying space for the
stable Grassmanian BSO, is shown to have torsion of order
precisely 2 r for each natural number r. Moreover, the ele-
ments of order 2r appear in a pattern of striking simplicity.

Many of the stable Lie groups and homogeneous spaces have tor-
sion at most of order 2 [1, 3, 5]. There is one such space, however,
with interesting torsion of higher order. This is BBSO = SU/Spin
which is of interest in connection with Bott periodicity and in connec-
tion with the J-homomorphism [4, 7]. By the notation Sϊ7/Spin we
mean that BBSO can be regarded as the fibre of B Spin -+BSU or
that, up to homotopy, there is a fi.bration

SZ7-> BBSO-+ £Spin

induced from the universal SU bundle by B Spin —>BSU. The mod
2 cohomology H*(BBSO; Z2) has been computed by Clough [4]. The
purpose of this paper is to compute enough of H*(BBSO; Z) to obtain
the mod 2 Bockstein spectral sequence [2] of BBSO.

Given a ring R, we shall denote by R[x{ \iel] the polynomial
ring on generators x{ indexed by elements of a set I. The set I will
often be described by an equation or inequality in which case i is to
be understood to be a natural number. Similarly E(xt \iel) will de-
note the exterior algebra on generators x{. In this case, we will need
only R — Z2.

Let us recall the results on B Spin as given by Thomas [6] and
on BBSO as given by Clough [4].

H*(B Spin; Z2) e* Z2[w{ \ ί Φ 2j + 1]

where w{ is (the image of) the Stiefel-Whitney class wt.

H*(B Spin; Z) ~ Z[Qt \ i > 0] φ f

where 2T = 0 and Qi e H4i.

H*(BBSO; Z2) ** E(e{ \ ί ^ 3)

where e^H1 and is the image of wt if i Φ 2j + 1 while e23 +1 maps
to an indecomposable element in H*(SU; Z2).

Now let βEr denote the mod 2 Bockstein spectral sequence of
BBSO [2]. In particular, βE2 = Ker Sq1/Jm Sq1. Now Sq'w2i = w2i+1 in
BSO and Sq'w2i+ι = 0 while Sq%j = 0 in B Spin. We will see that
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e2j+1 can be chosen to have Sq1e25+ι = 0 except for Sq% = e4. Thus

βE2 = E(e3eiy β22+<, vu+1 \ i > 0)

where v4i+1 = e2ie2i+1 except v2j+1 = e2J+1; j > 1.

THEOREM 1.

βEr & E(e5e4 e2r, e2r+i, vu+1 \ i > 0)

<md dr(e3 e2r) = e2r+1 modulo decomposable elements.

To prove Theorem 1, we will exhibit torsion of order 2r for all r.

THEOREM 2. In H*(BBS0; Z), we have

2rQ2r Φ 0 and 2r+1Q2r - 0 .

H*(BBS0; Z2). We recall some of Clough's observations on
H*(BBS0; Z2). We know H*(SU; Z2) = E{y, \ ί > 1) where yt e H2i+ί

transgresses universally to the mod 2 reduction of the Chern class c<
and hence to the image of w\ in B Spin. Thus w\ — 0 in BBSO for
i ^ 2 j + 1 and y2j is the restriction of a class β2i+1+1. In particular
since Sq23(w2J_1+1)

2 = (^2y+1)
2 we can take e2J+1 to be Sq^^Sq23"2

S<fSq2e3. The class e3 is uniquely determined (H\BBS0; Z2) ^ Z2) and
this definition of e23 +1 implies Sq1e2j+i+1 = (β2ί+1)

2 = 0 if el = 0. The
only alternative to ê  = 0 is el — e6; there is no other class in this
dimension. Since Sq^ = wΊ in β Spin and wβ, ^ 7 map to eβ, β7, we
have S^X = e7 but Sq\ez)

2 = 0; therefore 63 must be zero.

H*(BBS0, Z). Consider BBSO as the fibre of B Spin->BSU.

The latter map factors: B Spin-^-> BSO—>BSU. Recall that

H*(BSU; Z) = Z[ct \ i > 1] and H*(BS0; Z) = ZIP,} 0 T

where T is the torsion ideal, 2T7 = 0, c2ί+1 maps into Γ and c2i maps
to P;. To determine Im ( # * ( £ Spin)) in H*(BBS0), we need to know
7Γ*[P,] in i

THEOREM 3 (Thomas [6]). // i is not a power of 2, π*P{ =
i - 2\ r > 0, π*P 2 i = 2Q2J + QJ. - π*Φ2j. π*P, = 2Qlβ

LEMMA. π*02 i maps iwίo Im T c H*(BBS0).

Proof. H*(BS0; Z) maps onto Im Γ in H*{BBSO) since H*(BSU)
maps onto the ^[P^] part.

Since 7Γ*P,. goes to zero in BBSO, we have in H*(BBS0; Z)
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2Q2j = - Q) + t where 2t = 0 and j = 2r .

20, = 0 .

By iteration we find

r = ± 2Q2rQ2r_1 . . . Q2(QX)
2 = 0 .

To determine the order of Q2i in BBSO, consider Γ(u | 2u = 0), a divided
polynomial algebra on a single generator u of dimension 4 and order
2; i.e., additively JΓ has generators y^u) in dimension 4i and the mul-
tiplication table is yi(u)y3 (u) = (ί, j)yi+j(u) where (i, i) is the binomial
coefficient {(i + j)l/iljl}.

In particular i!7»(^) = u\
We construct a map / from Im {H*{B Spin; Z) -^H*(BBS0; Z))

to i"1 by mapping T to zero, Q{ to zero for i Φ 2j and Q2i to
-Ύ,(f(Q2j-i)) with /(Qx) - w. Since 2Q2J = - Q^ί, + π*Φ2j, and <?2,
goes into Im f in BBSO, the map / is well defined. Since for any
x, the order of y2(x) is twice the order of x, we have

ord/(Qa,) = 2ord/(Q2i-i) = 2>ord/(Q1) = 2^ .

Thus the order of Q2j is at least 2j+1 and that 2j+1Q2i is in fact zero
we have already seen.

Thus we have 2r torsion for each r. From the exact cohomology

sequence derived from 0—>Z >Z—>Z2r—>0, we see that Q2r-i =
β™rxr for some class xr e H*(BBS0; Z2r), where /9~ is the connecting
homomorphism H*( Z2r)-> H*+ι{ Z).

LEMMA. (/5^. r̂)2 = dr(xr)2 where ( )2 means reduction mod 2.

Proo/. Recall how dr is defined: dr(x) = (/92

oo(^)/2r-1)2. From the
commutativity of the diagram

2 r-l

Zd > ZJ > ZJ2

it follows that β~ = 2r-1/S2

oo

r. In particular, dr(xr)2 = (Q2r-ή2. Ac-
cording to Thomas, (Q2r-i)2 = π*(w2r+i + ^2r+i) where ψ2T+i is decomposable.
In particular, (Qί)2 = TΓ4.

We prove Theorem 2 by induction. Since

Sqιw2i = w2i+1 and S^Wgi+i = 0 ,

we know Sg 1 ^ = β2ί+1 and Sq1e2i+1 = 0 unless i = 2y. Since we have
chosen e2J+1 — Sq23"1 Sq2e3, we have Sq1e2j+ι = (e2j-i+1)

2 = 0 for
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j >̂ 2. For j = l, we have Sq^ = e4 because β4 = (Qx)2 which is in
the image of Sq1 since 2Qι = 0.

Thus

β E 2 = K e r

= E(e,e4) (g) # ( e 2 ί β 2 ί + 1 1 2 < i ^= 2 0 ® E ( e i S + ι , e 2 J + 1 \ j ^ 2 ) .

Since cZ2(x2)2 = (Q2)2 = e8, we must have £2 = β3β4.
In general dr(xr)2 = (Q2r~ι)2 = e2r+1 modulo decomposables. Now

consider H*(BBSO; Q). Since H*(BSO; Q) = Q[Pi] with the usual dia-
gonal m*^) = Σi+*=< ^ 0 P*, we have H*(BBSO; Q) = E(Rd where
dim iϋ; € £Γ4i+1. Thus βE* = E(Sii+1) and the only possibility is

S4i+1 = e2ie2i+1 i Φ 2j ,

modulo terms decomposable in terms of the S 4 ί + 1 . This leaves e3β4

e2r as the only possibility for xr, i.e., dr(β3e4 ••• e2r) = e2r+i mod de-

composables as claimed.
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