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A SPECIAL DEFORMATION OF THE METRIC WITH
NO NEGATIVE SECTIONAL CURVATURE

OF A RIEMANNIAN SPACE

GRIGORIOS TSAGAS

The main results of this paper can be stated as follows.
Let Mu M2 be two big open submanifolds of the Riemannian
manifolds (i?f, hi) and (Rξ, h2), respectively. The submanifolds
Mi,M2 with the metrics hJMi and h2IM2, respectively, have
positive constant sectional curvature. We have constructed
a special I-parameter family of Riemannian metrics d(t) on
Mi X M2 which is the deformation of the product metric
hi/Mi X h2/M2 and it has strictly positive sectional curvature.
In other words, we have proved that V P e Mi X M2 the derivative
of the sectional curvature with respect to the parameter t for
ί = 0 and for any plane which is spanned by Xe (Mi)p and
Ye (M2)p is strictly positive.

Let S2 be a two-dimensional sphere with the canonical metric g
whose sectional curvature is positive constant. Consider the product
of two manifolds S2 x S2. It is not known, ([1], p. 287), ([4], p, 171),
([11], p. 106), if there exists a deformation of the metric g x g with
strictly positive sectional curvature.

Let R2 be a two-dimensional Euclidean space with the metric h
induced from the canonical metric g of S2. It is obvious that the
Riemannian manifold R2 with the metric h has constant sectional curva-
ture. Consider two such Riemannian manifolds (R{, hi), (R2

21 h2). The
space R\ x R\ with the metric h1 x h2 has no negative sectional curva-
ture. I do not know if there is a deformation of the metric hi x h2

whose sectional curvature is strictly positive.
1* Let R2 be a Euclidean plane which is referred to a coordinate

system (uu u2) on which we obtain a metric defined by

h = {hn = 1, h12 = h2ί = 0, h22 = sinVJ ,

whose sectional curvature is positive constant 1.
Consider an open Riemannian submanifold M1 of the Riemannian

manifold (R\, hL) defined by

Mi = Uui, u2) e R\: 0 < Ui < ^ , - oo < u2< oo| ,

whose metric is hJMi.
Let R\ be also another Euclidean plane referred to a coordinate

system (u3, u4) on which we take a metric defined by
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h2 — {h33 = 1, hu = h43 = 0, hu = sin2 u3} .

We also consider an open Riemannian submanifold M2 of Rl de-
fined by

Mo = I (Uo, uλ 6 R2: 0 < Uo < — , — oo < %4 < <

whose metric is h2/M2.
Let M1 x M"2 be the product manifold of M19 M2 which is defined by

(u19 u2j u3, u4) e Rl x Rl: 0 < ut < — ,

Δ

-oo <^ 2 <oo,0<^3<-^,-oo < W4 < ooj .

On the manifold Mι x Λf2 we get a special 1-parameter family of
Riemannian metrics defined by

(1.1) d(t) =
\d3S = 1 + ίpi, c?44 = sin2 %3(l + ί9)2), di5 = 0, if i Φ j ,

where

^2), - ε < t < ε,

e is a small positive number.
It is obvious that d(0) = hJlAt x Jι2/M2.

2Φ Let P be any point of Mi x M2. As is known, the sectional
curvature of a plane spanned two vectors X, Y of the tangent space
(Mi x M2)P is given by

σ(X, Y)(t)= -

If we apply Taylor's expansion theorem for the function o(X1 Y)(t),
we get

σ(X, Y)(t) = σ(X, Y)(0) + σ\(X, Y)(0) ± + σ»(χ, Y)(Q) L + . . . .

From the above formula we conclude that the sign of σ(X, Y)(t)
depends on the sign of σ(X, Y)(0), if ί is a small positive number and
σ(X, Y)(0) Φ 0, but if σ(X, Y) = 0, then its sign depends on tσ't(X, Y)(0).

As is known ([1], p. 287), σ(X, Y)(0) = 0, if Xe(M1)P and
Ye (M2)P. In this case we estimate σ(X, Y)(t) which is given by the
formula

(2.1)
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where

A(t) = <R(X, Y)X, Y> = Rim(X

+ RUXΎi YΎ + RUXΎi YΎ + 2R1323x
ιx*( Yγ

{ ' ' + 2R13u(XiγY*Yi + 2R^i(X2)ΎΎi + 2RίiiιX
ίX\YΎ

+ 2(R132l + R^X'XΎ'Y'.

(2.3) B(t) = {dn(XΎ + d22(Xr}{d3S(Yγ + du(YΎ} > 0 ,

because, in this case, ζX, F)> = 0.
From relation (2.1), we obtain

or

(2.4) A(0) = 0 .

If we differentiate the same relation (2.1) with respect to t, we
obtain

σt{X, y)(0)

which, by virtue of (2.4), takes the form

(2.5) < f t ( X Λ

From the formula (2.2), we obtain

A'(θ) = RU

+ RU0)(XΎ( YΎ + 2R'U0)X1X\ YΎ + 2R'nu(0)(XΎ Y3 Y4

' + 2R'23u(0)(X2)ΎΎi + 2R'U2i(0)XίX\YΎ
+ 2{R'n2i(0) + R'ιm(0)}X*X'Y*Y< .

We shall estimate the coefficients of the Riemannian tensor which
appear in the formula (2.6). As is known, Rijkι is given by ([18], p. 18)

(2.7)
W'rsi^ ok* il -* il± ik> ,

where Γr

jk1 Γ
s

Ui Γ
r

ju Γ
s

ik are the Christoffel symbols of second kind.
From (1.1) and (2.7), if we make the calculations, we obtain
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tR - t ( d ^ i y g>i \ f fWJfa*)1 ••.
1313 2 V 3 « 3

2 3 t t ι

2 / 4 l l + ί / , + φj

p _ « / 32/t . . 3> 2 , sin 2us(dfjdus) \
•RΊAU — \ -z—Γ T " fc>m 163 — — - -t- — — — — - — j

2 V 3w4

2 3 ^ 2 2(1 + tφj /
_ jP ί(dfjdu4)

2 , sin2u3(9<^2/3^1)
2 _ sin 2^3(3/1/3^3)^2 )

4 I 1 + ί/x 1 + ί/, 1 + «?>! J

sinf sin^ + +
2 V ι 3wJ 3^ 2

2 2(1

_ j? J aiτfuάdfjdus)2 , (dφjdu2)
2 _ sin 2i6 1/ 2(^

4 1 1 + ί/i 1 + ί^ 1 + «/i

i?2424 = A f s i n ^ - ^ + sin2^3 i ! 2 i + ^ n 2 ^ sin2

2 V 3^2 3^2 2(1 +
f s i n ^ + sin^ 3 +

2 V 3^2 3^2 2(1 + tf,)

sin 2u3 siτfuάdfjdua) _ tf_ Jsin2 u^dfj
( 2 # 8 ) 2(1 + ̂ ) 4 1 1 + ί/£

sin2 u3(dφ2/du3)
2 _ sin 2ux sin2

1 + tφ2 Γ=

sin 2us sin2'
1 + tφ,

_ 2

sin %! 3^2 / 4 1 + ί^j.

c o s ^ 3/Λ_ _f (dfJdu>)(dfJduA)
sin u3 du± J 4 1 + ί/i

Γ̂ s m u i \ "^—z — — :

2 \ OUβU^ Sin

1 + ί/2

2 \ duLou2 sm ^

_ tf_ sin2 u3(dφ2/duj)(dφ2/du2)
4 1 + tφ2

(2.10) i21324 - i?1423 - 0 .

If we choose the functions φlf fl9 f2j φ2 such that they satisfy
the partial differential equations



SECTIONAL CURVATURE OF A RIEMANNIAN SPACE 719

d2φγ _ 2 COS ut dφx _ Q
sin^i dn2

_ 9 c o s u* g/i = o
i dduβu^ sin

d2f2 __ cos u3 3/2 __

duodu± sin ^ 3 3^4

d2φ2 cos ^! 3<̂>2 _ Q
duβUz sin ^ 3^2

then the formulas (2.9) take the form

Ώ _ t2 (dφjdujidφjduj
•"Ί323 — •"•; ^ — — 7 >

4 1 + ί£>!

Kmi~ T Γ
( 2 Λ 2 ) p _ _ t2 sin2 u

T
P _ ί2 sin2 Ud(dφ2/duλ)(dφ2/du2)

4 1 + tφ2

From the relations (2.8) and (2.12) we obtain

oiv,2 Λf δ / 2 s insin « +(2.13) 2̂323(V) =irl-TT- "+- s m % i τ τ + —τr~ ~T~^ '

8 i n ^ s i n >
RUO) fsin M l + sin tt3

2 V 3u 4

2 3u

sin 2u3 sin2 uγ 3/2

2 3^7
(2.14) B[m(0) = S U O ) = ^324(0) - iίWO) - 0 .

The first partial differential equation of (2.11) can be written

or

or

sin2 uι ,
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whose general solution is

(2.15) Ψι = V,(u2) sin2 u, + T^

where Vx(u2) and T^Uj) are arbitrary functions of u2 and uu respectively.
We can find the general solutions of the rest of partial differential

equations (2.11) in the same way. The general solutions of these
equations are

(2.16) φ2 = s i n ^ F ^ ) + T2{u,) ,
f2 = sin u3X2(u4) + μ2(u3) ,

where λx(^4), μ^), V2(u2), T2(u^), λ2(tt4), μ{uz) are arbitrary functions
of i64, u3j u2, 6̂1, t64, uZi respectively.

The formulas (2.13) by virtue of (2.15) and (2.16) take the form

ΛίβiβίO) = -|-{2 cos 2 ^ ( 0 + TJ'i^

+ ~^μ[(u3) - sin2 ̂  sin ^

+ TΪ'W) +

cos

The relation (2.6) by means of (2.10) and (2.14) takes the form

A'(0) = B
{ }

In order that σ'(X, Γ)(0) = -^'(0)^(0) be positive on the
Riemannian manifold M1 x M2, it must be

(2.19) A'(0) < 0 .

From the formula (2.18) we conclude that (2.19) is valid when
we have
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which, by virtue of (2.17), take the form

i —{2cos2w3λ1(%4) + μΐ{u3)} < 0 ,

ιin2^3(λί'(^4) + 2700) + ^ - ^

— sin2 uB sin ux V2(u2) > < 0 ,

ιin2 u^μ'z'iua) + V"{u2)) + m Δ

— sin2 uγ sin ^3λ2(^4) \ < 0 ,

s i n 2 ^ s ί n ^ ^ " ( % 4 ) + c o s ^ ( % 3 )

which must be valid on the Riemannian manifold M1 x M2.
The above inequalities hold if we have

2 cos 2u1Vί(u2) + Tί'M < 0 ,

n^iμΐiu,) + V['{u2)) + ? ^ i V^)
2(2.20)

— sin2 t6i sin u^X2(u4) < 0 ,

λ"(u4) + cos u3μ2(u3) + cos2 ^λ2(tt4) < 0 ,

2 cos 2t63λ1(^4) + ^I'(w3) < 0 ,

sin2u3(λΓ(O + Tϊfa)) + *™L^\(u<) +
(2.21) 2

— sin2 ^ 3 sin uγV2(u2) < 0 ,

V"(u2) + cos^Γ^^i) + cos2^F2(^2) < 0

The inequalities (2.21) are similar to the inequalities (2.20); for
this reason we shall only study the inequalities (2.20).

The factor cos 2ux changes sign when 0 < ux < 2/τr; from this and
from the fact that Fi(t&2) and V"(u2) must have constant sign and
bounded when — c>o < u2 < oo, we conclude that VΊ(u2) must be a
constant negative number — a.

From the above remark, the inequalities (2.20) take the form
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- 2a cos 2ut + Tί'(tti) < 0 ,

(2.22) sin2u^'2'(us) - α ^ ! ^ i + s in2^ Γ J ^ _ g i n 2 ^ s i n ^ ^ j < 0 ?

2 2
λ"(w4) + C(>s nzμ2{uz) + cos2 ttsλ2(w4) < 0 .

In order for the second and the third inequalities of (2.22) to be
valid, the function X2(u4) must be a positive constant number β.

Therefore the above inequalities become

- 2a cos 2u, + Tί'(tti) < 0 ,

(2.23) sin2 u^{uz) - a^τ)?2^ + sin2wi y , ^ _ β g i n 2 ^ g i n ^ < 0 ^
Δ Δ

^2(^3) + iβ cos uz < 0 .

If the functions T^Uy), μ2(u3) are chosen such that

Tίfa) < 0 , max{TΓ(^)} < - 2α, 0 < ^ < ^ ,
Δ

)} < - /3 , ^;'(w3) < 0 , 0 < u3 < \ ,
Δ

then the inequalities (2.23) hold.
We also conclude that if the functions \(u4), V2(u2), μ^), T2(u1)

satisfy the conditions

\(un) = - 7 , F2(^2) = δ ,

< 0 , max{μί'(O} < - 27 , 0 < u3 < -J-,
Δ

max{Tί(ud) < - S , Tί.'iu,) < 0, 0 < u, < !L ,

then the inequalities (2.21) hold.
Therefore, if the functions φlf flf φ2, f2 have the form

φι — — α sin2 ux + Tγ(ul) , α > 0 ,

, 2 2 4 ) /i = - 7 sin2 ^3 + ^ ( ^ ) , 7 > 0 ,

φ2 = <5 sin ^ + Taί^) , δ > 0 ,

/2 = β sin ^3 + 2̂(̂ 3) , β > 0 ,

such that the functions Γi(%i), μι(u3), T2{u1) and ^2(^3) satisfy the
conditions
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Tί(tt!) < 0 , max{77(tti)} < - 2α , 0 < u, < ~

max{juί(tt,)} < -β , μ'Λu3) < 0 , 0 < it, < -Ξ-

(2.25)
μ[(ut) < 0 , max{μ[\u3)} < - 2y , 0 < w3 < Ξ.

max{ΓJ(t*i)} < - ^ , Γί'(%i) < 0 , 0 < u, < iL ,

then αί(J5Γ, Γ)(0) > 0 for l e (ilfjp, F e (Jkf2)P.
Hence we have the following theorem.

THEOREM. Let Mlf M2 be two Riemαnniαn spaces with positive
constant sectional curvature defined in §1. If we consider a special
1-parameter family of Riemannian metrics d(t) on M1 x M2 defined
by (1.1) where the functions fly f2, φlf φ2 have the form (2.24) in which
the functions T^Uj), /^(w3), T2{ux) and μ2{u^} must satisfy the conditions
(2.25), then \/P£M1 x M2 the derivative of the sectional curvature
of any plane spanned by Xe (Mx)p and Ye (M2)P with respect to t for
t — 0 is strictly positive.

From the above, we conclude that if the parameter t is positive
and small enough, then the corresponding Riemannian metric d(t) de-
fined by (1.1) on Mx x Jkf2, where the functions f19 /2, φu φ2 have the
form (2.24) in which the functions T^u^), î(t&3), T2(Uj) and μ2(u3) must
satisfy the conditions (2.25), has strictly positive sectional curvature.

3. We can extend the manifold M1 x M2 to a manifold

Nx x N2 Z) Mi x M2

such that there is a deformation of another product metric on Nλ x N2

which has strictly positive sectional curvature.
This method can be stated as follows. On the Euclidean plane

R] we obtain a metric which is given by

t = \ωn = 1 , ω12 = ω2ί = 0 ,
n

where n is an integer > 1. The sectional curvature of this metric is
1/n2.

Now, consider an open Riemannian submanifold JVΊ of the
Riemannian manifold (R\, ωx) defined by

JVi = {(u19 u2) e R\: 0 < ux < n ?- , - oo < u2 < ^} ,
Li
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whose metric is coJN^
Similarly, on the Euclidean plane R\, we obtain a metric which

is given by

ω2 = \ ω33 = 1 , o)u = ω43 = 0 , ωu = sin2 - i \ ,

whose sectional curvature is 1/n2.
Let N2 be an open Riemannian submanifold of the Riemannian

manifold (R\, ω2) which is defined by

N2 = {(uz, u,) e R\: 0 < u, < n ^- , - oo < u, < oo} ,
Li

whose metric is o)2/N2.
We consider the product manifold Nλ x N2 of N19 N2 defined by

Λ7 w Λ7 _ f/7/ , , w η . \ p D2 w O2 . A ^ . . ^ „ K ^ ^

2

It is obvious that (iS^ x N2)Z)(M1 x ikf2) and with the same
technique as in §2 we can prove that there is a deformation of the
metric o)JNι x co2 / N2 which has strictly positive sectional curvature
on the manifold Nλ x N2.

Acknowledgment is due to Professor S. Kobayashi for many helpful
suggestions.
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