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ON ASYMPTOTIC DENSITY IN #-DIMENSIONS

A. R. FREEDMAN

The notion of asymptotic density for sets of nonnegative
integers is generalized to sets of n-dimensional “nonnegative”
lattice points., The additive properties of sets relative to this
density are discussed. Some of the results are extended to the
infinite dimensional case. Finally, natural density is defined
and discussed.

To the author’s knowledge, the only attemps at generalizing asymp-
totic density are to be found in Christopher [3] and, more significantly,
in Buck [2]. In §5, it is proved that our density always differs on
certain sets from those given in these articles. Moreover, neither of
the above mentioned papers discusses additive properties.

In § 2 the asymptotic density for subsets of the set of nm-tuples of
nonnegative integers is defined and various equivalent forms are con-
sidered. In § 3 some density results involving the sum of sets are
obtained. In §4 some of these results are extended to the infinite
dimensional case. Finally, in § 5, upper asymptotic density and natural
density are defined and a measure theoretic property of the latter is
proved.

2. Definitions, etc. Let n be a positive integer and S the set
of all n-tuples of nonnegative integers. The element (0, ---,0) will be
denoted by 0 and generally the element (x,, ---, ,) by x. For xe S, let

L(x) = {ylyesyyzéxi(?’ = 11 "'yn)}
and
Ulx) ={y|xe L)} .

For a set X S and element x€ S denote by X\x the set of all
ye X,y # x. In general the set theoretic difference will be denoted
by\(rather than —).

Define 27" to be the set

{F'| Fn (S\0) is nonempty and finite; x € FF= L(x) C F'} .
For Fe o7 let
F*={x|xeF;xeLly)\y=yeF}.

F* is just the set of maximal points of F' with respect to the partial
ordering < determined by the equivalence
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96 A. R. FREEDMAN

x<y=xely) .

It is then clear that, for each F'e 97 F = U {L(x)|xe F*}.

For sets A < S the “counting function” of A is defined as follows:
for each X S, A(X) is the cardinality of the set (AN X)\0. Use
of the counting function will be made only when X is finite. Note
especially that 0 is never counted.

Given A S, the K-density of A is defined to be

- {45 eor)
d(A) glb{ S| e}
In the case n = 1 this definition reduces to the ordinary Schnirelmann
density of the set A. This generalization has been considered by
Kvarda [6] and the author [4|. Further generalizations of Schnirelmann
density have been considered by the author in [5].

A property of K-density [4, Lemma 1] can be noted here: if
d(4) < 1(i.e., if A\0 == S\0), then

1) d(A) = glb {g_((g)l]ﬁ*e S F*C S\A} .

For a nonnegative integer N, let
J(N) = {xlxesrmin{xl’ ”'yxn} = N} .

It can be noted that J(N) = S\U(N + 1, ---, N + 1)).
The asymptotic density of a set A S is defined to be

0(4) = }Vim d(A U J(N)) .

With little difficulty it can be proved directly that, in the case n =1,
0(4) is the usual asymptotic density of A, i.e., d(4) = lim, .. A(n)/n.
However, a slightly different proof will be given at the end of this
section. For any dimension », the asymptotic density of a set A exists
since d(4 U J(N)) forms a nondecreasing sequence bounded above by 1.

We proceed to investigate some equivalent forms for 6(4) as well
as some other proporties. First, a number of structure lemmas are
needed concerning lower bounds on the quotients of the number of
elements in certain subsets of S. These seem to be interesting in
themselves.

For integers M, N,n with M > N=0, n > 0, let

— i M+2)" -1 -1 ...
g(M’N’n)—mm{(M+2)”‘—(M—N+1)m m=1, ,n}.

We note that, for fixed N, n, g(M, N, n)— c as M— . Also, for
fixed M, N, if n, > n, then g(M, N, n)) < g(M, N, n,).
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LEMMA 2.1, Let 0 < N< M and xe S such that
M+1=a(i=1,---,n).
If

3

(@ + 1) — II (& — M)
M, N, n, x) = =2 i :
l(xi+1)— l;ll(xi—N)

i

B

T

then f(M, N, n, x) =z (M, N, n).

I

Proof. For n=1, f(M,N,1,x)=(M + 1)/(N + 1) = g(M, N, 1).
Also, for any n, if x =M +1,---, M + 1), then

_ M+2)—1
SO, Ny, %) = g e 2 UL N, ).

We perform a multiple induction. Let k& > 1 and assume the lemma
true for all M, N,n,x with n <k. Let x=(x,,---,2,) be such that
;> M@ =1,--+,k) and, for some j, x; > M + 1, and assume for each
Yy = (yn ot '7?/1«:) with M < Y = "’U’L(IL = 17 "'7k) and! for some jy Y; < @,

that f(M, N, k,y) = g(M, N, k). Without loss of generality we may
assume that x, > M + 1. Now

AM, N, &, x)
[ =1+ DI @+ 1) — (o= 1= M) T (o — D))

=1+ DI @+ D = @ — 1= N) [T (@ — N)]
[T (s + 1) = 1 (2 — D))

+[£12(95i+1)—i1;k12(93i_N)]

= min{f(Mv N) ky (xl _ 1,%2, "'yxk))sf(My N:k - ly(xzy *t %y xk))}
= min{g(M, N; k)’ g(M7 Nyk - 1)} = g(My N’ k) .

This completes the proof.
Note the following simple formulae:
(2) For each xe 8, S(L(x)) = 1~ (z; + 1) — 1,
3) For x,yeS,ye L(x),

S(ix) N U@) = 1T @ — v + 1) = 7(0)

where 7(y) =0 if y 0 and n(y) =1 1if y =0.
(4) For M =0, x¢J(M),
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Sx) N JAD) = 1 @ + 1) — [T @ — )~ 1.
This last follows since
L(x)N J(M) = Lx\[L(x) N U(M + 1, --+-, M + 1))] .
We can now prove
Lemma 2.2, If 0 < N < M and x¢ J(M), then

S(L(x)) S(L(x) n J(M))
S(L(x) N J(N)) = S(L(x) N J(N)) > g(M, N, n) .

Proof. The first inequality is obvious. The middle fraction is

3

i

(@ + 1) — T @ — M) — 1

Il

> f(M, N, n,x) = g(M, N, n) .

3

[ (@ + 1) =TT (@ — N) — 1

||

1

LEemMma 2.3. Assume 0 < N< M,z ¢ J(M), @ = PcC{l,..-,n} and
let y be defined by
[0 ifieP
" e ifieP.
Then

S(L(x) N U(y)) 1
S 1 U nJay) =z M Nm .

Proof. Let P={t,, ---,1%,} where 0 <m <mn. Let S’ be the set
of m-tuples of nonnegative integers. Define i: S— S’ so that h(w) =
(Wi, Wiy, +-+, w; ). For ze S’ and K = 0, define as before L'(z) and
J'(K). From (2) and (3) above we have

S(x) N Uw) = T1 @ — v + 1) = 7()

= [ @, + 1) - 7)
= S(L/((x) + 1 — @) .

Note that A(x) ¢ J'(M). Also, the function % establishes a one-one
correspondence between the sets L(x) N U(y) NJ(N) and L'(h(x)) N J'(N).

Nothing that 0 is in the first set if and only if y = 0 we get
S(L(x) N U(y) N J(N)) = S'(L'(k(x)) N J'(N)) + 1 — n(y).
Thus, using 2.2 and the fact that S'(L'(k(x)) N J(N)) > 0,
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we get
S(L(x) N U(y)) _ S'(L'(h(x))) + 1 — 1(y)
S(L(x) N U(y) N J(N)) S"(L'(k(x)) N J'(N)) + 1 — 7(y)
S'(L'(k(x)))

— 2.8 (L'(h(x) N J'(N))
= %g(M, N, m) = —;-g(M, N, n)

and the lemma is proved.
For an integer M = 0 define

(M) ={F|Fe 25 F*c S\J(M)} .

LEMMA 2.4. If Fe 22 (M) and M — 1> N > 0, then

S(F) SFAJM) - 1
SEnI) ~ SEAIm) =z M-

Proof. The first inequality is obvious so we prove the second. Let
R={x|xceF,e;=zMi=1,.--,n) and z; = M for some j}. First it
is shown that FNJ(M)= U{L(x)|xeR}. If yeFNJ(M), then
ye L(z) for some ze F'* and for some 7, y;,) < M. Let x be defined
by

{zi if 7 1,,
X; = ep - .
Mif ¢ =14,.
Then yeL(x) and xeR so that FNJ(M)cC U{L(x)|xeR}. If
ye U{L(x)|xe R}, then ye L(x)C F for some xe RC F, and since
z; = M for some j,y; < M so that ye J(M).
For xe R let x’ be defined by

, {xiifxi>M
X, =
‘ Oifx,,=M.

Let G(x) = L(x) N U(x’). If x # y, then G(x) and G(y) are disjoint,
for, if ze G(x) N G(y), then, for z, > M, we have x;, = z; < y, and,
otherwise, 2; = M < y, so that x < y. Reversing the argument gives
x=y.

Next it is shown that U {G(x)|xe R} = F N J(M). Clearly
U{G(x)|xeR}c U{L(x)|xeR} = FnJM).
If ye FnJ(M), then the element s defined by
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Y if yu>M

S TAMit g < M

is in R and y < G(s).
Finally, noting that each xe€ R is not in J(M — 1), we have

SEnIy) 250
SENJN) 3, 8(GE) NI
- S(G(x))

= TeF SGx) N JN)
2 %'Q(M— 1’N9 n) .

The last step follows from 2.3. This completes the proof.

Define &” to be the class of all sequences (F’;) in 2%~ which satisfy
the property that for each integer N > 0

im___S(F)
= S(F; N J(N))

LEmMMA 2.5. If (F;) is a sequence such that F;e 2¢°(t), then
(Fi)e A
Proof. Lemma (2.4) says that for ¢ sufficiently large

S(F) > 1
S(F:NJ(N) — 2

g(1 — 1, N, m) — co(i — ) .

THEOREM 2.6. If (F;)e.&” and ACS, then

L A(F)
R T

Proof. Let N > 0. Then

[A U J(N)I(F) A(Fy) + S(F; N J(N))
d(AUJ(N)) = S(F) = S(FY

Hence

im | _AFS) S(F; N J(N))
da v I = im| L+ SEGEEN ]
< lim AF)_ [ SE:NIWN))
e S(F}) fmon S(F))
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= ]Ln_] A_Fl .
== S(FY)

Letting N — o we have the result.

The following theorem shows that d6(4A) can always be obtained
as a limit of quotients A(F})/S(F;) where (F)) is a sequence in &,
Actually, anticipating a subsequent application, a little more is proved.

THEOREM 2.7. For each AC S there exists (F;)e & such that

5(4) = lim AF)
ime S(FY)

Moreover, if 6(A) < 1, we may choose the F; so that F# < S\(A U J(2)).

Proof. If 0(A) =1, then for any sequence (F))e.&”

1:5(A)§1i_mi—)—<li_mﬂ<l

(F;
F= S(F) e SEF) -

and the theorem is proved in this case.
Suppose that 6(4) < 1. For 4 =1, let M(7) be such that

g(M@) — 1,1, m) = 27
and choose F; e 27 so that F¥ c S\(A U J(M(7))) and

[A U JM())|(F) : 1
S < AU M) +

The existence of F; follows from (1) above. From the inclusions
Fxc S\(A U J(M(®z))) < S\(A U J(z)) < S\J(2)

it follows that F,e .27°(¢) so that, by 2.5, (F,)e.s”. Since also
F¥c S\(AU J(z)) it remains only to show that d(A4) is the limit of
the quotients A(F,)/S(F;).
From the inequalities
0< AVJOIF)  AF) _ (JO)F) _ _SEF:NJ(G)
S(F%) S(Fy) —  S(F) S(F)
2 < 1
gM@) —1,4,n) ~— 2°

A

it follows that

i [ [AUJOIF) _ AF) ] -0
S(F%) S(F7) .

1—00
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But also

- [AUJOIF) _
m == = A4

for

~_ [AUJOIF) _ [AUJME)F)
UAVI0) = =g = =gy

gd@uﬂM@»+§-

where both ends approach 6(4) as 7 — . This proves the theorem.

THEOREM 2.8. For each AC S,

34) = _glb  1im AF)
(Fy) e &7 == S(FY)

Proof. Theorems 2.6 and 2.7.

For N=0 and Ac S define

() = g [ AD £ SEOIED | )

THEOREM 2.9. 6(4) = lim,_. d"(4).

Proof. Since, for each Fe %

[AUJWN)IF) - AF)+ S(F N JN))
S(F) - S(F')

it follows that d(4 U J(N)) < d¥(4). Let (F))e.& such that
A(F)[S(F;) — 0(A4)

b

as ¢— oo, Then

AF) + SEFNTN)_ _, 54y
S(F%)

as 17— o, Hence, for each N, d(4A U J(N)) < d"(4) < 6(4) and the
theorem follows.

d"(4) =

THEOREM 2.10. 6(A) = lim,_., d"(A U J(N)).

Proof. As in the proof of Theorem 2.9,
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dAUJ(N)=d(AUJ(N)UJ(N)Sd"(AUJ(N))<0(AUJ(N))=6(4) .
The last equality follows easily from the definition of 4.

In the next theorem the asymptotic density of certain sets is
calculated. They are applied in the proof of Theorem 5.1 below.

THEOREM 2.11. (i) If n=2 and AN J(N) is finite for each
N =0, then 6(A) = 0.
(ii) If S\AC J(N) for some N, then 6(A) = 1.

Proof. (i) For N= 0, let x, y, %5, **+, Z,_.,»~ be chosen so large
that ;v > Nt =1,---,n — 1) and

S(L((#1,x5 ++*, Tprwy N))) > N-S(ANJI(N)) .

Let Fy = L{(x,y, ***, ®y—y,5, N)) so that Fye 5 (Fy,)e.s” (since
Fye 2 (N —1)) and FyCJ(N). Hence

AFy) o [ANJN)(Fy) 1 _
0=0d) = lim e o = M e n ) = =0

(ii) If S\AcC J(N), then AU J(M) = S for M = N.
Thus d(A U J(M)) = d(S) = 1 and the result follows.

To conclude this section we prove that 6 generalizes the usual
asymptotic density.

THEOREM 2.12. In the case m =1, 6(A4) is the usual asymptotic
density of A.

Proof. It is assumed the reader is familiar with the usual nota-
ttion for this case. By 2.6,

0(A) < lim —- A(l)

and, by 2.7, there is a sequence of integers n; such that n, — - as
17— oo and
0(4) = lim =2 A(n) > lim =2 A(z)

i—00 n; A=y /L

3. Some addition theorems. Let A and B be subsets of S and
define A + B to be the set {a + blac A, beB}. If A is a singleton
{x}, then write A + B as x + B. Futhermore, if A < U(y), then define

"A — y to be the set {x|xe S, x + yec A}. Addition of elements in S
is done coordinatewise.

LEmMMA 3.1. If 0e AN B and A(L(x)) + B(L(x)) = S(L(x)), then
xeA + B.
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Proof. This is done in the proof of Theorem 1 in [6].

THEOREM 3.2. If 0€¢ AN B and 6(A) + 6(B) > 1, then
S\(A + B) C J(N)
for some N. This last condition implies that 6(A + B) = 1.

Proof. The last statement is just Theorem 2.11 (ii).
Let ¢ =0(A) +d(B) —1. From the definition of asymptotic density
it follows that, for some integer N,

MAUﬂM»+MBUﬂM»>1+%.

Since L(x)e .2 for each x e S\0, it follows from the last expression
that

[A U J(N)I(L(x)) + [B U J(N)(L(x)) > S(L(x)) + % S(L(x)) .
Let M be so large that g(M, N,, n) >4/e. By Lemma 2.2, if x¢ J(M),

then

S(L(x)) 4
ST 0 ) > g(M, Ny, n) > —-

Hence, for x ¢ J(M),

A(L(x)) + B(L(x)) = [A U J(N)I((L(x)) + [B U J(No)J(L(x))
— 28(L(x) N J(N))

gswu»+gswu»—z%&um>

= S(L(x)) .
Therefore, by Lemma 3.1, x€ A + B so that S\(4A + B)C J(M).

The following theorem shows that the asymptotic density of a set
is invariant under translation.

THEOREM 3.3. d(x + A) = 6(A) for each AC S and xe S.

Proof. If x =0, then x + A = A and the theorem is trivial.
Hence it is assumed that x=0. Furthermore, since x + A and
x + (A\0) differ in at most one point, it may be assumed that 0¢c 4.

It is first shown that d(x + A) = d(4). Let N = max{x, «--, ®,}.
It is sufficient to prove that, for each M = N,
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d((x + A) U J(M)) = d(AU J(M — N)) .

Let Dy=(x+ A UJM) and E, =AU J(M) and let Ge ¥ If
x ¢ G\G*, then G C J(N). To see this let ze G\J(N). Then z; > N =
z(i=1,..-,n) and so x € L(z) C G. Since x # z, x € G\G*, contradiction.
Thus, in the case x ¢ G\G*, for M = N,

D& _ 1z am,.,).
S(G)

Hence, suppose that xe G\G*. It is easily shown that
G =GN Ux)]—xe 2%
Now, for M = N,

Dy (G) = D(G\U(x)) + D,(G N U(x))
= S(G\U(x)) + ([Dyy N U(x)] — x)(G") + 1
= S(G\U(x)) + Ey_x(G') + 1.
The second equality follows from the fact that, first, G\U(x)CJ(M)Z D,
and, second, if xe Zc U(x) and xe HC U(x) with H finite, then

Z(H) =(Z — x)(H—x) +1. Above we have Z= D, N U(x) and H =
G N U(x). The last inequality follows for the fact that

Ey vc|DyNnUx)]—x.
To see this let ze E,,_, and suppose first that z€ A. Then
z+xe(x+ A NUx)cD, NUx)

and so z=(z+x) —xe[D,NUx)] —x. If zeJ(M — N), then

z+xeJM)N Ux) <Dy N U(x) soagain ze [D, N U(x)] —x. Here we

have used the fact that if w e J(4),ve L((J, ---, j)), then w + v € J( + J).
In a similar manner, we obtain

S(G) = S(G\U(x)) + S(G") + 1.
Thus,

Dy(@) - Ey\(G)+ S(G\Ux) +1
5@ T S@) + SG\Ux) +1

MI_)_ g d(EM—N) ¢
S(@)

\%

v

Hence it follows that d(D,) = d(E,—_y).

It remains to show that d(x + A) <d(4). Clearly, for each Ge .27,
(x + A)(G) < AG) +1. Let (G;) €. such that lim,_., A(G,)/S(G;) = 6(A4).
Then
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dx + 4) < lim X AG) o AG) + 1 _ 504

(Gy) S(Gy)
Let AS S and define the generalized Erdos density of A to be
_ A(F)
d(4) =glby—2—7 f .
(4) gb{S(F)_I_l )Fe ﬁ’/A(F)<S(F)}

This density has been studied by Kvarda in [7] where the following
important result is proved.

THEOREM 3.4. (Kvarda). Let A, BC S, 0¢ANB and Fe o~
such that (A + B)(F') < S(F') and for each be BN F there exists
g€ F\(A + B) with be L(g). Then

(A + B)(F) = d(A)-(S(F) + 1) + B(F) .

In particular, the hypotheses of 3.4 will be satisfied if F' is taken
so that FF* < S\(A + B). Using 3.4 the following “mixed” density
result is proved.

THEOREM 3.5. If 0eANB and A= S, then 6(A + B) = min
{1, d.(4) + o(B)}.

Proof. If 6(A + B) =1, the theorem is obvious. Hence assume
that 6(A + B) <1 and denote A + B by C and d,(4) by a,.. For any
Fe o with F*c S\C, by 3.4,

CEF) -
SF) =

B(F)
S(F) °

a, +

Thus, for any N = 0,
CUF) + SFNIN)) - , o BEF)+ SEFNJN))
S(F) = S(F)
L [BUJOIF)
S(F)
> a, + d(BUJ(N)) .

= a,

By 2.7, there exists a sequence (F;)€.&” such that F}c S\C
and lim,_., C(F;)/S(F;) = 4(C).
Then, for each N = 0,

5(C) = lim CED _ jjm CF) + SF; 0 JN)
i S(F7) oo S(F%)

= a, + dBUJWN)) .

Letting N — o we obtain



ON ASYMPTOTIC DENSITY IN n-DIMENSIONS 107

0(C) =z a, + d(B)
and the theorem is proved.

As an example of an application of Theorem 2.10 the following
theorem is proved.

THEOREM 3.6. If ANBCJ(N) for some N, then 6(AUB) =
10(A) + o(B). In particular, if 0e¢ ANBCJ(N), then (A + B) =
_0(A) + o(B).

Proof. The second statement follows easily from the first since
A+ BDAUBIif 0eANB.

Let C=AUB. If M= N, then ANBcCJ(M) and so for any
Fe o

[C U JAD|(F) = AF\J(M)) + BF\J(M)) + S(F N J(M))
=[AU JDIF) + [BU J(M)F) — S(F N J(M)) .

Thus, for M = N, Fe 2%,

[CUJIDIF) + SENJM)) _ [AUJBOIE) , [BUJM)|F)
S(F) S(F) S(F)
= d(A U J(M)) + d(B U JM)) .

Hence, by definition of d”,
d"(CU J(M) = d(A U J(M)) + d(B U J(M)) .
Letting M — <, we obtain by 2.10,
0(C) = 6(A) + o(B) .

The proofs of the following two results are left for the reader.
The results are to be compared with Buck’s measure theoretic deve-
lopment of asymptotic density in [1].

THEOREM 3.7. Let AC S and let k,j be positive integers. 1<
Jj =n. Suppose that, for each xe€ A, k|x;. Define the set

B:{<x“ ., ";Cf, ,xn>

Then 3(B) = ko(A).

(x,, ---,x,,)eA} .

THEOREM 3.8. Let {a;j+b;]7=0,1,2, ...} = P(a;, b;) be n arith-
metric progressions (a; > 0,0, = 00¢ =1, +--,n)) Let

A = P(a,,b) X -+ X P(a,,b,)S.
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Then

o4) =TI al :

4. Extensions to the infinite dimensional case. For this section
the following notation is adopted. The set of all n-tuples of nonne-
gative integers will be denoted by I,. The set of all infinite sequences
x = («, «,, ---) of nonnegative integers with the property that only
finitely many terms are different from 0 will be denoted by Q. For
x €@, let k(x) be the largest index %k such that z, -+ 0. For ACQ,
n a positive integer, let

An - {xu "'7xn) Ix = (xu Loy "')GA, k(x)é n} .
The asymptotic density of a set A C Q is defined to be
9(4) = limo(4,) .

Although K-density can easily be extended to @ (see [5]), there
does not seem to be any direct way of obtaining a good definition of
asymptotic density from it as was done in the finite dimensional case.
In particular, it is not clear how one should define the J(N) (if, indeed,
this approach is at all possible). The definition given here, however,
seems worthy enough as the following results indicate.

THEOREM 4.1. (Extension of 38.2). If A, BCQ,0cANB, and
0(A) + d(B) > 1, then there exists an integer M and a sequence of
nonnegative integers Ny, Ny, -+ such that, 1f xe€Q\(A + B) and
k(x) = M, then x; < N, for some 1,1 <1 < k(x). This condition
implies that 6(A + B) = 1.

Proof. From 6(A) + o(B) > 1, it follows that there exists an
M > 0 such that, if » = M, then 46(4,) + 6(B,) > 1. Thus, by 3.2,
for » = M, there exists an integer N, such that I\(4, + B,) C J(NV,).
Observe that, for each n, A, + B, = (A + B),. Hence, if xecQ\(4 + B)
and k(x) =k = M, then (%, ---, x,) e ,\(A + B), = L,\(A,+B,) C J(N})
so that there is an 7,1 < 7 < k, such that =, < N,.

To prove the last statement observe that, for n = M, 6(A, + B,) = 1.
Thus

3(A + B) = limd((4 + B),) = limd(4, + B,) = 1.

THEOREM 4.2. (Haxtension of 3.3). If ACQ and xcQ, then
o(x + A) = o(4).
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Proof. Define y, = (x,, -+, x,) where x = (x,, %,, - - -) and observe
that, for » = k(x), we have (x + 4), =y, + A,. Hence, using 3.3,
o(x + A) = lim, .. o((x + 4),) = lim, ... 0(y, + 4,) = lim, ... 6(4,) = 9(4).

We proceed to extend Theorem 3.5. For xe€@, let L(x) =
wlyeQ,y; <xz(i=1,2,---)}. Then let 2 be the class of all non-
empty finite subsets F' of @ with at least one nonzero element satisfying
the condition: xe€ F = L(x)C F.

For AcCQ, define

d,(4) = glb {ﬁl—'Fe S AF) < Q(F)} .

THEOREM 4.3. For AZQ,
d(A) = limd,(4,) .
Proof. Denote by .27, the class .27 defined in I,. Since A # Q.

there exists N such that, for all w = N, A = I,. Let Fe 9, such
that A.(F) < I(F'). Define F'e 2 by

F' = {x|er,k(X) é ny(xu "'9xn)€F} .
Then A, (F) = A(F') and I,(F') = Q(F") so that

AF)  __AF) gy
LEF)+1 QEFy+1 -

Thus d,(4,) = d,(A) for all » = N.
Next, note that d,(4,) forms a nonincreasing sequence. To see
this, let F'e 2%, such that A,(F) < I,(F'). Then
Fo = {(mly -'-,xn,0)|(901, "’yxn)eF}e %+1

and

A, (F) _ A, (F) > d(4,.,)
LF)+1 IL(F)+1 - "

so that d.(4,) = d,(4..,). Hence lim,_., d,(4,) exists and is = d,(4).
Now let F'e .2 such that A(F') < Q(F'). Let n=max{k(x)|xe F}
and set F'={=x, ---,2,)]| (@, %, ---)eF}. It follows that
F'ec o7, A, (F') = A(F') and I,(F'") = Q(F). Thus
A(F") A,(F")

QF)+1 IL(F)+1 = dy(4,) z lim d,(4,) .
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Hence d,(A) = lim,_..d,(A,) and the theorem is proved.

THEOREM 4.4. (Extension of 3.5). If A,BC@Q, 0¢ANB and
A+ Q, then

3(A + B) = min {1, d(4) + 4(B)} .

Proof. By 3.5, for all sufficiently large =,
o((A + B),) = 6(A, + B,) =z min{l, di(4,) + 6(B)} .
Thus
0(A + B) = %2 0((A + B),)
= lim min {1, dy(A4,) + 3(B,))

n—oo

— min {1, lim (d,(4,) + 8(B.))}
> min {1, lim d,(4,) + lim 5(B,)}

n—oo

= min {1, d,(4) + 5(B)} .

The proof of the following extension of 3.6 is omitted. Note that
for A, BcQ,(ANnB),=A4,NB,.

THEOREM 4.5. If A, BC Q and for all sufficiently large n there
exists an integer N, such that (AN B), C J(N,), then

(AU B) = 6(4) + (B) .

5. Natural density. In this section we return to consideration
only of the (finite) n-dimensional case, and to the notation of §1 — § 3.
For a set A S, define the upper K-density of A to be

d(4) = lub{%‘Fe%}.

and the upper asymptotic density of A to be
8(A) = lim d(A\J(N)) .
N—ooo

Since d(A\J(N)) forms a nonincreasing sequence it follows that 6(A)
always exists.

If 6(A) = 6(A), then we say that the natural density of A exists
and write v(4) = §(4) = d(A).

R. C. Buck [2] has defined asymptotic density, upper asymptotic
density and natural density for subsets of a measure space X. Briefly,
the procedure is this: Take a countable increasing sequence K(¢) of
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subsets of X which covers X and a sequence y; of measures defined
on the same class of sets which includes the sets K(i). The following
properties are assumed: (1) p(X) =1 for all +; (i) g (K(5)—0
as 17— oo (fixed j); (iili) for each ¢ there exists «(i) such that, if
AN K(a(t)) = ¢, then p,(A) = 0. Then define the asymptotic density of
A to be D(A) = lim,_., ¢£;(A), and the upper asymptotic density to be
D(A) = Tim,_., p1:(A), and the natural density D(A) as usual.

It seems surprising that for » = 2, X = S, it always happens
that ¢ is different from D no matter how the measures y; are chosen.
Moreover, to prove this fact we only use property (i) of the preceding
paragraph.

THEOREM 5.1. If the dimension n = 2, and if [, ©S a sequence
of measures on S such that p(S) =1 for all i, then there is a set
AcC S such that 6(A) # lim,_., p,(A).

Proof. We must assume that z,(A) is defined for each A S and
1=1. (It is evident that limited representations of ¢ in terms the g
may be obtained, if the class of g,-measurable sets is restricted). It
follows that, since S is countable, each y; has the form

(M) = X pllx). (ACS).

Two cases are distinguished:

Case I. For each M, lim,.. p(J(M)) = 0. Let j(0) =1 and, for
M >1, let j(M) be so large that j(M) > j(M — 1) and, if 7 = j(M),
then ,(J(M)) < 27*. Now by (*), for each M = 0, there exists a
finite set H,, — S such that p,(H,) >1— 27" for all ¢+ with j(M) <
1<j(M+1). Let A= U5_,(H)\J(M)). By Theorem 2.11(i), §(4)=0.
For each 17, (M) <1 < j(M + 1) we have

14(A) Z p(HN\J(M) = pr(Hy) — pa(Hy 0 J(M))
>1—-—2¥ 274 =1 — 2-0-1 |

Hence lim, .., #,(A4) = lim,_..1 — 27%9 = 1.

Case II. There exists M such that lim,.. p(J(M)) = k > 0. Here
Let A = S\J(M). By 2.11(ii), 6(4) = 1. However, for infinitely many <,

p1i(A) = p(S) — p(JM) =1 —k + ¢&,(5,—0),

and so lim; .. #;(A) <1 — k < 1. This completes the proof.
Observe that, for a finite set FF'c S, p(A) = A(F')/S(F') defines a
measure on S. Let (F))e .5 and define y; by

A(FY)

ti(A) = S(F) .
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Then y; is a sequence of measure each defined on every subset of S
and satisfying £,(S) =1. By the previous theorem, there is a set
A c S such that §(4) # lim, .. ¢,(A4) = lim, .. A(F};)/S(F;). This shows
that there is no ‘“universal” sequence (F);)e.%, i.e., one such that
0(4) = lim,_, A(F;)/S(F;) for all Ac S. It also shows that the density
in [3] is different from o.

We proceed to prove an equivalent form of the definition of v.
By using methods similar to those in Theorems 2.6 and 2.7 it is
easy to prove the “duals” of these theorems for 6. Namely, it can
be proved:

THEOREM 5.2. If (F))e.&” and ACS, then

5(A) = Tim AF)
NI

THEOREM 5.3. For ACS, there exists (F;)€.%” such that

5(4) = lim AF)
imee S(FY)

THEOREM 5.4. The natural density of AC S exists if and only
if, for each (F))e.&, the quotients A(F;)/S(F;) form a convergent
sequence. In this case

v(4) = lim A(FY)
i S(F)

for each sequence (F,) e .

Proof. If v(A) exists, then, for each sequence (F;)e .S, by 2.6
and 5.2,

b(4) = 8(4) < lim ‘g(F D < Tim AT < 504) = w(4) .

(Fy) o= S(FY)

Suppose A(F,)/S(F;) is convergent for each (F),) e .5~ All the limits
must be the same, for, if (F;) and (G;) are two sequences in . such
that A(F,)/S(F;) and A(G,)/S(G;) converge to different limits, then the
sequence (H;), defined by

H, = {F1 for 7 odd
G, for 7 even

is in &7 and lim,;... A(H;)/S(H;) does not exist. Thus by 2.7 and 5.3,
there exist (F;) and (G;) in .&¥ such that

AF) _ i AG)

oA =1 SFm T SE)

= 5(4) .
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Hence v(A) exists and the last statement of the theorem is obvious.

This paper is concluded by nothing that v is a finitely additive
set function.

THEOREM 5.5. Let A,, ---, A, be sets with natural density such
that, for each pair ©, j with ©+j there is an N;; such that
A;NA;CJ(N;;). Then A= A, U ---UA, has natural density and

v(4) = ’"g v(A,) .

Proof. Let N = max;;{N;;}. Clearly B; = A)\J(N) has natural
density and v(B;) = v(4;). The B, are disjoint. Thus, for any sequence
(F)e &,

AF) + - + AF) o AF) - B(F) + --- +Bu(F)
S(F) —OS(F) T S(F)

where both ends converge to >\, ¥(4;) as t— . By 5.4 the theorem
is proved.
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