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EXTREMAL STRUCTURE OF STAR-SHAPED SETS

F. E. TlDMORE

It is shown that the convex kernel of a compact star-
shaped subset S of a finite-dimensional linear topological space
Ln is determined by the (n — l)-extreme points of S. The car-
dinality of the set of /c-extreme points is determined for
compact star-shaped sets of dimension greater than two. Also
given is the result that any compact star-shaped subset S of
Ln contains a countable set of (n — l)-extreme points which
determines the convex kernel of S. Another result is that a
compact nonconvex star-shaped set £> in a locally convex space
L is determined by the convex kernel of S and the subset of
points that are extreme in S relative to the convex kernel of
S.

The convex kernel of a star-shaped set S will be denoted by ckS,

the line segment {ax + (1 — a)y: a e [0,1]} will be denoted by xy, the

ray {βy + (1 — β)x: β ^ 1} will be denoted by xy°° and L{x, y) will
denote the line containing x and y, x Φ y. The convex hull of a set
S will be denoted by conv S. The notation intv S will denote the
interior of S relative to the minimal flat that contains S. The set
{x: f(x) = a}, where / is a linear functional, will be denoted [/: a].
Set-theoretic difference will be denoted by \, and the closure of a set
S will be denoted by cl S.

The concept of fc-extreme point was introduced by Asplund [1],

DEFINITION 1. If S is a subset of a linear space L, a point
x e S is a Λ -extreme point of S if no fc-simplex Δ exists such that
xG intv J c S .

For a subset S of a linear space L, Sx will denote the ίc-star of
S determined by the point xe S; that is, the set of points y such
that xy c S. If S is a closed (compact) subset of a linear topological
space L, then for any xeS,Sx is a closed (compact) set. If TaS,
let

sτ = n sx.
xeT

A point p belongs to the convex kernel of S if, and only if,
xp c S for all x e S, which is true if, and only if, pe Sx for all xe S.
Thus ckS — SS9 which motivates the following definition.

DEFINITION 2. In a linear space L a subset T of a star-shaped
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set S is said to star-generate the convex kernel of S if ckS = Sτ.
Such a subset T is said to be a star-generating set for ckS.

THEOREM 1. Let S be a compact star-shaped subset of Lk+1. Then
the set S(k) of k-extreme points of S is a star-generating set for
ckS.

Proof. Without loss of generality, suppose that 0 e ckS. If S =
ckS, then S is convex and Sx = S for each x e S and the result fol-
lows since 0 Φ S(l) c S(k). Let p e S\ckS. Then there exists a
point y e S such that py ςz! S. Since S is compact, y can be chosen
such that S ΓΊ intv py°° = 0 . Since py ςt S, there exists a point 2 e
(intv py)\S. If ye S(k), then p £ Sy implies p $ SSUe). If y $ S(k) there
exists a fc-simplex J such that y e intv Λ a S. Consider the convex
cone C = {βy + (λ — β + 1) 2: /3, λ >̂ 0}, which has vertex z and is
contained in the subspace U with basis {p,y}. Since £ Π intv py°° =
0 , J must intersect U in some line other than L(p, y); thus, S Π intv
C Φ <Z. There exists a linear functional / defined on Lk+ί such that
f(q) = 1 for every q e L(p, ?/); clearly 0 ί L(p, y) since py ς£ S and 0 e
c&S. The continuous linear functional f19 the restriction of / t o L',
attains a maximum on the compact set C Π S at some point w e intv
C. Let Jϊ = [/:/(w)] Since H f] C Π S is a compact subset of the
1-dimensional set Hf)L', there exists a minimal closed line segment
in intv C which contains H Π C f] S. Each endpoint of this segment,
which may be degenerate, must be a point in S(k). Let v be one of
these endpoints. The points p, y, z and v are in Lr. If pv c S, then
the fact that 0 e ckS implies that z e conv {0, p, v} c S, a contradic-
tion. Hence, pvφS and p<tSs{k). Therefore, S\ckS c S\SSUB), which
gives the desired equality, since clearly ckSaSsw

It is not always sufficient to consider only the set of familiar
extreme points S(l) as a star-generating set for ckS. For example,
in E3 let S be the union of three closed faces of a 3-simplex. In
some cases, proper subsets of S(k) exist which will star-generate ckS.
However, characterizing such subsets may be very difficult, as in-
dicated by the following example.

EXAMPLE 1. In the plane E2 let Bu be the upper closed unit
half-disc, Br the right closed unit half-disc. Let

Tx = conv [{-2βx} U (Br + (2eλ + e2))] ,

T2 = conv [{-2e2} U (Bu + (2e2 - e,))] ,

S= ΓxU TzUi-TjUi-Tz) .

Then any star-generating subset of S(l) must contain four distinct
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sequences of carefully chosen extreme points.

THEOREM 2. If S is a compact star-shaped set in LnJ and dim
(S) ^ 3, then S(n — 1) is an uncountable set.

Proof. Without loss of generality, it can be assumed that Oe
ckS. Since dim (S) ^ 3 there exists some point x e S, x Φ 0. If
βx e S(n — 1) for every β e (0,1), then S(n — 1) is uncountable. Other-
wise, consider some w — βx such that w g S(n — 1). Then there
exists an (n — l)-simplex Δ such that w e intv J c S . Since n — 1 ̂  2
there exists a nondegenerate line segment w c J such that zw f] Ox =
{w}. There exists a linear functional / on Ln such that

There exists a point # e [/: 0] such that the set {y, z, w} is linearly
independent. For each X e [0,1] consider the subspace L(λ) of Ln

with basis {y, Xz + (1 — X)w}. Let /^ be the restriction of / to L(λ).
The set L(λ) n S is compact; hence; /j attains a maximum on L(λ) π S
at some point u,fλ(u) ^ 1. Since dim (L(X) Π [/:/(^)]) = 1 and

L(λ)nsn[/:/W]

is compact, there exists a minimal closed line segment in L(λ) which
contains L(X) Π [/:/(^)] Π S. This line segment must have at least one
endpoint, which must belong to S(n — 1). For each pair of distinct
real numbers λ, μ in [0,1], L(X) Π L(μ) c [/; 0], There exists points
pλ e L(X) Π S(n - 1), pμ e L(μ) Π S(n - 1) such that f(pλ) ̂  1, f(pμ) ^ 1,
which implies that pλ Φ pμ. Thus, the set S(n — 1) is uncountable.

THEOREM 3. Let S be a closed subset of a linear topological
space L and let T be a subset of S that star-generates ckS, which
may be empty. If M is a dense subset of T, then M star-generates
ckS.

Proof. Since MdT then clearly SτaSM. Suppose that M i s a
proper subset of T and ckS is a proper subset of SM. Then there
exists a point q e SM\ST. But Sτ = SM Π ST\M; thus q $ Sτw. This im-
plies that q<ίSx for some xeT\M. Since q e SM, MaSqy which is
closed. Hence, xe Tad Ma Sq, which implies that xqaS and that
qe SXJ a contradiction. Therefore, ckS = SM.

THEOREM 4. If S is a compact star-shaped subset of a normed
linear space L, then any subset T of S which star-generates the con-
vex kernel of S contains a countable subset M which also star-generates
the convex kernel of S.
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Proof. The norm of L induces a metric on L. The compact set
S can be considered as a compact metric space, where space is now
used in the topological sense. The compact metric space is separable,
which implies that S is second countable [2], Any nonempty subset
T of S is a second countable topological space with the relative to-
pology, which implies that T is separable. There exists a countable
subset M of T such that T c cl M. Theorem 3 implies that M star-
generates ckS and the theorem is proved.

COROLLARY. Let S be a compact star-shaped subset of Lk+1.
Then there exists a countable subset of S(k) which star-generates ckS.

Klee [3] introduced the concept of relative extreme point.

DEFINITION 3. If S and T are subsets of a linear space L, then
x e S is said to be extreme in S relative to T if there do not exist
points y e S,ze T such that x e intv yz.

If S is a star-shaped set, exk S will denote the points of S which
are extreme relative to ckS, and Es = (exkS)\ckS.

THEOREM 5. Let S be a compact nonconvex star-shaped set in a
locally convex space L. Then C = S, where

C = U conv (ckS U {y}) .
yeE S

Proof. Since EsaS, conv (ckS U {y}) c S for each yeEs. Thus,
C c S . Consider z e ckS U exk S; since Es Φ 0 , as shown below, z e
C. Let K = ckS. Suppose that z e S\(ckS U exk S) and without loss
of generality, suppose that z = 0. Since K is compact and convex,
K* and — K* are closed convex cones with vertex 0, where K* =
{λx: x e K, λ ^ 0}. Since z g exk S there exist points x e K and w e S
such that 0 e intv xw. Clearly w e -K*\{0}, S Π (-ίΓ*\{0}) Φ 0 and
Sθ( — K*) is compact. Let u be an arbitrary point in —ϋΓ*\{0};
since L is locally convex and iΓ* is closed and convex, there exists a
closed hyperplane H = [/:/(%)] such that u e i ί and H f) K* = 0 ,
where / is a continuous linear functional. It can be assumed that
/(if*) ^ 0, which implies that f(u) > 0. The functional / then attains
a maximum on S f] (~K*) at some point v e S Π ( — K*). Suppose
that v $ exk S. There exist points pe K,qe S such that v e intv pq.
Since v e -if*, v = -λp' , p' e if, λ > 0, and

v = ap + (1 - a)q , 0 < α: < 1 .

Therefore, v = — λp' = <xp + (1 — a)q and q = τq', where τ < 0 and
q'eK. Thus, ? e S n ( — !£"*). But it can be easily shown that
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> f(v)i which contradicts the fact that f(v) ^ f(x) for each xe

S n (-ΛΓ*). Hence, v e (exk S) Π(-K*) and 0 e C, which implies that

SaC. This inclusion, along with the one given earlier, implies that

S = C.

The following result shows that the set Es is minimal in its use

in Theorem 5.

THEOREM 6. Let S be a compact nonconvex star-shaped set in

a locally convex space L. If T is a proper subset of Es then

C(T)= U conv(cfcSl)M)
yeT

is a proper subset of S.

Proof. Consider any proper subset Γ of Es; there exists some

point xeEs\T. If xeC(T) there exists some yeT such that xe

conv (ckS U {y}). Hence, x = Xz + (1 - X)y, where λ e [0,1], z e ckS.

But λ G (0,1) since x $ ckS U T. This implies that x g exk S, a con-

tradiction. Thus, x$C(T), which must be a proper subset of S.
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