PACIFIC JOURNAL OF MATHEMATICS
Vol. 29, No. 1, 1969

THE POWER-COMMUTATOR STRUCTURE
OF FINITE p-GROUPS

DEANE E. ARGANBRIGHT

For a finite p-group G, G, is the n-th element in the de-
scending central series of G; P(G) is the subgroup of G ge-
nerated by the set of all x?» for x belonging to G; and @(G)
is the Frattini subgroup of G.

Hobby has characterized finite p-groups G (for p > 2) in
which P(G) = 0(G). Since 0(G) = G.P(G), the condition P(G) =
&(G) is clearly equivalent to G, S P(G). In this paper we
examine the class of finite p-groups G which have the pro-
perty that G, S P(G,) for 1 < n/m < p. In §2 we consider
consequences of this property in the case m = 1. For example,
if G,-;1 € P(G), then the product of p-th powers of elements
of G is the p-th power of an element of G (Theorem 2), In
§3 we examine some connections between the property G, S
P(G,) and regularity, and obtain a characterization of regular
3-groups (Theorem 4), In §4 we obtain bounds on the number
of generators of various commutator subgroups of G in the
case G; S P(@), p > 3.

For a discussion of p-groups G for which G, & P(G) see [6].

1. Notation. Throughout this paper G is a finite p-group. If
X, X,, -+, X, are subsets of G, then (X, X,, ---, X, is the smallest
subgroup of G containing all the X;. If X = {«} for some element =,
we write X = x. We denote by d(G) the minimal number of elements
of G which generate G, while |G| is the order of G. We set P*(G) =
Lz |z e G)). Also, Z(G) is the center of G and @(G) is the Frattini
subgroup of G.

Simple commutators of weight » are defined inductively by setting
(%, %) = a7'ar'w@, and (g, <+, @,) = (@, *++, ¥yy), @,) for n > 2, In
addition, we define (x,ly) = (z,y) and (z, ny) = (x, (n — 1)y, y) for
n > 1. For subgroups H,, H,, ---, H, of G we set

(Hly Hz» ) Hn) = <{(h’1y hzy ] hn) l h/i € Hz}> *

Similarly, (H,, 1H,) = (H,, H,) and (H,, nH,) = (H, (n — 1)H,, H,) for
n > 1. The descending central series of G is defined by setting G, = G
and G, = (G,_,,G) for m > 1. A group G is said to have class ¢ if
G.., =1 and G, = 1. Finally, the derived series of G is defined by
setting G = G and G“+Y = (G'V, G'") for ¢ = 0.

2. Basic results. It is known ([4], Th. 8.1, p. 63) that when-
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ever z and y belong to G,
(*) (xy)? = aPy’cd

where ce P({x,y).) and de<=,y),. Applying this result to the ex-
pression (a®,b) = a~?(a(a, b)) one can obtain the following lemma by
repeated induction.

LEMMA 1. If s,n,k =1, then (P(G,), 5G¢) S P(Gypsei)Goniore

THEOREM 1. Let n and m be integers and p be a prime such
that 1 < n/m < p. If G, < P(G,), then G,., & P(G,+:) for k= 0.

Proof. We proceed by induction on %k, the case k = 0 being the
hypothesis. Suppose that G,., < P(G,:,) and that G is a group of
minimal order for which G,.;., £ P(Gnizs). Clearly we may assume
P(G,irs) = 1. It follows from Lemma 1 that (P(G.+i), G) S Gpimeiyiie
Hence G,+1+1 S (P(Grir), @) S Gpminyr,. However,p(m + k) +1>mn +

kE+1, s0 Guiyo1 CGryirei, a contradiction. Thus G,i1y & P(Grzrsy)-

REMARK. We shall be most concerned with the case m = 1 of
Theorem 1: If G, & P(G) and n < p, then G,., & P(G,;,) for k= 0.
In Example 1 we show that this result cannot be extended to the
case n = p.

COROLLARY 1.1. If n < p and G, & P(G), then
@ G). & P(G) for 1=1,2,3, -,
() (P(G)). & P(G,) & P(P(®)), and

(¢) for any xe@G, if H ={G,, x>, then H, = P(G,) S P(H).

Proof. (a) It is known ([4], Th. 2.55, p. 55) that (G)), & Gi..
Since in — (n — 1) = ¢ it follows from Theorem 1 that

Gin —g P(Gin—(n—-l)) g P(Gz) .

(b) It follows from Lemma 1 that (P(G)). S (P(@), (n — 1)G) &
P(@G,)G,n_,. By Theorem 1, G,.,_, S P(G,), so

(P(G). & P(G.)P(G,) & P(P(G)) .

(¢) Since G, is central modulo G, and H/G, is cyclic, we have
H, = G,. It follows that H; = G;., for © = 2. By Theorem 1, G,., &
P(G;). Thus H, < G, & P(G.) & P(H).

COROLLARY 1.2. If n <p, G, S P(G), and t is an integer such
that 2 = n + 1, then G*+79 & P(G®) for k = 1.
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Proof. We assume that the result holds for all groups of order
less than |G|. It follows from Corollary 1.1 that G satisfies the
hypothesis of this corollary. Since |G| < |G| we have

(**) (G(l))(k+t—~l) g P((G(U)Uﬂ))

for k= 1.

By Theorem 2.54 of [4], G < G,. Hence for k =1 it follows
from Theorem 1 that G & G,., & P(G,) = P(G"). If k>1 we re-
place £ by k£ — 1 in (**) and obtain

G(k+t——l) — (G(l))(k*H-t'-l) (;___ P((G(l))(k—l)) — P(G(k)) .

REMARK. When # =t = 2 in Corollary 1.2 we obtain Theorem 2
of [6].

We now show that Theorem 1 for the case m = 1 cannot be ex-
tended to include n = p.

ExamPLE 1. Let {a> <{b> be the wreath product of {a) by (b,
where a» =" =1 and » > 0. Then G, < P(G), P(G,) =1, and
G, # 1.

It is clear that the property G, & P(G), n < p, is inherited by
factor groups and preserved by direct products. By the following
example we show that this property is not always inherited by a sub-
group H of G.

EXAMPLE 2. Let W = {ay<b), wherea? =b? =1, For2=<n <
p—1, set H= W/W,,, and H, = {z>. Let {d) be the cyclic group
of order p?, and G be the group formed by taking the direct product
of H and {d)> with the amalgamation d” = z. Then G, = H, = {z) =
P(@), while P(H) = 1.

THEOREM 2. If G, S P(G) and n < p, then for any x, ---,x,
wn G, there is an element h in G such that x? +-- 2] = h*.

Proof. The result is clear if G is abelian. Suppose that G is
nonabelian and that the theorem holds for all groups H with | H| <
|G|. It follows from (*) that (x, .. a,)” = &P --- 2097 ---g?g, where
9;€G, for 1 < i<t and geG,. By Theorem 1, G, & P(G,), so there
exist elements ¢,,,, -+, ¢, in G, such that g = g%, -+~ g%

By Corollary 1.1, (G,), & P(G,). Since |G,| < |G| it follows from
the induction hypothesis applied to G, that ¢? --. gPg?, -+ g2 = ¥?,
where ye G,. That is, a? ..« 2?2 = (¢, -+ x,)?s?, where s = y™* is in
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G,. Next set v =2, --- 2, and let H = {G,, z». By Corollary 1.1,
H,< P(H). It follows from the Burnside Basis Theorem (see e.g.
[3], p. 176) that d(G) = d(G/K) if K is a normal subgroup of G and
K < ®(G). Thus, since G is nonabelian, H C G. Hence, applying the
induction hypothesis to H, x?s? = h* for some &k in H. Therefore

af «eewf = h”.
CorROLLARY 2.1. If G, S P(G) and n < p, then P(P(G)) = P*G).

REMARK. The results of Theorem 2 and Corollary 2.1 are the
best possible. That is, if # = p then it does not follow from G, &
P(G) that the products of p-th powers are p-th powers or that
P(P(G)) = P¥G). For if we let G = <{a)<{b)>, where a” = b” =1,
then it can be shown that G, & P(G), while b77(ba,)” is not a p-th
power for some a,, be G, and P*G) = P(P(G)).

3. Regularity. A p-group G is regular if for each pair of ele-
ments a, b of G, (ab)? = a*b’c where ¢ e P({a, b),). If G is not regular,
G is called irregular. It follows from (*) that G is regular if
{a, by, S P(a, b, for each 2-generator subgroup <a, b> of G. By com-
parison, G, & P(G,) whenever G, =S P(G) and n < p. In addition, the
result of Theorem 2 is also true in regular p-groups. Thus the property
G, < P(G),n < p, is similar to regularity. However, neither of these
properties implies the other, as is shown in the next two examples.

First we construct a regular group G for which G,_, £ P(G).

ExaMPLE 3. Let W =<a)(<b), where a* =b"=1. Set G =
W/W,. Since W, = P(W), clearly G,_, # 1 and P(G) = 1. However,
G has class p — 1, and is thus regular ([4], Corollary 4.13, p. 73).

Next we construct an irregular group G for which G, & P(G).

ExAMPLE 4. Let H = {a, by, where a?” = """ =1 and b7'ab =
a**'. Then (a, nb) = a", so H, = {a*». Thus |H,| = p**and H,., = 1.
On the other hand, (a,(p — 1)b) # 1, so H, 1. Thus H has class
», H, is abelian and d(H) = 2. It follows from Theorem 1.4 of [7]
that there is a positive integer n such that if H; = H(i =1, ---, n),
then G = H, x -+ x H, is irregular. However, it is clear that
G, S P(G).

We know from Example 4 that G, < P(G) does not imply regu-
larity. However, in that example d(G) > 2. We now show that in a
finite 2-generator p-group (p # 2) G, & P(G) does imply regularity.

THEOREM 3. Let G be a finite p-group (p # 2) with G, S P(G)
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and d(G) = 2. Then G is regular.

Proof. By Theorem 1, G, & P(G,). Hence d(G,/P(G,)) < d(G,/G:).
It follows from Theorem 2.83 of [4] that d(G,/G;) < 1. By Corollary
1.1, (@), & P(G,), so G,/P(G,) is an elementary abelian p-group. Thus

[G.: P(G,)] =< p, and G is regular by Theorem 2.3 of [5].
We next obtain a characterization of regular 3-groups.

THEOREM 4. If G is a finite 3-group, then G 1is regular if, and
only +f, H, & P(H,) for each 2-generator subgroup H of G.

Proof. It follows from (*) that the latter condition implies re-
gularity. On the other hand, if G is regular, then all subgroups of
G are regular. Alperin ([1], Lemma 3.1.1, p. 96) has shown that if
H is a regular 2-generator 3-group, then its derived group is ecyclic.
Hence H, S P(H,).

REMARK. If p=8 or p =2 and G is a regular 2-generator p-
group, then G, & P(G,). However, these are the only primes for
which this result holds, since the Burnside group of exponent » and
2 generators has class greater than p when p > 3.

As in the proof of Theorem 4, if G, is cyclic, then G, & P(G,).

In particular, G. S P(G,) if d(G,) =1. If d(G,) =2 a theorem of
Blackburn gives a similar result.

THEOREM 5. Let G be a finite p-group such that d(G,) = 2. Then
G, S P(Go).

Proof. We may assume P(G,) = 1. It follows from Theorem 1
of [2] that [G.: P(G.)] = 9%, so G, = 1.

We now show that for each prime p and each integer n = 3,
there is a finite p-group G such that d(G,) = » and G, £ P(G.). This
shows that the result of Theorem 5 is not true if d(G,) > 2.

ExAMPLE 5. Let W =<a)<bp, where a*=0b"=1. Then
| Wi/ W...|=p for 1 =2 and W has class p®. Thus W, =+ 1. Let
H = W/W, Then H, is an elementary abelian p-group, d(H,) = 3,
H,+1, and P(H,) =1. Thus H, & P(H,). If n =3 we may let
G=H. If n>3, let D be one of the nonabelian groups of order
p®. Then |D,| = p. Let K be the group formed by taking the direct
product on % — 3 copies of D. Set G = H x K. Then G, = H, X K,
and d(G,) = d(H,) + (n — 3) = n. Clearly G, £ P(G.,).
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4. Bounds on generators of commutator subgroups. Hobby
([6], Th. 3, p. 855) has shown that the condition G, < P(G) (p > 2)
imposes restrictions on the generating elements of G for ¢ = 0. In
this section we obtain similar results in the case G, & P(G) and p > 3.
The procedure used here can be extended to the general case G, &
P(G), n < p, although the estimates thus obtained are not as precise.

THEOREM 6. Suppose p >3, G, S P(G), and d = d(G). Then
d(G;) = (1/2)d(d* — 1).

Proof. We may assume @(G,) = 1. It then follows from Theorem
1 that G, = P(G,) and G, S P(G,) = 1. Also P(G,) is abelian, since

(P(Gz))z S (P(Gz)y Gz) S P(G4)G2(p+1> =1

by Lemma 1.

We next claim that d(P(G,)) £ d(G,/G:). For if d(G,/G;) = &, then
there exist elements g, ---,9, in G, such that for each geG,, g =
or® ... grp for some integers m(i) and ke G,. It follows from (*)
that ¢ = (¢?)™" - .. (97)"h*cd, where h* and ¢ are elements of P(G,)
and deG,,. Hence h* = ¢ =d =1 and the assertion follows.

Since P(G,) is abelian and G, & P(G,) we thus have d(G,) < d(G,/G.,).
Hence

dGy) = d(G/G,) + d(GY)
= d(G/G,) + d(G,/Gs)
= (1/2)dXd — 1) + (1/2)d(d — 1) ,

where the last inequality follows from Theorem 2.83 of [4].

THEOREM 7. Suppose p >3 and k = 2. Let x,, x,, ++-, 2, be coset
representatives of a minimal basis of the abelian group G./GP. If
G, S P(G), then there exist integers n(i) such that

(Gk)u) — <90fn(1), .., xgn(d)> .

Proof. In any p-group, (G,); S G... Since k = 2 it follows from

Theorem 1 that G,, & P(G.._.) & P(G,). Thus the theorem follows
from Theorem 3 of [6].

COROLLARY T7.1. Suppose G, S P(G) where p > 3. If k=2 and
if G, can be generated by d elements, then (G,)” can be generated
by d elements for 1 =1,2,3, ---.

A p-group G is called p-abelian if (xy)® = x*y? for all elements
x,y of G. The properties of p-abelian groups used below may be
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found in [6] (p. 853).

THEOREM 8. If »p >3, G, & P(G), and d = d(G), then d(G?) =
1/2)d(d + 1) for + =1,2,38, ---.

Proof. We first consider the case 7 = 1. The result is clearly
true in this case if |G| = p. Suppose the theorem is true when ¢ = 1
for all groups H with |H| < |G|. We may assume @(G")=1. By
Theorem 2.83 of [4], d(GV/G;) = (1/2)d(d — 1). A p-group G is p-
abelian modulo P(G*")G,. Sincep > 3,G, & P(G,-,) = 1,80 P(GV)G, =1
and G is p-abelian. Hence d(P(G)) < d. In a p-abelian group P(G) &
Z(@), so P(G) is abelian. Since G, & P(G) we have d(G,) < d, so

d(G®) < d(G™/Gy) + d(G;) < (1/2)d(d + 1)

Thus the theorem is true for 7 = 1.
For 7 > 1, Corollary 7.1 yields.

d(G) = d(G¥)) < d(GY) = (1/2)dd + 1) .
The author wishes to thank the referee for his suggestions.
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