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FINITE GROUPS WITH SMALL CHARACTER
DEGREES AND LARGE PRIME DIVISORS II

I. M. ISAACS AND D. S. PASSMAN

In a previous paper one of the authors considered groups
G with r. b. n (representation bound n) and n < p2 for some prime
p. Here we continue this study. We first offer a new proof
of the fact that if n = p — 1 then G has a normal Sylow p-
subgroup. Next we show that if n = p3fZ then p2 Jf \ G/OP(G) |.
Finally we consider n = 2p — 1 and with the help of the
modular theory we obtain a fairly precise description of the
structure of G. In particular we show that its composition
factors are either p-solvable or isomorphic to PSL(2, p), PSL(2,
p — 1) for p a Fermat prime or PSL(2, p + 1) for p a Mersenne
prime.

Now the irreducible characters of PSL(2, p) have degrees (see [10]
p. 128) l,p,p± 1, (p ± l)/2 for p odd and those of PSL(2, 2a) have
degrees (see [10] p. 134) 1, 2α, 2a ± 1. Thus for p > 2 the linear groups
of the preceding paragraph do in fact have r.b. (2p — 1).

The notation here is standard. In addition, if χ is a character
of G we let det χ denote the linear character which is the determinant
of the representation associated with χ. Also np(G) denotes the number
of Sylow p-subgroups of G.

LEMMA 1. Let G be a group with r.b.n. and let N Φ G be a
subgroup. Suppose G = U;=o Nx{N is the (N, N)-double coset decom-
position of G with xo = l. Set α, = \NXiN\/\ N\ = [N: N Π NXi].
Then n ^ (αx + α2 + + o,t)lt

Proof. Let θ — {1N)G be the character of the permutation repre-
sentation of G on the cosets of N. Then 0(1) = [G: N], [θ, 1G] = 1
and || θ ||2 = 1 + t. Since [0,1G] = 1 we can write

θ = lβ + bai + + bsχs

where the χ< are distinct nonprincipal irreducible characters of G.
Thus since G has r.b.w we have

l + nt = l + n(\\ θ ||2 - 1) = 1 + n{b\ + . . . + 62

S)

^ 1 + n(b, + ... +b.)^l + baAl) + + δ.χ.(l)

= 0(1) = 1 + (a, + α2 + + at)

and the result follows.
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LEMMA 2. Let G be a group with r.b.n.
( i ) Let N Φ G be a subgroup. Then

n ^ min {[N: N n Nx]\xeG - N} .

(ii) Let π be a set of primes and let H be a maximal π-subgroup
of G. Then either HAG or n^ min {[if: Hf]Hx]\xeG - N(H)}.

Proof, (i) follows immediately from Lemma 1. Now let H be as
in (ii) and suppose H is not normal in G. Set N = N(H) Φ G. Since
H is a maximal ττ-subgroup it follows that H = Oπ{N). Thus if x e G
then H* = Oπ(Nx) so H n Nx = H f] Hx and

[N: Nf]Nx]^ [H: H f] Nx] = [H: H Π Hx] .

Thus the result follows from (i).

Applying Lemma 2(ii) with π = {p} and H a Sylow p-subgroup of
G yields

THEOREM 3. Let pbea prime and let Gbe a group with v.b.(p — 1).
Then np(G) = 1.

This result was originally proved in [7] (Theorem E) in a much
more complicated way.

LEMMA 4. Let G have r.b.(p2 — 1) and let Qi and Q2 be p-subgroups
of G with <QX, Q2y not a p-group. Then np{C(Qd Π C(Q2)) = 1. //
further the Sylow p-subgroups of G are abelian, then

nMQJ Π N(Q2)) - 1

Proof. Set W = ζQly Q2>. Since W is not a p-group we see that
np(W) > 1. We assume now that np(C) > 1 where C = C{QX) Π C(Q2) =
C( W) and derive a contradiction. Set Z = TΓ Π C so that ^ is central
in TF and C and let W = W/Z, C = C/Z. Since Z is central we have
easily np(W) > 1, np(C) > 1 and (WC)/Z = W x C. By Theorem 3
both TF and C have irreducible characters of degree ^ p and hence
W x C has an irreducible character of degree ;> p2. This is a contra-
diction since G has r.b.(p2 — 1) and this property is inherited by
subgroups and quotient groups. If the Sylow p-subgroups of G are
abelian then any p-group normalizing Qt centralizes it. Thus the
second result follows from the first.

THEOREM 5. Let p be a prime and let G be a group with r.b.p3/2.
Then p2Jf\G/Op(G)\.
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Proof. If p — 2 then G has r.b.2 and the result follows from
Theorem C of [7]. Thus we can assume that p ;> 3 and clearly also
that OP(G) = <1>. Since p2 - p - 1 ^ [pm] for p ^ 3, Proposition 1.3
of [6] implies that a Sylow ^-subgroup P of G is abelian. We assume
that I PI ^ p2 and derive a contradiction. Set w = p'6'2.

Let JV = N(P) so that N Φ G. By Lemma 2(i) there exists
weG - N with w ^ [iV: JV Π Nw] ^ [P: P Π P w ] . Set Q = P f l P w so
since p2 > n and w gN we see that [P: Q] = p and hence Q Φ <(Γ>.
Let M - N(Q). Since PAN,PWANW we have Q Δ (JV Π A/^). Also
Q Δ P a n d P g JVW. Hence M Π N 2 <P, JV Π iVw> so [iV: iV n M] ^

We now make the following crucial observation. If [M: M Π Mx] <
p2 for some x $ M then Q and Q* commute elementwise and x e MNM.
To see this suppose that Q and Qx do not commute. Then since the
Sylow p-subgroups of G are abelian, <(Q, Qxy is not a p-group. By
Lemma 4, wp(Jlf Π Λίx) = 1 so if U = O^(M Π ΛP) then i7 is also a
Sylow p-subgroup of Λf Π Λf *. Now p 2 1 [M: M Π M x] and Q g I 1

clearly so Qί/ is a Sylow ^-subgroup of Λf. Since NM(QU) 2 <Q,
i k ί Π M ^ we have [M: iV3/(Q[/)] < p and hence by Sylow's theorem
QU AM and np(M) = 1. This is a contradiction since Q = P n P1"
and P, Pw ^ M. Thus Q and Q* commute and since Q φ Qx and
[P: Q] = p it follows that QQX = P ^ 1 is a Sylow p-subgroup of G.
Thus Q, Qy and Qx2/ are all contained in P. By Burnside's lemma these
three groups are conjugate in N. Thus Qy = Qh, Qxy = Qfc for some
h,keN. This yields yh~ι e M, xyk~ι e M so

a = {xyk-ι)kh-\yh-ιyι e MNM .

Since Q Φ <1> we have ilf ^ G. Let G - LIU MxM be the (Λf, M)-
double coset decomposition of G with x0 = 1. Set a{ = | M ^ M | / | M |
and suppose that there are precisely r such i ^ 0 with a{ < p2 and s
with α̂  ^ p2. Then by Lemma 1, pm = n ^ (r + p2s)/(r + s). Clearly
r :£ 0 here so

p3/2 ^ ( r + p*8)/(r + S) > p γ ( i + r/s) .

If s = 0 then by the preceding paragraph Q commutes with all its
conjugates. This implies that <(Q* | x e G)> is a nontrivial normal p-
subgroup of G, a contradiction. Thus s ;> 1. Also if a{ < p2 then
Mx{M S MNM by the above. Since we have seen that [ΛΓ: ΛΓ Π M] S
p112 we have r ^ p1/2 — 1 since the double coset M itself is not counted.
Thus r/s ^ p1'2 - 1 and

a contradiction and the result follows.
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We now turn to the main result of this paper.

THEOREM 6. Let p be a prime and let G be a nonabelian simple
group with r.b.(2p — 1). Then p > 2 and we have one of the following.

( i ) G is a pf-group.
(ii) G ~ PSL(2, p) for p > 3.
(iii) G = PSL(2, p — 1) for p a Fermat prime, p > 3.
(iv) G = PSL(2, p + 1) for p a Mersenne prime.

Proof. Since groups with r.b.3 are solvable (Corollary 6.5 of [8])
we have p > 2. By Theorem 5 since pV2 ^ 2p — 1 for p > 2 we have
P2\\G\. If p)(\G\ then G satisfies (i) above. Thus we can assume
now that G has a Sylow p-subgroup P of order p. Let Bλ{p) denote
the principal p-block of G. We will use freely the structure of Bx{p)
and its associated tree as described in [1] and [2]. Since Bx{p) contains
a nonprincipal irreducible character χ and χ(l) < 2py Lemma 1 of [3]
implies that P is self centralizing. Let N = N(P) and let e = | N/P |
so that e \ (p — 1). By Burnside's transfer theorem e > 1. We assume
now that G £ PSL(2, p) and G £ PSL(2, p - 1) for p a Fermat prime.

Step 1. Let θ denote an exceptional character in B^p). Then
the tree of B^p) must be one of the following.

( D ° = 2 lao 2 Z l

1(?°-

p+2

O O

2p-l 2p-2

lG

p-1 2p-S p-1

(4) e = 4 , O O

p-1 2 p - 4 2p-l p + 1

( 5 ) e = 4 , *2 0 χi
^ ' l G o o o o

2p-l\2p-4 p-1

β = 5

2p-l\2p-5 2p-l p + l

Here the degree of the character is written below the character
designation.

Since G is nonabelian and simple it follows that every nonprincipal
irreducible representation of G is faithful. Thus by Theorem 2 of [5]
the degrees of the nonprincipal ordinary irreducible characters of G are
all ^ p — 1 and by Theorem 1 of [4] the degrees of the nonprincipal
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irreducible Brauer characters of G are ^ 2(p — l)/3. Now G has
r.b.(2p — 1) and the degrees of the ordinary irreducible characters
of B^p) satisfy χ(l) = ±l(p) if χ is nonexceptional and θ(l) = ±e(p).
This yields easily χ(l) = p — l,p + l,2p — 1 or χ = 1G and 0(1) =
2p — e, p + β or 0(1) = e if e = p — 1.

Suppose first that p = 3. Since β [ (p — 1) we have e = 2 and the
tree is a line with three vertices. Now the center degree is maximal
and the principal character must occur so we have clearly

ΊGo

This is either tree (1) or tree (2) according to which of χx of χ2 we
consider exceptional.

Now assume that p ^ 5. Let χ e Bγ{p) with χ(l) = p — 1 and
suppose that χ is modular reducible. We can denote this latter fact
graphically by

where r and s are degrees of modular constituents. Since r + s <£
p — 1 we cannot have both r, s ^ 2(#> — l)/3. This implies that one
of the modular constituents is the principal character and the other
has degree p — 2.

Now let χ e B^p) with χ(l) = p + 1 and suppose χ is modular
reducible. Say we have

Here by the alternating nature of the tree χlf χ2 ^ 1G so r, s ;>
2(p — l)/3. Since r + s ^ 2> + 1 this yields 4(p - l)/3 ^ p + 1 so p =
5 or 7. In fact either p = 5, r = s = 3 or p = 7, r = s = 4. We con-
sider these in turn. Let p = 5. Since e | (p — 1) we have e = 2 or 4.
Certainly e Φ 2 here since JBi(p) contains e + 1 ordinary irreducible
characters including 1G and hence e = 4. Thus the degrees of the
nonprincipal ordinary irreducible characters of B^p) are 4, 6 or 9 and
the nonprincipal Brauer characters have degrees ^ 3. The former fact
implies that χι and χ2 are modular reducible so the tree having five
vertices is a straight line. This yields easily

χ i x X2 *3
\Q O O O O O

4 6 9 6

and we obtain tree (4). Now let p = 7 so that e = 2, 3 or 6. Clearly
neither χx nor χ2 can be modular irreducible so the tree has at least
five vertices and hence e = 6. Thus the degrees of the nonprincipal
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ordinary irreducible characters of Bγ{p) are 6, 8 or 13 and the non-
principal Brauer characters have degrees ^ 4. This latter fact implies
that neither χι nor χ2 can have degree 6 and hence χx(l) = χ2(l) = 13.
Now at least one of χ1 or χ2, say χlf is not adjacent to 1G. Hence all
characters adjacent to χ1 have degree p + 1 and as we have seen these
are either modular irreducible or have constituents of degree 4. This
shows that all modular constituents of χ1 have degree divisible by 4,
a contradiction since χ^l) = 13. Thus this case does not occur. It
now clearly suffices to assume for the remainder of this step that all
χ e B^p) with χ(l) = p + 1 are modular irreducible.

Let 0 denote an exceptional character of Bx(p) and we consider
the possible branches leaving the vertex associated with 0. Suppose
first that #(1) == +e(p). The above implies easily that we can only
have

P+l

Now the first branch must occur precisely once and let the second
branch occur a times. Since the tree has e edges we have

1 + a — e

1 + α(p + 1) = 0(1) .

Now e ^ 2 so a >̂ 1 and hence θ(l) > p. Thus θ(l) = p + β and we
obtain a = 1, e = 2 and this is tree (1).

Now let 0(1) = -e(p) so that θ(l) = 2p — e. Using the above
information and the alternating nature of the tree we see easily that
the only possible branches leaving the vertex associated with θ are

p-l p-l

θ X
o o olβ

p-2 p-l

o x xf

o o o

p-2 2p-l p + l

θ X Xf

o o O

p-3 2p-l\ p + l

2p-2 2p~l

If the last branch occurs then since 2p — e = 0(1) ^ 2p — 2 we have
e = 2 and this is tree (2). Thus we can assume that only the first
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four branches occur say with multiplicities a,b,c,d respectively. Since

there are precisely e edges in t h e t ree we have

a + 2b + 2c + 3d = e

a(p - 1) + b(p - 2) + c(p - 2) + d(p - 3) = 0(1) = 2p - e .

Adding these two and dividing by p yields

a+b+c+d=2.

In addition the vertex of 1G occurs precisely once so b + d = 1. Thus
α + c = 1 and there are four possibilities which are easily seen to be
trees (3), (4), (5) and (6).

Step 2. Let JV = N(P). We consider the restriction of the ordi-
nary irreducible characters of G to N.

Now N = PE is a Frobenius group of order pe with E = ζx)
cyclic of order e. N has precisely e linear characters, namely those
of N/P = E, and the remaining irreducible characters have degree e.
Let Δ denote any sum of irreducible characters of N of degree e.
Clearly ΔE = Δ(l)/e pE where pE is the regular character of E. This
yields easily

Δ(x) = 0

( 1 ) ( 1 if e is odd
det Δ{x) =

((_l)'d>/ if e is even .
If e is even let 8 denote the linear character of N given by δ(x) = — 1.

Let ψ be an ordinary irreducible character of G with ψgB^p).
Since P is self centralizing it follows that B^p) is the unique p-block
of positive defect and hence ψ belongs to a block of defect 0. Thus
p I ̂ (1). Since G has r.b.(2p — 1) this yields ^(1) = p and clearly
ψp = pp. Thus ψN = λ + Δ where λ is linear and Δ(l) = p — 1. Now
G is simple so the linear character det ψ must be principal and hence
1 = deti/r(ί*0 = λ(a?) det Δ(x). This yields by the above

ί
lΛ, + Δ if e is odd

1N + Δ if e is even and (p — l)/e is even

3 + Δ if β is even and (p — l)/e is odd .

Now let χ e B^p) and let m(χ) denote the number of linear chara-
ters counting multiplicities which occur in χN. Obviously m(χ) is the
multiplicity of 1P in χP. Suppose first that χif γ3 are nonexceptional
ordinary irreducible characters of Bλ(p) which are adjacent in the tree.
Then Xι + χό = Φ is a protective character and since ΦP = Φ(l)/p pP

we have easily

m{Xi) + m{χό) = [&(1) + χ3(l)]/p .
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Now suppose that χ̂  is adjacent to the vertex of the exceptional charac-
ters {θk}. Clearly m{θr) = m(θs) for all r, s so since fo + Σfe 1 ) / e θk = Φ
we have with θ = θγ

miχ,) + {p- l)/e-m(θ) = [fc(l) + (p - l)/e-θ(l)]/p.

Using the above two equations, the fact that the tree of Bt(p) is
connected and the obvious fact that m(lG) = 1 we obtain easily for
irreducible χ

( 3 ) m(χ) =

k - 1 if χ(l) = kp-l

k if χ(l) = kp ± e

k + 1 if χ(l) = kp + l

There is of course additional information available, for example the
fact that det χ(x) = 1 and the position of χ in the tree, which further
limits the structure of χlV.

Step 3. If tree (1) occurs in step 1, then p is a Mersenne prime
and G = PSL(2, p + 1).

By assumption e = 2 and the tree of BJ^p) has the form

i<?

p+2 p+1

where θi represents the (p — l)/2 exceptional characters with θ — θlm

Let {ψj \j = 1, 2, •••,&} denote the set of irreducible characters of G
not in Bx(p).

Let a denote the unique nonprincipal linear character of N. By
(1) and (2) we have

4 ψiN = 1» + Δ'j , ψj(x) = 1 for p = 1 (4)

ψ a + J' ψ ( x ) l

By (3), θiN = λ + 4 and since the θi are all algebraically conjugate λ
is the same for all ί. Thus det ^(B) = 1 and equation (1) yield

θiN = a + Jif θi(x) = - 1 f o r p = 1 (4)

^ = l,γ + Δi , ^(a?) - 1 for p = 3 (4) .

Now χ^ = αl iV + ba + // with α + b = 2 by (3) and since x is a p'-
element a — b = χ(x) = ζ(x) = ί(a ) — 1. Thus (5) yields

Z* = 2α + J , χ(x) = - 2 forp = l (4)

χ^ = 1,, + α + A , χ(α?) = 0 for p = 3 (4) .

Equations (4), (5) and (6) and Frobenius reciprocity now yield
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k (ί>-D/2

(lNf = lβ + Σ ΨJ , a° = 2χ+ Σ θt for p = 1 (4)
' ' (P-D/S *

(1N)° = l0 + χ + Σ θ(, a? = χ + Σ Ψs for p = 3 (4) .
1 1

Thus since (1^)G(1) = 0 (̂1) = [G: N] and |ΛΓ| — 2p we obtain easily

I G I - p(p2 + 5p + 2) , fc = (p + 5)/2 f or p = 1 (4)

IG I = p(p + l)(p + 2) , A: = (p + l)/2 for p = 3 (4) .

Now using I C(x) \ = Σ V(χ)V(χ)> where 57 runs over all ordinary irre-
ducible characters of G, along with equations (4), (5), (6) and (8) we
have

\]C(x) \ = p + 7 for p = 1 (4)

I C(x) I = p + 1 f or p = 3 (4) .

Since (p + 7) | p(̂ >2 + 5p + 2) the case p = 1 (4) is eliminated. Thus
p = 3 (4).

Set S = C(a?) so that | S | = p + 1 and [G: S] = p(p + 2). We
consider (15)

G. Since this character is rational and the θ{ are algebrai-
cally conjugate we have

(P-D/2 k

Set c = Σf ci ^ considering degrees we have

p(;p + 2) = 1 + α(p + 2)(p - l)/2 + δ(p + 1) + cp

and evaluating at x yields

0 < (ls)
G(x) = 1 + α(p - l)/2 - c

by (4), (5), (6) and the fact that xeS. Certainly a ̂  2. Also 6 ̂
χ(l)/2 = (p + l)/2 by Frobenius reciprocity and the fact that χ(a?) = 0.
Thus a = 0 yields a contradiction. If α = 1 then b = 0 (p) so 6 = 0
and c = (p + 3)/2 > 1 + α(p — l)/2 again a contradiction. Thus a — 2
and we have easily

(P-D/2

(10) (l s)
G = l e + 2 Σ

1

so (l5)
Gr(^) = p by (5) and (6). By definition of induced character and

the fact that S = C(x) this implies that S contains precisely p distinct
conjugates of x. Since | S \ = p + 1 this shows that S is an elementary
abelian 2-group and therefore that S is a Sylow 2-subgroup of G and
p is a Mersenne prime. By Burnside's lemma the nonidentity elements
of S are all conjugate in N(S) so N(S) > S.
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Set H = N(S) > S. Then (1^)* is a national constituent of (1S)
G

and (lH)σ(l) ^ p(p + 2)/3. Thus by (10) we have easily

(Π) (lH)β = l σ + %

Therefore G is a doubly transitive permutation group on the set Ω
where H = Go* for some point oo e Jλ By (10) χ5 contains ls with
multiplicity one so (11) implies that S has two orbits on Ω. Hence
since | S | = | Ω | — 1, S is in fact a regular normal subgroup of G«>.
Now I HI = p(p + 1) so if P is a Sylow p-subgroup of H, then since
P is self centralizing and | P | = | S | — 1 we see that G is sharply 3-
transitive.

With the structure of H as given above we can clearly identify
Ω with GF(p + 1) U {°°} in such a way that S is the set of translations

{ \ } { ( I }GF{P + X ) } and P is thΘ{( )\ } { ( I e GF{P }
Let xeG with x — (0 °o)(l) . Then x has order 2 and normalizes

p = Gooo so S acts in a dihedral manner on P . lί x — [,, A then

for all seGF(p + 1), s ^ 0

*v * w *
sz)\f(z)J \f(z)

so /(ss) = s-VXs). Setting z = 1 yields /(s) - s"1. Thus 2 =

and since G = <iϊ, x} we have clearly G S PSL(2, p + 1). By (8) we
have in fact G = PSL(2, p + 1) and this step follows.

Sίep 4. Completion of the proof.
We now consider the remaining trees in turn. Let {ψj \ j —

1, 2, , k) denote the set of ordinary irreducible characters of G not
in Bάp).

Suppose first that we have tree (2). If p = 3 this is the same
as tree (1) so we assume that p > 3. From

U χ ζ θi

2p-l 2p-2

and (3) and det χ(x) = 1 we have χN = liV + Λ. Let α be the unique
nonprincipal linear character of N so that we have by (3) θiN =
alN + ba + Δi with a + δ = 2. Since # is a ^'-element a — b — θ^x) =
ζ(x) = χ(x) - 1 = 0 so θiN = 1N + a + J ί# Now by (2) all the <f , occur
in either (1N)G or αG depending on the parity of (p - l)/2. Since
(1^(1) = aG(l), the above and Frobenius reciprocity imply that the ψj
occur in aG and hence

(P-D/2

1
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Since \N\ = 2p this yields \G\ = 2p(p2 + 1). Now 0,(1) \\G\ so
(p — 1) I (p2 + 1) and this is easily seen to be a contradiction for p > 3.

Now consider tree (3)

1G χi ζ i #2 ζ2 χ2
1 O

p-1 2p-S p-1

By (3), χiN = Δ{ and χ^x) = 0 for i = 1, 2. This implies that ζ^x) =
- 1 , ζ2(x) = 0 so <?,(&) = - 1. Now by (3), θiN = alN + ha + cα2 + 4
where a is a nonprincipal linear character and a + 6 + c = 2. Since
0i(ίc) = — 1 we have easily θiN = a -\- a2 + A[. Applying Frobenius
reciprocity to the above and (2) we have

fc (P-D/3

1 1

and this yields easily

3), Λ = (2p-5)/3 .

Using I C(x) I = Σ^(^)57(^) along with the above and (2) we obtain | C(x) \ =
p — 1. Now clearly x is a real element so | C*(x) \ = 2(p — 1) where
Cr*(α;) = {g e G I x& = x or x"1}. Since 2(p — 1) does not divide | G \ as
given above, it follows that this tree does not occur.

Suppose tree (4) or (5) occurred. Since χ^l) = p — 1 and det χ^x) —
1, (1) and (3) imply that (p — l)/4 is even. Hence by (2), ψjN =
1N + Δά. Now there are four linear characters of N and at most two
occur in ΘN so choose a Φ 1Λ- such that a does not occur in ΘN. Thus
a can occur only in χ2V or χ3V with multiplicity at most two. Hence

[G: N] = αG(l) ^ 2χ2(l) + 2χ3(l) = 6p .

Now choose /3 so that /5 occurs in ΘN. Then

(P-D/4

) Σ 0(1)[G: N] =
1

Since (p — l)/4 is even and (p — l)/4 ^ 2 we have (p — l)/4 ^ 4, p ^ 17
and

- 4) ,

a contradiction.
Finally consider tree (6). By (1), (2) and (3) we have easily

χίN = 1N + ̂ , χ2iv = l,v ̂ ', and ψ îΛΓ = 1^ + Δά. Now since e = 5 and
m(#) = 2 we can choose a linear character a oί N with α =£ 1^ and such
that a does not occur in ΘN. Hence by the above and the fact that
m(χd) = m(χ4) = 2 we have aG = αχ3 + &χ4 with α, 6 ̂  2. Thus since

[G:N]= aG(l) = aχs(l) + 6χ4(l) = (α



322 I. M. ISAACS AND D. S. PASSMAN

and [G : N] = 1 (p) we have [G:N] = p + 1. Now choose β so that
β occurs in ΘN. Then

(p-D/5

= βG(l) ^ Σ <

a contradiction since 51 (p — 1) implies that p ^ 11. This therefore
completes the proof of the theorem.

Finally we consider the remaining groups with r.b.(2p — 1).

THEOREM 7. Let pbea prime and let Gbea group with r.b.(2p — 1).
Then we have one of the following.

( i ) G has a normal abelian Sylow p-subgroup.
(ii) G is solvable and has p-length 1.
(iii) G/Z(G) = PSL(2, p) or PGL(2, p) for p > 3.
(iv) G/Z(G) = PSL(2, p - 1) for p a Fermat prime, p > 3.
( v ) G/Z(G) = PSL{2, p + 1) for p a Mersenne prime.
(vi) G/Z(G) ~ Sym (4) for p = 2.

Proof. If p = 2 then G has r.b.3. Thus by Corollary 6.5 of [8],
G satisfies (ii) or (vi) above. Now let p > 2. Since 2p — 1 <̂  p3/2,
Theorem 5 implies that p2 \ \G/OP(G) |. With this additional fact it is
easy to see that the proof of the main theorem of [6] applies also to
groups with τ.b.(2p — 1) with p > 2 yielding the same conclusion.
(The p > 2 assumption is used crucially in the last paragraph of the
proof of Proposition 3.1 of [6].) Thus either G satisfies (i) or (ii)
above or G = P1 x GL where P1 is an abelian p-group and piJf\G1\.
Clearly Gι has r.b.(2# — 1) and if Gλ satisfies any of the above then
so does G. Therefore it suffices to assume that G — Gγ or equivalently
that p2J(\G\. We assume now that G does not satisfy (i). This of
course implies that p\\G\.

Let K = OP,(G) and let H/K be a minimal normal subgroup of G/K.
Then p \ \ H/K \ and since p2 \ \ G/K \ this implies that H/K is the unique
minimal normal subgroup. Now H/K is a product of isomorphic simple
groups and p2 \ \ H/K \ so H/K is simple. If | H/K \ = p then G is
p-solvable of p-length 1. Thus since G does not have a normal Sylow
p-subgroup, Proposition 2.3 of [6] implies that G is solvable and G
satisfies (ii). Hence it suffices to assume that H = H/K is a nonabelian
simple group. It is convenient to first consider the possibility p ^ 5.

Since 3 is the unique minimal normal subgroup of G = G/K we
have CG(H) = <1> and thus G £ Aut H. Suppose f is a subgroup of
H with 1 < [H: T] < 2p. Since 5" is simple and p\\H\ we cannot
have [H: T] < p. Thus p ^ [5": f ] < 2p and f is maximal in H and
hence self normalizing. If T were abelian it would follow easily that
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f is a T.I. set and then H is a simple Frobenius group, a contradiction.
Thus T is nonabelian.

Let ψ be an irreducible character of K and let χ be an irreducible
constituent of ψH. If e = [χ*, <f]* then χ(l) = etψ(l) where ί = [H:_T]
and T is the inertial group of ψ in H. Suppose T < H and set T =
T/K. Since χ(l) < 2p we have t < 2p and thus by the remarks of the
preceding paragraph t ^ p and T is nonabelian. Thus we have 2p >
χ(l) = etψ(l) ^ epψ(l) so e = ^(1) = 1. Now there exists an irreducible
character η of Γ with )?7/ = χ and ηκ = eψ = ψ. Since f is nonabelian
we can choose a nonlinear irreducible character β of Γ containing if
in its kernel. Thus since η is linear, ^ = rjβ is also an irreducible
character of T. Let χ0 be an irreducible constituent of ηξ. Then
/3(l)τ/r = ηQK occurs in χoκ and therefore [χoκ, ψ] ^ /S(l) > 1. The above
reasoning applied to χ0 now yields a contradiction. Thus H = T and
H fixes all irreducible characters of if. By Brauer's lemma, H fixes
all conjugacy classes of if. Let P be a Sylow p-subgroup of H. Then
P fixes each class of K and since if is a p'-group, P centralizes K.
Thus if C = CH(K) then iΓC > if and since iί/if is simple we have
iJ = KC. Now C/(C n ί ) = H and Z(C) a C Π if so Z(C) - C n if.

Let JD denote the last term in the derived series of C. Then
clearly D = JD', JD/Z(D) s 5" and Z = Z(D) = D Π K. Thus Z is a
homomorphic image of the Schur multiplier of H. By Theorem 6,
i ϊ = PSL(2, p), PSL(2, p - 1) for p a Fermat prime or PSL(2, j> + 1)
for p a Mersenne prime. We have by assumption p ^ 5. Also for p = 5,
PSL(2, p) = PSL(2, p - 1) and we will view this group as PSL(2, p).
By [10] (Satz IX, p. 119) either Z = <1> or H = PSL{2, p), D = SL(2,
p) and I Z \ = 2.

We show now that if is central. Suppose first that Z = <(1)> so
that H = D x if. Let χ be a fixed irreducible character of D with
χ(l) = p and let λ be an irreducible character of if. Then χλ is an
irreducible character of iJso 2p > χ(l)λ(l) = pX(T) and λ(l) = 1. Thus
K is abelian and central in H. If if is not central in G, then some
linear character λ of if is not fixed by G. This implies easily that
if θ is a constituent of (χX)G then θ(l) ^ 2χ(l) = 2p, a contradiction.
Thus if is central in G in this case. Now let Z Φ <1> SO that | Z \ = 2
and Z) = SL(2, p). We have an epimorphism D x K—+DK = H where
the kernel is the third subgroup W of order 2 in the group generated
by the copies of Z in D and if. Let λ be an irreducible character of
if. Since Z is central in if and | Z\ = 2 it is easy to see from the
character table of SL(2, p) ([10], p. 128) that there exists an irreducible
character χ of D with χ(l) ^ p and with W in the kernel of χλ, an
irreducible character of D x K. Thus χλ is a character of H. The
preceding argument now shows first that if is abelian and then that
if is central. We have therefore shown that G/Z(G) ~ G and it remains
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to identify G.
Now G £ Aut 3 and H is a 2-dimensional projective group so the

possibilities for G are given by Satz 1 of [9]^ Suppose first that
5 = PSL(2, p). Then either G ~ PSL(2, p) or G ~ PGL(2, p) and we
have (iii). Note the fact that PGL{2, p) has r.b.(2p — 1) can be seen
from the character table on page 136 of [10]. We consider the
remaining two cases. Thus H = PSL(2, s) with 2n = s = p ± 1 and
G/H is isomorphic to a subgroup of the Galois group of GF(2n)/GF(2),
a cyclic group of order n. Suppose G > H and let t £ G correspond to
a nontrivial field automorphism x—>xj. Then in the notation of page
134 of [10], but replacing upper case by lower case letters, we have
t~ιat = aj Φ α. Since s > 4 by our assumption for p = 5 it follows easily
that aj Φ or1 so a3' is not conjugate to a in H. From the character table
of H we now see easily that t moves some irreducible character of H of
degree s + 1 and thus G has an irreducible character of degree at least
2(s + 1) ^ 2p, a contradiction. Hence G = H and G satisfies (iv) or (v).
This completes the proof of the theorem for p ^ 5.

Finally let p = 3. Since H is a nonabelian simple group with
r.b.(2p - 1), H ~ PSL(2, 4) ~ PSL(2, 5) by Theorem 6. Certainly G
is not 5-solvable and G has r.b.(2 5 — 1). Thus by the prime 5 case
already proved, G/Z(G) = PSL(2, 5) or PGL(2, 5). Since the latter
group has an irreducible character of degree 6 > 2p — 1 we have
G/Z(G) ^ PSL(2, 5) = PSL(2, p + 1) and G satisfies (v). Thus the
result follows.
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