REPRESENTATION OF REAL NUMBERS BY GENERALIZED GEOMETRIC SERIES

E. A. Maier

We shall say that the series of real numbers, $\quad \sum_{i=0}^{\infty} 1 / a_{i}$, is a generalized geometric series (g.g.s.) if and only if $a_{i}^{2} \leqq a_{i+1} a_{i-1}$ for all $i \geqq 1$. (Note that the series is geometric if and only if equality holds.) In this paper we investigate the representation of positive real numbers less than or equal to one by generalized geometric series of the form $\sum_{i=0}^{\infty} x^{i} / c_{i}$ where the c_{i} are positive integers and $x \geqq 1$.

1. Preliminary results.

Lemma 1. If $\sum_{i=0}^{\infty} 1 / a_{i}$ is a g.g.s. and

$$
\left|a_{k}\right|<\left|a_{k+1}\right|, \text { then } \sum_{i=k+1}^{\infty}\left|\frac{1}{a_{i}}\right| \leqq \frac{1}{\left|a_{k+1}\right|-\left|a_{k}\right|}
$$

Proof. Since $\left|a_{k} / a_{k+t}\right| \leqq\left|a_{k} / a_{k+1}\right|^{t}$ for all $t \geqq 1$, we have

$$
\sum_{i=k+1}^{\infty} \frac{1}{\left|a_{i}\right|} \leqq \frac{1}{\left|a_{k}\right|} \sum_{i=1}^{\infty}\left|\frac{a_{k}}{a_{k+1}}\right|^{t}=\frac{1}{\left|a_{k+1}\right|-\left|a_{k}\right|}
$$

The following theorem readily follows from Lemma 1.

Theorem 1. The g.g.s. $\sum_{i=0}^{\infty} 1 / a_{i}$ converges if and only if there exists k such that $\left|a_{k}\right|<\left|a_{k+1}\right|$.

Theorem 2. Let $\sum_{i=0}^{\infty} 1 / a_{i}$ be a g.g.s. with $0<a_{0}<a_{1}$. Let $\alpha=$ $\sum_{i=1}^{\infty} 1 / a_{i}, S_{k}=\sum_{i=0}^{k} 1 / a_{i}$ and $t_{k+1}=a_{k+1} / a_{k}-1$. Then
(i) the sequence of half-open intervals $\left\{\left(S_{k}, S_{k}+1 /\left(a_{k+1}-a_{k}\right)\right]\right\}$ is a sequence of nested intervals whose intersection is α,
(ii) $\quad t_{k} \leqq t_{k+1} \leqq 1 / a_{k}\left(\alpha-S_{k}\right)$.

Proof. Since the series is a g.g.s., we have

$$
\frac{1}{a_{k+1}-a_{k}} \geqq \frac{1}{a_{k+1}}+\frac{1}{a_{k+2}-a_{k+1}}
$$

Hence the sequence of intervals in (i) above is nested. Also $a_{k}<a_{k+1}$ for all $k \geqq 0$. Thus, using Lemma 1 ,

$$
\begin{equation*}
S_{k}<\alpha \leqq S_{k}+\frac{1}{a_{k+1}-a_{k}}=S_{k}+\frac{1}{a_{k} t_{k+1}} \tag{1}
\end{equation*}
$$

Since $a_{k} / a_{k+1} \leqq a_{0} / a_{1}$ for all $k \geqq 0$, we have

$$
0 \leqq \lim _{k \rightarrow \infty} \frac{1}{a_{k+1}-a_{k}} \leqq \lim _{k \rightarrow \infty} \frac{1}{a_{k}\left(\frac{a_{1}}{a_{0}}-1\right)}=0
$$

and it follows from (1) that the intervals converge to α.
Inequalities (ii) are obtained from (1) and the definition of t_{k}.
Corollary. Let $x>0$ and let $\alpha=\sum_{i=0}^{\infty} x_{i} / c_{i}$ be a g.g.s. with $0<c_{0} x<c_{1}$; let $S_{k}=\sum_{i=0}^{k} x^{i} / c_{i}$ and $s_{k+1}=c_{k+1} / c_{k}-1$. Then
(i) the sequence of half-open intervals $\left\{\left(S_{k}, S_{k}+x^{k+1} /\left(c_{k+1}-x c_{k}\right)\right]\right\}$ is a sequence of nested intervals whose intersection is α,
(ii) $s_{k} \leqq s_{k+1} \leqq x^{k+1} /\left(c_{k}\left(\alpha-S_{k}\right)\right)+(x-1)$.

Proof. Apply the theorem with $a_{k}=c_{k} / x^{k}$ observing that in this case

$$
t_{k+1}=\frac{c_{k+1}}{x c_{k}}-1=\frac{s_{k+1}+1}{x}-1
$$

3. The representation of reals. The corollary to Theorem 2 suggests an algorithm for constructing a g.g.s. of the form $\sum_{i=0}^{\infty} x^{i} / c_{i}$, where the c_{i} are integers and $x \geqq 1$, which converges to a given positive real number $\beta \leqq 1$.

To obtain such a series let $\left\{s_{0}, s_{1}, s_{2} \cdots\right\}$ be any sequence of positive integers such that $s_{0}=[1 / \beta]$ and, for $k \geqq 0$,

$$
\max \left\{\frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}-1, s_{k}-1\right\}<s_{k+1} \leqq \frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}+(x-1)
$$

where $c_{k}=\prod_{j=0}^{k}\left(s_{j}+1\right)$ and $S_{k}=\sum_{j=0}^{k} x^{j} / c_{j}$.
Such a sequence of integers exists since

$$
\begin{aligned}
& c_{k}\left(\beta-S_{k}\right)=c_{k-1}\left(s_{k}+1\right)\left(\beta-S_{k-1}\right)-x^{k} \\
& \quad \leqq c_{k-1}\left(\frac{x^{k}}{c_{k-1}\left(\beta-S_{k-1}\right)}+x\right)\left(\beta-S_{k-1}\right)-x^{k}=x c_{k-1}\left(\beta-S_{k-1}\right)
\end{aligned}
$$

and hence

$$
s_{k} \leqq \frac{x^{k}}{c_{k-1}\left(\beta-S_{k-1}\right)}+(x-1) \leqq \frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}+(x-1)
$$

The resulting series, $\sum_{i=0}^{\infty} x^{i} / c_{i}$ where $c_{i}=\prod_{j=0}^{i}\left(s_{j}+1\right)$, is a g.g.s. since $s_{k+1} \geqq s_{k}$. Also since $\beta \leqq 1$,

$$
c_{1}=\left(s_{1}+1\right) c_{0}>\frac{c_{0} x}{c_{0} \beta-1}=\frac{c_{0} x}{\left(\left[\frac{1}{\beta}\right]+1\right) \beta-1} \geqq x c_{0} .
$$

Thus the series satisfies the hypotheses of the corollary to Theorem 2. Now from the manner in which the sequence $\left\{s_{k}\right\}$ has been obtained, we have

$$
\frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}-1<s_{k+1} \leqq \frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}+(x-1)
$$

and thus

$$
\begin{aligned}
S_{k+1} & =S_{k}+\frac{x^{k+1}}{c_{k}\left(s_{k+1}+1\right)}<\beta \leqq S_{k}+\frac{x^{k+1}}{c_{k}\left(s_{k+1}+1-x\right)} \\
& =S_{k}+\frac{x^{k+1}}{c_{k+1}-x c_{k}} .
\end{aligned}
$$

Therefore, by (i) of the corollary, $\beta=\sum_{i=0}^{\infty} x^{i} / c_{i}$.
If $x \neq 1$, the sequence $\left\{s_{k}\right\}$ obtained by the above process is not unique. For example, if $\beta=1$ and $x=2$, we have $s_{0}=1$,

$$
\begin{aligned}
\max & \left\{\frac{x}{c_{0} \beta-1}-1, s_{0}-1\right\} \\
& =\max \{1,0\}=1 \text { and } \frac{x}{c_{0}-1}+x-1=3
\end{aligned}
$$

Thus there are two possible values for s_{1}. To obtain uniqueness, we must further restrict the s_{k}. One restriction that leads to a unique representation is to require that $s_{k} \geqq x s_{k-1}$. We now turn our attention to series which satisfy this condition.

Theorem 3. Let $s>0, x \geqq 1$. For $k \geqq 0$, let $s_{k}=x^{k} s, c_{k}=$ $\prod_{i=0}^{k}\left(s_{i}+1\right)$. Then $\sum_{i=0}^{\infty} x^{i} / c_{i}=1 / s$; that is

$$
\frac{1}{s}=\frac{1}{s+1}+\frac{x^{2}}{(s+1)(x s+1)}+\frac{x^{2}}{(s+1)(x s+1)\left(x^{2} s+1\right)}+\cdots
$$

Proof. Let $S_{k}=\sum_{i=0}^{k} x_{i} / c_{i}$. We shall show by induction that $S_{k}+1 / c_{k} s=1 / s$ for all $k \geqq 0$. For $k=0$, we have

$$
s_{0}+\frac{1}{c_{0} s}=\frac{1}{c_{0}}\left(1+\frac{1}{s}\right)=\frac{1}{s+1}\left(\frac{s+1}{s}\right)=\frac{1}{s} .
$$

If $S_{k}+1 / c_{k} s=1 / s$, then

$$
\begin{aligned}
S_{k+1} & +\frac{1}{c_{k+1} s}=S_{k}+\frac{x^{k+1}}{c_{k+1}}+\frac{1}{c_{k+1} s} \\
& =\frac{1}{s}-\frac{1}{c_{k} s}+\frac{1}{c_{k}}\left(\frac{s x^{k+1}+1}{s\left(s x^{k+1}+1\right)}\right)=\frac{1}{s}
\end{aligned}
$$

It also follows by induction that $c_{k}>(s+1)^{k}$ and hence, since $s+1>1$, $\lim _{k \rightarrow \infty} 1 / c_{k} s=0$. Thus $\lim _{k \rightarrow \infty} S_{k}=\lim _{k \rightarrow \infty}\left(1 / s+1 / c_{k} s\right)=1 / s$.

Theorem 4. Let $x \geqq$. Let $\left\{s_{0}, s_{1}, s_{2}, \cdots\right\}$ be a sequence of positive integers such that $s_{k} \geqq x s_{k-1}$ for all $k \geqq 0$ and let $c_{k}=\prod_{i=0}^{k}\left(s_{i}+1\right)$. Then $\sum_{i=0}^{\infty} x^{i} / c_{i}$ is a convergent g.g.s. Furthermore if $\alpha=\sum_{i=0}^{\infty} x^{i} / c_{i}$ and $S_{k}=\sum_{i=0}^{k} x_{i} / c_{i}$ then
(i) the sequence of half-open intervals $\left\{\left(S_{k}, S_{k}+x^{k+1} /\left(c_{k+1}-c_{k}\right)\right]\right\}$ is a sequence of nested intervals whose intersection is α,
(ii) $s_{k+1}=\left[x^{k+1} / c_{k}\left(\alpha-S_{k}\right)\right]$ for all $k \geqq 0, s_{0}=[1 / \alpha]$,
(iii) if x is rational, then α is rational if and only if $s k=x s_{k-1}$ for all k sufficiently large.

Proof. Since $c_{i} / c_{i-1}=s_{i}+1 \leqq s_{i+1}+1=c_{i+1} / c_{i}$, it follows that

$$
\left(\frac{c_{i}}{x^{i}}\right)^{2} \leqq\left(\frac{c_{i-1}}{x^{i-1}}\right)\left(\frac{c_{i+1}}{x^{i+1}}\right)
$$

and hence $\sum_{i=0}^{\infty} x^{i} / c_{i}$ is a g.g.s. The series converges by Theorem 1 since $c_{0}<c_{1} / x$.

To establish (i), we first observe that $s_{k+j+1} \geqq x^{j} s_{k+1}$ for all $j \geqq 0$. Thus, using Theorem 3, we have

$$
\begin{aligned}
S_{k}< & \alpha=S_{k}+\sum_{i=0}^{\infty} \frac{x^{k+j+1}}{c_{k+j+1}} \\
= & S_{k}+\frac{x^{k+1}}{c_{k}}\left(\frac{1}{s_{k+1}+1}+\frac{x}{\left(s_{k+1}+1\right)\left(s_{k+2}+1\right)}\right. \\
& \left.+\frac{x^{2}}{\left(s_{k+1}+1\right)\left(s_{k+2}+1\right)\left(s_{k+3}+1\right)}+\cdots\right) \\
\leqq & S_{k}+\frac{x^{k+1}}{c_{k}}\left(\frac{1}{s_{k+1}+1}+\frac{x}{\left(s_{k+1}+1\right)\left(x s_{k+1}+1\right)}\right. \\
& \left.+\frac{x^{2}}{\left(s_{k+1}+1\right)\left(x s_{k+1}+1\right)\left(x^{2} s_{k+1}+1\right)}+\cdots\right) \\
= & S_{k}+\frac{x^{k+1}}{c_{k}} \cdot \frac{1}{s_{k+1}}=S_{k}+\frac{x^{k+1}}{c_{k+1}-c_{k}} .
\end{aligned}
$$

Furthermore, since $s_{k+2}-x s_{k+1} \geqq 0$, we have

$$
\begin{gathered}
\frac{x^{k+1}}{c_{k} s_{k+1}}-\frac{x^{k+2}}{c_{k+1} s_{k+2}}=\frac{x^{k+1}}{c_{k+1}}\left(\frac{s^{k+1}+1}{s_{k+1}}-\frac{x}{s_{k+2}}\right) \\
=\frac{x^{k+1}}{c_{k+1}}\left(1+\frac{1}{s_{k+1}}-\frac{x}{s_{k+2}}\right) \geqq \frac{x^{k+1}}{c_{k+1}} .
\end{gathered}
$$

Thus

$$
S_{k+1}+\frac{x^{k+2}}{c_{k+1} s_{k+2}}=S_{k}+\frac{x^{k+1}}{c_{k+1}}+\frac{x^{k+2}}{c_{k+1} s_{k+2}} \leqq S_{k}+\frac{x^{k+1}}{c_{k} s_{k+1}}
$$

and the sequence of intervals in (i) is nested. Since

$$
S_{k}+\frac{x^{k+1}}{c_{k+1}-c_{k}} \leqq S_{k}+\frac{x^{k+1}}{c_{k+1}-x c_{k}}
$$

by part (i) of the corollary to Theorem 2, the intersection of the intervals is α.

To establish (ii), we have from (i) that

$$
S_{k}+\frac{x^{k+1}}{c_{k}\left(s_{k+1}+1\right)}=S_{k+1}<\alpha \leqq S_{k}+\frac{x^{k+1}}{c_{k} s_{k+1}}
$$

Solving these inequalities for s_{k+1}, we have

$$
\begin{equation*}
\frac{x^{k+1}}{c_{k}\left(\alpha-S_{k}\right)}-1<s_{k+1} \leqq \frac{x^{k+1}}{c_{k}\left(\alpha-S_{k}\right)} \tag{2}
\end{equation*}
$$

Also, since $s_{k} \geqq x^{k} s_{0}$, using Theorem 3, we have

$$
\begin{gathered}
\frac{1}{s_{0}+1}=S_{0}<\alpha \leqq \frac{1}{s_{0}+1}+\frac{1}{\left(s_{0}+1\right)\left(x s_{0}+1\right)} \\
+\frac{x^{2}}{\left(s_{0}+1\right)\left(x s_{0}+1\right)\left(x^{2} s_{0}+1\right)}+\cdots=\frac{1}{s_{0}}
\end{gathered}
$$

and hence $s_{0}{ }^{\top}=[1 / \alpha]$.
We turn now to the proof of (iii). Suppose $s_{k}=x s_{k-1}$ for all $k>k_{0}$. Then $s_{k_{0}+j}=x^{j} s_{k_{0}}$ for all $j \geqq 0$. Thus, again using Theorem 3 , we have

$$
\begin{aligned}
\alpha= & S_{k_{0}-1}+\frac{x^{k_{0}}}{c_{k_{0}-1}}\left(\frac{1}{s_{k_{0}+1}}\right. \\
& \left.+\frac{x}{\left(s_{k_{0}+1}\right)\left(x s_{k_{0}}+1\right)}+\frac{x^{2}}{\left(s_{k_{0}+1}\right)\left(x s_{k_{0}+1}\right)\left(x^{2} s_{k_{0}+1}\right)}+\cdots\right) \\
= & S_{k_{0}-1}+\frac{x^{k_{0}}}{c_{k_{0}-1}} \cdot \frac{1}{s_{k_{0}}}
\end{aligned}
$$

which is rational if x is rational.
Conversely, suppose α is rational. From (2) we have

$$
\frac{x^{k+1}}{s_{k+1}+1}<C_{k}\left(\alpha-S_{k}\right) \leqq \frac{x^{k+1}}{s_{k+1}} .
$$

Thus

$$
\begin{align*}
0< & c_{k+1}\left(\alpha-S_{k+1}\right)=c_{k+1}\left(\alpha-S_{k}-\frac{x^{k+1}}{c_{k+1}}\right) \\
& =c_{k}\left(s_{k+1}+1\right)\left(\alpha-S_{k}\right)-x^{k+1} \tag{3}\\
& \leqq c_{k}\left(\frac{x^{k+1}}{c_{k}\left(\alpha-S_{k}\right)}+1\right)\left(\alpha-S_{k}\right)-x^{k+1}=c_{k}\left(\alpha-S_{k}\right) .
\end{align*}
$$

Hence, if $\alpha=p / q$, for all k we have

$$
0<c_{k+1}\left(p-S_{k+1} q\right) \leqq c_{k}\left(p-S_{k} q\right)
$$

Therefore, noting that $c_{k} S_{k}$ is an integer, $\left\{c_{k}\left(p-S_{k} q\right)\right\}$ is a nonincreasing sequence of positive integers and thus for k sufficiently large, say $k>k_{0}$, the terms of the sequence become constant. Hence, for $k>k_{0}$, $c_{k+1}\left(\alpha-S_{k+1}\right)=c_{k}\left(\alpha-S_{k}\right)$ and thus equality must hold in (3). Therefore $s_{k+1}=x^{k+1} / c_{k}\left(\alpha-S_{k}\right)$ for $k>k_{0}$ and, for k sufficiently large,

$$
s_{k+1}=\frac{x^{k+1}}{c_{k}\left(\alpha-S_{k}\right)}=x \cdot \frac{x^{k}}{c_{k-1}\left(\alpha-S_{k-1}\right)}=x s_{k} .
$$

Theorem 5. Let $0<\beta \leqq 1$ and let x be a positive integer. Then there exists a unique sequence of positive integers $\left\{s_{0}, s_{1}, s_{2} \cdots\right\}$ such that $s_{k} \geqq x s_{k-1}$ for $k \geqq 1$ and $\beta=\sum_{i=0}^{\infty} x^{i} / c_{i}$ where $c_{i}=\prod_{i=0}^{k}\left(s_{i}+1\right)$.

Proof. Define

$$
s_{0}=\left[\frac{1}{\beta}\right], \quad c_{0}=s_{0}+1, \quad S_{0}=\frac{1}{c_{0}}
$$

and, for $k>0$,

$$
s_{k+1}=\left[\frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}\right], \quad c_{k+1}=\left(s_{k+1}+1\right) c_{k}, \quad S_{k+1}=S_{k}+\frac{x^{k+1}}{c_{k+1}}
$$

Then, in the same manner as inequality (3) was obtained, we have

$$
c_{k+1}\left(\beta-S_{k+1}\right) \leqq c_{k}\left(\beta-S_{k}\right)
$$

Thus

$$
\begin{aligned}
s_{k+1} & >\frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}-1 \geqq \frac{x^{k+1}}{c_{k-1}\left(\beta-S_{k-1}\right)}-1 \\
& =x\left(\frac{x^{k}}{c_{k-1}\left(\beta-S_{k-1}\right)}\right)-1 \geqq x s_{k}-1 .
\end{aligned}
$$

Since s_{k+1} and $x s_{k}-1$ are integers, it follows that $s_{k+1} \geqq x s_{k}$. Also from the definition of s_{k+1},

$$
\frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}-1<s_{k+1} \leqq \frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}
$$

Therefore

$$
S_{k}<S_{k+1}=S_{k}+\frac{x^{k+1}}{c_{k+1}}<\beta \leqq S_{k}+\frac{x^{k+1}}{c_{k}\left(\beta-S_{k}\right)}
$$

Thus from Theorem 4 (i), $\beta=\sum_{i=0}^{\infty} x^{i} / c_{i}$. The uniqueness of the sequence $\left\{s_{k}\right\}$ follows from Theorem 4 (ii).

Received March 20, 1968.
University of Oregon and
Pacific Lutheran University

