EXCEPTIONAL 3/2-TRANSITIVE PERMUTATION GROUPS

D. S. Passman

Solvable 3/2-transitive permutation groups were previously classified to within a finite number of exceptions. In this paper the exceptional groups are determined. They have degrees 3^2 , 5^2 , 7^2 , 11^2 , 17^2 and 3^4 . In addition, these groups are shown to have no transitive extensions.

There are three families of groups which play a special role here. Let q be a prime. We let $\mathscr{S}(q^n)$ denote the set of all semilinear transformations on the finite field $GF(q^n)$. Thus $\mathscr{S}(q^n)$ consists of all transformations

$$x \rightarrow ax^{\sigma} + b$$

with $a, b \in GF(q^n)$, $a \neq 0$ and σ a field automorphism. Clearly this is a solvable group, doubly transitive on $GF(q^n)$.

We let $\mathcal{S}_0(q^n)$ be the group acting on a 2-dimensional space over $GF(q^n)$ which contains the transformations

$$(x,y) \longrightarrow (x,y) \Big(egin{array}{cc} a & 0 \ 0 & \pm a^{-1} \Big) + (b,c) \ \end{array}$$

and

$$(x,y) \longrightarrow (x,y) \left(egin{array}{cc} 0 & a \ \pm a^{-1} & 0 \end{array}
ight) + (b,c)$$

with $a, b, c \in GF(q^n)$ and $a \neq 0$. We see easily that $\mathcal{S}_0(q^n)$ is solvable and if $q \neq 2$ then it acts 3/2-transitively on the 2-dimensional space. Finally we let $\Gamma(q^n)$ denote the set of all functions of the form

$$x \longrightarrow \frac{ax^{\sigma} + b}{cx^{\sigma} + d}$$

with $a, b, c, d \in GF(q^n)$, $ad - bc \neq 0$ and σ a field automorphism. These functions permute the set $GF(q^n) \cup \{\infty\}$ and $\Gamma(q^n)$ is triply transitive. Clearly $\Gamma(q^n)_{\infty} = \mathcal{S}(q^n)$ is solvable. Let $\overline{\Gamma}(q^n)$ denote the subgroup of $\Gamma(q^n)$ consisting of these functions of the form

$$x \longrightarrow \frac{ax+b}{cx+d}$$

with ad - bc a nonzero square in $GF(q^n)$. The following results are proved here. Theorem A. Let $\mathfrak B$ be a linear group acting on vector space $\mathfrak B$ of order q^n . Suppose that $\mathfrak B$ acts half-transitively but not semi-regularly on $\mathfrak B^\sharp$. If $\mathfrak B$ is primitive as a linear group then

- (i) $O_{v}(\mathfrak{G})$ is cyclic for p > 2.
- (ii) The Frattini subgroup $\Phi(O_2(\mathfrak{G}))$ is cyclic and

$$[O_{\scriptscriptstyle 2}(\mathbb{S}): \varPhi(O_{\scriptscriptstyle 2}(\mathbb{S}))] \leqq 2^{\scriptscriptstyle 6}$$
 .

THEOREM B. Let S be a solvable 3/2-transitive permutation group. Then with suitable identification, S satisfies one of the following.

- (i) S is a Frobenius group.
- (ii) $\mathfrak{G} \subseteq \mathscr{S}(q^n)$
- (iii) $\mathfrak{G} = \mathscr{S}_0(q^n)$ or

The exceptions of (iv) above do in fact exist. If deg $\% \neq 17^2$ then we can take % to be an exceptional solvable doubly transitive group, while if deg $\% = 17^2$ then we construct this group explicitly and show that it has order $96 \cdot 17^2$.

THEOREM C. Let S be a 5/2-transitive permutation group and suppose that the stabilizer of a point is solvable. Then with suitable identification we have one of the following

- (i) S is a Zassenhaus group or
- (ii) $\Gamma(q^n) \supseteq \mathfrak{G} > \bar{\Gamma}(q^n)$.

The main result here is Theorem B. Theorem A isolates that part of the proof in which solvability is not assumed. Theorem C follows immediately from the results of [8] and the fact that these exceptional groups have no transitive extensions.

1. Preliminaries. We will be concerned here with linear groups \mathfrak{G} which act half-transitively but not semiregularly on the set \mathfrak{T}^\sharp of nonzero vectors. This implies (see [11], Th. 10.4) that \mathfrak{G} acts irreducibly on \mathfrak{T} . There are thus two possibilities according to whether \mathfrak{G} is primitive or imprimitive as a linear group. The latter case is completely classified in Theorem 4.2 of [7] which we restate below for convenience.

THEOREM 1.1. Let \mathfrak{G} act faithfully on vector space \mathfrak{T} over GF(q) and let \mathfrak{G} act half-transitively but not semiregularly on \mathfrak{T}^{\sharp} . If \mathfrak{G} is imprimitive as a linear group, then \mathfrak{G} satisfies one of the following

(i) $\mathfrak{G} = \mathscr{T}_0(q^n)$ with $q \neq 2$ and n an integer.

- (ii) $|\mathfrak{V}| = 3^4$ and \mathfrak{V} is isomorphic to a central product of the dihedral and quaternion groups of order 8.
- (iii) $|\mathfrak{V}| = 2^6$ and \mathfrak{V} is isomorphic to the dihedral group of order 18 with cyclic Sylow 3-subgroup.

Here $\mathcal{J}_0(q^n)$ is the stabilizer in $\mathcal{S}_0(q^n)$ of the zero vector and hence we know all these groups explicitly. Thus we need only consider the primitive case here.

Let $\mathfrak B$ be a primitive linear group and let $\mathfrak B$ be a normal p-subgroup of $\mathfrak B$. Since every normal abelian subgroup of $\mathfrak B$ is cyclic (see for example [9], Lemma 1) it follows that every characteristic abelian subgroup of $\mathfrak B$ is cyclic. Hence by definition $\mathfrak B$ is a group of symplectic type. A characterization of these groups can be found in [1]. In particular for p>2, $\mathfrak B$ is a central product of one cyclic p-group and any number of nonabelian groups of order p^3 and period p. If p=2, then $\mathfrak B$ is a central product of either a cyclic 2-group or a 2-group of maximal class (that is, a dihedral, semidihedral or quaternion group) and any number of nonabelian groups of order $\mathfrak B$. A special case of these are groups of type E(p,m).

We say $\mathfrak E$ is a group of type E(p,m) with $m\neq 0$ if $\mathfrak E$ has the following structure. If p>2, then $\mathfrak E$ is a central product of m nonabelian groups of order p^3 and period p. If p=2, then $\mathfrak E$ is a central product of a cyclic group of order 2 or 4, and m nonabelian groups of order 8. Thus in both cases $|\mathfrak E'|=p$, $Z(\mathfrak E)$, the center of $\mathfrak E$, is cyclic and $[\mathfrak E:Z(\mathfrak E)]=p^{2m}$. Moreover $|Z(\mathfrak E)|=p$ for p>2 and $|Z(\mathfrak E)|=2$ or 4 for p=2. We call m the width of $\mathfrak E$.

Again let \mathfrak{P} be of symplectic type. If p>2, then $\Omega_1(\mathfrak{P})$, the subgroup generated by all elements of order p, is either cyclic (if \mathfrak{P} is) or of type E(p,m). If p=2, then the Frattini subgroup $\Phi(\mathfrak{P})$ is cyclic, and $\Omega_2(C_{\mathfrak{P}}\Phi(\mathfrak{P}))$ is either cyclic or of type E(2,m). The latter group is cyclic only if \mathfrak{P} is cyclic or $|\mathfrak{P}| \geq 16$ and \mathfrak{P} is maximal class. Thus modulo the above mentioned exceptions \mathfrak{P} contains a characteristic subgroup \mathfrak{F} of type E(p,m) with $m \neq 0$.

If p>2, then for each (p,m) there is precisely one group of type E(p,m). On the other hand, if p=2, then for each m there are three isomorphism classes for E(2,m) and we describe these now. For convenience we will use the following notation throughout this paper: $\mathfrak D$ denotes the dihedral group of order 8, $\mathfrak D$ denotes the quaternion group of order 8, and 3 denotes a cyclic group of order 4. Furthermore any product of these written as $\mathfrak D\mathfrak D$, $\mathfrak J\mathfrak D\mathfrak D$, etc. will indicate a central product. Now we have easily $\mathfrak D\mathfrak D\cong\mathfrak D\mathfrak D$ and $\mathfrak J\mathfrak D\cong\mathfrak J\mathfrak D$. Hence if $\mathfrak E$ is type E(2,m) then $\mathfrak E$ is isomorphic to one of the following three groups.

$$\begin{array}{ll} \text{iso} \quad I: \quad \mathfrak{E} \cong \mathfrak{DQ} \cdots \mathfrak{Q} \\ \text{iso} \quad II: \quad \mathfrak{E} \cong \mathfrak{DQ} \cdots \mathfrak{Q} \\ \text{iso} \quad III: \quad \mathfrak{E} \cong \mathfrak{ZQ} \cdots \mathfrak{Q} \\ \end{array}$$

We will see below that these three groups are nonisomorphic.

For any group ${\mathfrak G}$ we let $I({\mathfrak G})$ denote the number of its noncentral involutions.

LEMMA 1.2. Let \mathfrak{E} be a group of type E(2, m). Then

$$egin{align} I(\mathfrak{G}) &= 2^{2m} + (-2)^m - 2 & if \ \mathfrak{G} &= ext{iso} & \mathrm{II} \ &= 2^{2m} - (-2)^m - 2 & if \ \mathfrak{G} &= ext{iso} & \mathrm{III} \ &= 2^{2m+1} - 2 & if \ \mathfrak{G} &= ext{iso} & \mathrm{III} \ . \end{cases}$$

In particular these three groups are nonisomorphic. Moreover with the exception of $\mathfrak{E} = \mathfrak{Q}$, \mathfrak{E} is generated by all its noncentral involutions.

Proof. Let $I^*(\mathfrak{G})$ denote the number of elements $G \in \mathfrak{G}$ with $G^2 = 1$. Then $I(\mathfrak{G}) = I^*(\mathfrak{G}) - 2$. Suppose \mathfrak{G} is iso I or II and write $\mathfrak{G} = \mathfrak{G}_1\mathfrak{Q}$ where \mathfrak{G}_1 is type E(2, m-1). Clearly

$$I^*(\mathfrak{E}) = 3(|\mathfrak{E}_1| - I^*(\mathfrak{E}_1)) + I^*(\mathfrak{E}_1)$$
.

Thus if $I^*(\mathfrak{C}_1) = 2^{2(m-1)} + \delta(-2)^{m-1}$ then $I^*(\mathfrak{C}) = 2^{2m} + \delta(-2)^m$. Hence the first two results follow easily. If $\mathfrak{C} = \text{iso III}$, let $Z(\mathfrak{C}) = \langle Z \rangle$. Then the map $X \to XZ$ yields a one to one correspondence between the elements of \mathfrak{C} with square 1 and those of order 4. Hence clearly $I^*(\mathfrak{C}) = 1/2 \mid \mathfrak{C} \mid = 2^{2m+1}$.

Now any such \mathfrak{E} can be written as $\mathfrak{E}_1\mathfrak{DD}\cdots\mathfrak{D}$ and of course \mathfrak{D} is generated by its noncentral involutions. Since the same is easily seen to be true for $\mathfrak{E}_1=\mathfrak{D},\mathfrak{DD}$ or \mathfrak{ZD} , the result follows.

Let \mathfrak{E} be type E(p, m) and let $\mathfrak{W} = \mathfrak{E}/Z(\mathfrak{E})$. Then \mathfrak{W} is elementary abelian of order p^{2m} and we view this additively as a 2m-dimensional vector space over GF(p). If p=2 we say $W \in \mathfrak{W}$ is an involution vector if the coset corresponding to W in \mathfrak{E} contains an involution of \mathfrak{E} . Here we let $i(\mathfrak{W})$ denote the number of such involution vectors.

LEMMA 1.3. Let \mathfrak{F} be a group of automorphisms of group \mathfrak{F} of type E(p,m) which centralizes $Z(\mathfrak{F})$ and let \mathfrak{R} be the subgroup of \mathfrak{F} consisting of those elements which centralize \mathfrak{W} . Then

(i) R is isomorphic to a subgroup of the direct product of

 $Z(\mathfrak{E})$ taken 2m times.

- (ii) The commutator map (,) of \mathfrak{E} induces a nonsingular skew-symmetric bilinear form on \mathfrak{W} . As such $\mathfrak{S}/\mathfrak{R}$ is contained isomorphically in the sympletic group Sp(2m, p).
- (iii) If p = 2, then in addition $\mathfrak{F}/\mathfrak{R}$ permutes the $i(\mathfrak{B})$ involution vectors of \mathfrak{B} . Here

$$egin{align} i(\mathfrak{W}) &= 2^{2m-1} - (-2)^{m-1} - 1 & if \ \mathfrak{E} = \mathrm{iso} & \mathrm{I} \ &= 2^{2m-1} + (-2)^{m-1} - 1 & if \ \mathfrak{E} = \mathrm{iso} & \mathrm{II} \ &= 2^{2m} - 1 & if \ \mathfrak{E} = \mathrm{iso} & \mathrm{III} \ . \end{cases}$$

Proof. (i) Let E_1, \dots, E_{2m} be a set of coset representatives of $Z(\mathfrak{E})$ in \mathfrak{E} . We define $\theta: \mathfrak{R} \to \prod Z(\mathfrak{E})$ (2m times) by $\theta(K) = \prod E_i^K E_i^{-1}$. This is easily seen to be a monomorphism.

(ii) and (iii) If W is an involution vector then we see easily that the coset of W contains precisely two noncentral involutions of \mathfrak{E} . Hence $i(\mathfrak{W}) = 1/2I(\mathfrak{E})$. The result now follows easily.

We now consider the action of & on a vector space B.

LEMMA 1.4. Let group $\mathfrak G$ of type E(p,m) act on vector space $\mathfrak S$ of order q^n . Suppose further that $\mathfrak G'$ acts without fixed points on $\mathfrak S^{\sharp}$. Then

- (i) $sp^m \mid n$ where s is the smallest positive integer with $\mid \pmb{Z}(\mathfrak{G}) \mid \mid q^s 1$.
 - (ii) If $T \in \mathfrak{C} \mathbf{Z}(\mathfrak{C})$ has order p then $|C_{\mathfrak{D}}(T)| = q^{n/p}$.
- (iii) If $x \in \mathfrak{D}^{\sharp}$, then \mathfrak{C}_x , the stabilizer of x in \mathfrak{C} is elementary abelian.
- *Proof.* (i) Since \mathfrak{C}' acts without fixed points $q \neq p$. By complete reducibility we can assume that \mathfrak{C} acts irreducibly on \mathfrak{B} . Let χ be the character of an absolutely irreducible constituent of \mathfrak{C} . From the representation of \mathfrak{C} as a homomorphic image of a direct product of nonabelian group of order p^s (and possibly a cyclic group of order 4 if p=2) we see easily that deg $\chi=p^m$ and χ vanishes off $Z(\mathfrak{C})$. Hence by definition of s, $GF(q)(\chi)=GF(q^s)$ and \mathfrak{B} contains as absolutely irreducible constituents the s algebraic conjugates of the representation affording γ . Thus (i) follows.
- (ii) We wish to show here that dim $C_{\mathfrak{B}}(T) = n/p$. This dimension is clearly invariant under field extension so by complete reducibility we can assume \mathfrak{B} is absolutely irreducible. If θ is the corresponding complex character then $\theta(T)$ is a sum of pth roots of unity (including 1) and $\theta(T) = 0$. Hence all eigenvalues occur with the same multiplicity n/p and (ii) follows.

(iii) This is clear since $\Phi(\mathfrak{E})$ acts semiregularly on \mathfrak{B}^{\sharp} .

LEMMA 1.5. Let group $\mathfrak G$ of type E(p,m) act on vector space $\mathfrak B$ of order q^n and let $T \in \mathfrak G - \mathbf Z(\mathfrak G)$ have order p. Suppose further that $\mathfrak G$ acts without fixed points on $\mathfrak B$. Then

- (i) There exists $x \in \mathfrak{V}^{\sharp}$ with $\mathfrak{C}_{x} = \langle 1 \rangle$ with the following exceptions which occur for p = 2: (a) $q^{n} = 3^{2}$, $\mathfrak{C} = \mathfrak{D}$, (b) $q^{n} = 5^{2}$, $\mathfrak{C} = \mathfrak{ZD}$, (c) $q^{n} = 3^{4}$, $\mathfrak{C} = \mathfrak{DD}$. In each of these exceptions $|\mathfrak{C}_{x}| = 2$ for all $x \in \mathfrak{V}^{\sharp}$.
- (ii) There exists $x \in \mathfrak{D}^{\sharp}$ with $\mathfrak{C}_{x} = \langle T \rangle$ with the following exceptions which occur for p=2: (a) $q^{n}=3^{\sharp}$, $\mathfrak{C}=\mathfrak{DD}$, (b) $q^{n}=5^{\sharp}$, $\mathfrak{C}=\mathfrak{BDD}$, (c) $q^{n}=3^{\$}$, $\mathfrak{C}=\mathfrak{DDD}$. In each of these exceptions $|\mathfrak{C}_{x}|=4$ or 1 for all $x \in \mathfrak{D}^{\sharp}$.

Proof. (i) We first note that by [4] Theorem II (a), (b) and (c) are in fact exceptions. Suppose now that $\mathfrak{C}_x \neq \langle 1 \rangle$ for all $x \in \mathfrak{B}^{\sharp}$. Then every element of \mathfrak{B}^{\sharp} is centralized by a noncentral element $P \in \mathfrak{C}$ of order p. Thus

$$\mathfrak{V} = \bigcup_{P} C_{\mathfrak{V}}(P)$$

where the union is over respesentatives of the N noncentral subgroups of \mathfrak{E} of order p. By Lemma 1.4 we have

$$q^n = |\mathfrak{V}| \leq Nq^{n/p}$$

and $q^{n(1-1/p)} \le N$.

Let p>2. Then $N< p^{2^{m+1}}/(p-1)$ and $n\geq sp^m$. Furthermore $p\mid q^s-1$ so $q^s\geq p+1$. Thus

$$egin{align} p^{p^m-p^{m-1}} &< (p+1)^{p^m-m-1} \leqq q^{s(p^m-p^{m-1})} \ &\le q^{n(1-1/p)} \leqq N < p^{2m+1}/(p-1) < p^{2m+1} \ . \end{split}$$

This yields $p^{m-1}(p-1) < 2m+1$ and since p>2 we have p=3, m=1 here. However with p=3, m=1 the equation

$$(p+1)^{p^m-p^{m-1}} < p^{2m+1}/(p-1)$$

is not satisfied so p > 2 cannot occur here.

Now let p=2 so that $N=I(\mathfrak{E})$. Suppose first that $|\mathbf{Z}(\mathfrak{E})|=4$. Then $4 \mid q^s-1$ and $I(\mathfrak{E}) < 2^{2m+1}$. Thus

$$5^{2^{m-1}} \leqq q^{s2^{m-1}} \leqq q^{n(1-1/p)} \leqq N \leqq 2^{2m+1}$$
 .

This yields $5^{2^{m-1}} < 2^{2^{m+1}}$ so m=1 or 2. If m=1, then $q^{n/2} < 8$ and $4 \mid q^s-1$ yields $q^n=5^z$ and we have exception (b). If m=2, then $q^{n/2} < 32$, $4 \mid q^s-1$ and $4s \mid n$ yields $q^n=5^s$. We show now that this possibility does not occur. Let $x \in \mathfrak{D}^{\sharp}$ and suppose that $\mathfrak{C}_x \neq \langle 1 \rangle$.

Choose $P \in \mathbb{G}_x^*$. Since \mathfrak{G}_x is abelian $\mathfrak{G}_x \subseteq C_{\mathfrak{G}}(P) = \langle P \rangle \times \overline{\mathfrak{G}}$ where $\overline{\mathfrak{G}} \cong \mathfrak{ZD}$. Now $x \in C_{\mathfrak{V}}(P)$, $|C_{\mathfrak{V}}(P)| = 5^2$ and $\overline{\mathfrak{G}}$ acts on this subspace. Since this action yields the exceptional case (b) we have $|\overline{\mathfrak{G}}_x| = 2$ and hence $|\mathfrak{G}_x| = 4$. Thus for all $x \in \mathfrak{V}^\sharp$, $|\mathfrak{G}_x| = 1$ or 4. This, by the way, is the exceptional case (b) of part (ii). If $\mathfrak{V} = \bigcup C_{\mathfrak{V}}(P)$ then since each \mathfrak{G}_x is elementary abelian, we see that this union covers \mathfrak{V} three times. Thus

$$|5^4 - 1| = |\mathfrak{B}^{\sharp}| \le \frac{1}{3}I(\mathfrak{G}) \cdot (5^2 - 1) < \frac{1}{3} \cdot 2^5(5^2 - 1)$$

a contradiction.

Now let $|Z(\mathfrak{F})|=2$ so $I(\mathfrak{F})\leqq 2^{2m}+2^m-2$. Since $q^s\geqq 3$ we have $3^{2^{m-1}}\le q^{s2^{m-1}}\le q^{n(1-1/p)}\le N\le 2^{2m}+2^m-2$.

This yields $3^{2^{m-1}} < 2^{2m} + 2^m$ so m = 1 or 2. If m = 1 then $q^{n/2} \le 4$ so $q^n = 3^2$. Clearly $\mathfrak{E} \ne \mathfrak{D}$ so we have exception (a) here. If m = 2, then $4 \mid n$ and $q^{n/2} \le 18$ yields $q^n = 3^4$. If $\mathfrak{E} \cong \mathfrak{D}\mathfrak{D}$ we have exception (c). We show finally that $\mathfrak{E} \ne \mathfrak{D}\mathfrak{D}$. Let $x \in \mathfrak{B}^{\sharp}$ and suppose $\mathfrak{E}_x \ne \langle 1 \rangle$. Choose $P \in \mathfrak{E}_x^{\sharp}$ and let $C_{\mathfrak{E}}(P) = \langle P \rangle \times \mathfrak{E}$. Here \mathfrak{E} is nonabelian of order 8. Since $C_{\mathfrak{E}}(\mathfrak{E})$ contains P we see that $C_{\mathfrak{E}}(\mathfrak{E}) \cong \mathfrak{D}$ and hence $\mathfrak{E} \cong \mathfrak{D}\mathfrak{E}$. Thus $\mathfrak{E} \cong \mathfrak{D}$. This implies as above that $|\mathfrak{E}_x| = 2$ and $|\mathfrak{E}_x| = 4$, thereby yielding exception (a) of part (ii). Again if $\mathfrak{B} = \bigcup C_{\mathfrak{E}}(P)$, then \mathfrak{B} is triply covered so

$$|3^4-1|=|\mathfrak{B}^{\sharp}|\leq rac{1}{3}I(\mathfrak{F})(3^2-1)<rac{1}{3}20(3^2-1)$$
 ,

a contradiction. This completes the proof of (i).

(ii) If m=1, then any abelian subgroup of \mathfrak{E} of order 4 meets $Z(\mathfrak{E})$. Since $Z(\mathfrak{E})$ acts semiregularly, we conclude that for all $x \in \mathfrak{B}^{\sharp}$, $|\mathfrak{E}_x| = 1$ or 2. Thus the result follows here.

Let $m \geq 2$. Then $C_{\mathfrak{F}}(T) = \langle T \rangle \times \mathfrak{F}$ where \mathfrak{F} is type E(p, m-1). Note that $\mathfrak{F} = \mathfrak{F}C_{\mathfrak{F}}(\mathfrak{F})$ and $T \in C_{\mathfrak{F}}(\mathfrak{F})$. Thus if p=2 then $C_{\mathfrak{F}}(\mathfrak{F}) \cong \mathfrak{D}$ and the isomorphism class of \mathfrak{F} is uniquely determined by $\mathfrak{F} \cong \mathfrak{F}\mathfrak{D}$. Now \mathfrak{F} acts on $C_{\mathfrak{F}}(T)$ a subspace of size $q^{n/2}$ and hence if this is not one of the exceptions of part (i), then there exists $x \in C_{\mathfrak{F}}(T)^{\sharp}$ with $\mathfrak{F}_x = \langle 1 \rangle$. Since $T \in \mathfrak{F}_x$ and \mathfrak{F}_x is abelian, it then follows that $\mathfrak{F}_x = \langle T \rangle$. The result now clearly follows.

We now turn to a variant of an argument used in [2] (§ 2.5).

LEMMA 1.6. Let $\mathfrak{G} = \mathfrak{S}\mathfrak{F}$ where \mathfrak{S} is type E(p, m), $\mathfrak{S} \triangle \mathfrak{S}$ and $\mathfrak{F} = \langle J \rangle$ is cyclic of order j. Suppose \mathfrak{S} acts on F-vector space \mathfrak{S} in such a way that the restriction to \mathfrak{S} is faithful and absolutely

irreducible. If further the characteristic of F is prime to $|\mathfrak{G}|$, then there exists nonnegative integers a_0, a_1, \dots, a_{j-1} satisfying

- (i) $a_0 + a_1 + \cdots + a_{j-1} = p^m$
- (ii) $a_0^2 + a_1^2 + \cdots + a_{j-1}^2 \leq N$ and
- (iii) $a_0 = \dim_F C_{\mathfrak{B}}(J)$

where N is the number of orbits in $\mathfrak{W} = \mathfrak{E}/\mathbf{Z}(\mathfrak{E})$ under the action of \mathfrak{F} .

Proof. Since $\dim_F C_{\mathfrak{D}}(J)$ is clearly invariant under field extension, we can assume F is algebraically closed. Let $\varepsilon \in F$ be a primitive jth root of unity and suppose that ε^i occurs as an eigenvalue of J with multiplicity a_i for $i=0,1,\cdots,j-1$. If Σ denotes the enveloping algebra of this representation then clearly

$$egin{aligned} a_0 &+ \, a_1 + \cdots + a_{j-1} &= \dim_F \mathfrak{V} \ a_0^2 &+ \, a_1^2 + \cdots + a_{j-1}^2 &= \dim_F C_{\Sigma}(J) \ a_0 &= \dim_F C_{\mathfrak{S}}(J) \;. \end{aligned}$$

Now $\mathfrak B$ is a faithful absolutely irreducible $\mathfrak E$ -module so $\dim_F \mathfrak B = p^m$. Hence (i) and (iii) follow. In addition the group ring $F(\mathfrak E)$ maps onto Σ in the obvious manner. Under this map $Z(\mathfrak E)$ is sent into the field of scalars so the image of $F[\mathfrak E]$ is spanned by p^{2m} coset representatives of $Z(\mathfrak E)$ in $\mathfrak E$. But $\dim_F \Sigma = p^{2m}$ so these must in fact form a basis of Σ . With this choice of basis we see clearly that $\dim_F C_{\Sigma}(J)$ is at most equal to the number of orbits of $\mathfrak F$ on $\mathfrak E/Z(\mathfrak E)$ so the result follows.

The following two results enable us to use inductive methods in our study of half-transitive linear groups.

LEMMA 1.7. Let \mathfrak{G} be a half-transitive permutation group and let $\mathfrak{R} \triangle \mathfrak{G}$. Suppose that either $\mathfrak{R} = \langle 1 \rangle$ or \mathfrak{R} acts half-transitively. Let $\mathfrak{G} \supseteq \mathfrak{F} \supseteq \mathfrak{R}$ where $\mathfrak{F}/\mathfrak{R}$ is a normal Hall subgroup of $\mathfrak{G}/\mathfrak{R}$. Then \mathfrak{F} acts half-transitively.

Proof. See Lemma 2.1 of [5].

LEMMA 1.8. (Reduction Lemma). Let \mathfrak{G} be a linear group on GF(q)-vector space \mathfrak{V} and suppose that \mathfrak{G} acts half-transitively but not semiregularly on \mathfrak{V}^{\sharp} . Let \mathfrak{V} be a group of type E(p, m) with $\mathfrak{V} \triangle \mathfrak{V}$. Then there exists a linear group $\overline{\mathfrak{V}}$ acting on GF(q)-vector space \mathfrak{V} and a normal subgroup $\overline{\mathfrak{V}}$ of $\overline{\mathfrak{V}}$ satisfying

- (i) \otimes acts half-transitively on \mathfrak{U} .
- (ii) $\overline{\mathfrak{G}} \cong \mathfrak{G}$ and $\overline{\mathfrak{G}}$ acts irreducibly on \mathfrak{U} .
- (iii) If \(\mathbb{G} \) is solvable so is \(\bar{\mathbb{G}} \).

- (iv) If $\mathfrak{E} \neq \mathfrak{D}$, then $\overline{\mathfrak{G}}$ does not act semiregularly on \mathfrak{U} .
- (v) Suppose that either p > 2 or p = 2 and $m \ge 2$. Then either $\bar{\mathbb{G}} = \bar{\mathbb{G}} \cong \mathfrak{DD}$ with q = 3 or $\bar{\mathbb{G}}$ is primitive as a linear group.

Proof. Since $\mathfrak S$ does not act semiregularly, it acts irreducibly on $\mathfrak B$. By Clifford's theorem all irreducible $\mathfrak E$ constituents of $\mathfrak B$ are conjugate and hence $\mathfrak E$ acts faithfully on each. Let $\mathfrak U$ be an irreducible $\mathfrak E$ -submodule of $\mathfrak B$ and let $\mathfrak R=\{G\in \mathfrak S\mid \mathfrak UG=\mathfrak U\}$. Suppose $x\in \mathfrak U^{\sharp}$. Since $\mathfrak E\bigtriangleup \mathfrak S$

$$(x\mathfrak{G})\mathfrak{G}_x = (x\mathfrak{G}_x)\mathfrak{G} = x\mathfrak{G}$$

and hence \mathbb{G}_x normalizes $x\mathbb{C}$. Moreover \mathbb{C} acts irreducibly on \mathbb{U} so \mathbb{U} is the linear span of $x\mathbb{C}$ and hence $\mathbb{G}_x \subseteq \mathbb{R}$. If \mathbb{R} is the kernel of the action of \mathbb{R} on \mathbb{U} , then clearly $\overline{\mathbb{G}} = \mathbb{R}/\mathbb{R}$ acts semiregularly on \mathbb{U}^* . Since \mathbb{C} acts faithfully on \mathbb{U} , $\overline{\mathbb{C}} = \mathbb{C}\mathbb{R}/\mathbb{R} \cong \mathbb{C}$. Also $\overline{\mathbb{C}} \triangle \overline{\mathbb{G}}$ and $\overline{\mathbb{C}}$ acts irreducibly on \mathbb{U} so (i), (ii) and (iii) follow.

We have $\overline{\mathfrak{E}}\cong \mathfrak{E}$. Thus if $\mathfrak{E}\neq \mathfrak{Q}$ then $\overline{\mathfrak{E}}$, and hence $\overline{\mathfrak{G}}$, cannot act semiregularly. This yields (iv). Finally suppose that either p>2 or p=2 and $m\geq 2$. Then $\mathfrak{E}\neq \mathfrak{Q}$ so $\overline{\mathfrak{G}}$ does not act semiregularly. Hence if $\overline{\mathfrak{G}}$ is imprimitive as a linear group, then the structure of $\overline{\mathfrak{G}}$ is given in Theorem 1.1. In both (i) and (iii) of that theorem $\overline{\mathfrak{G}}$ has a normal abelian subgroup of index 2 and hence $\overline{\mathfrak{G}}$ could not possibly contain $\overline{\mathfrak{E}}$. Thus only (ii) of that theorem can occur here and since $m\geq 2$ this yields $\overline{\mathfrak{G}}=\overline{\mathfrak{E}}\cong \mathfrak{D}\mathfrak{Q}$ and $|\mathfrak{U}|=3^4$. This completes the proof of the lemma.

We close this section by offering a precise statement of Lemma 6 of [4]. The proof is the same and will not be repeated.

LEMMA 1.9. Let \mathfrak{G} act faithfully on vector space \mathfrak{V} and half-transitively on \mathfrak{V}^{\sharp} . Suppose that for all $x \in \mathfrak{V}^{\sharp}$, $|\mathfrak{G}_x| = 2$. If \mathfrak{G} has a central involution, then $|\mathfrak{V}| = q^{2r}$ with $q \neq 2$ and $q^r + 1 = I(\mathfrak{G})$.

2. Theorem A. The following assumptions hold throughout this section.

ASSUMPTIONS. Group \mathfrak{G} acts faithfully on vector space \mathfrak{V} of order q^n and half-transitively but not semiregularly on \mathfrak{V}^* . \mathfrak{C} is a group of type E(p,m) with $\mathfrak{C} \triangle \mathfrak{G}$. In addition \mathfrak{C} acts irreducibly on \mathfrak{V} and \mathfrak{G} is primitive as a linear group.

It is convenient to keep track of four separate possibilities.

DEFINITION. We define the type of & as follows.

 $ext{type} \quad ext{I}: \quad p>2$

type II: $p = 2, |Z(\mathfrak{E})| = 2$

type III: p = 2, $|Z\mathfrak{G}| = 4$, $Z(\mathfrak{G}) \subseteq Z(\mathfrak{G})$ type IV: p = 2, $|Z(\mathfrak{G})| = 4$, $Z(\mathfrak{G}) \not\subseteq Z(\mathfrak{G})$.

LEMMA 2.1. Let $s \ge 1$ be minimal with $|Z(\mathfrak{E})| | q^s - 1$. Let \mathfrak{M} be any subgroup of \mathfrak{B} with $\mathfrak{E} \subseteq \mathfrak{M} \subseteq C_{\mathfrak{D}}(Z(\mathfrak{E}))$. Then $\mathfrak{M} \subseteq GL(p^m, q^s)$ and this representation of \mathfrak{M} is absolutely irreducible. Furthermore $n = sp^m$ and we have the following

type I: s | (p-1)

type II: s=1

type III: s = 1 or 2

type IV: s=2, and if $\overline{\mathbb{M}}$ is a q'-subgroup of \mathbb{G} with $\mathbb{G} \subseteq \overline{\mathbb{M}}$ and $\overline{\mathbb{M}} \nsubseteq C_{\mathbb{G}}(\mathbf{Z}(\mathbb{G}))$, then $\overline{\mathbb{M}} \subseteq GL(p^{m+1},q)$ and this is an absolutely irreducible representation.

Proof. If s is defined as above then $GF(q^s)$ is clearly the minimal splitting field of the representation of \mathfrak{E} . Hence $n=sp^m$ since we are dealing with finite fields here and since the absolutely irreducible constituents of \mathfrak{E} have degree p^m .

Now \mathfrak{G} is primitive as a linear group so by Lemma 1.1 of [5], $C\mathfrak{G}(\mathbf{Z}(\mathfrak{G})) \subseteq GL(p^m, q^s)$. Let \mathfrak{M} be a subgroup of \mathfrak{G} with

$$\mathfrak{E} \subseteq \mathfrak{M} \subseteq C\mathfrak{G}(z(\mathfrak{E}))$$

so that $\mathfrak{M} \subseteq GL(p^m, q^s)$. Since $\mathfrak{M} \supseteq \mathfrak{G}$ and the degree of this representation is p^m , the representation is clearly absolutely irreducible.

The results on the value of s for types I, II and III are clear. Let \mathfrak{E} be type IV. Then certainly s=1 or 2. If s=1, then since \mathfrak{E} is primitive, $Z(\mathfrak{E})$ consists of scalar matrices and is therefore central in \mathfrak{E} , a contradiction. Thus s=2. Let $\overline{\mathfrak{M}}$ be given with $\mathfrak{E}\subseteq \overline{\mathfrak{M}}$, $\overline{\mathfrak{M}}\nsubseteq C_{\mathfrak{E}}(Z(\mathfrak{E}))$. Since s=2, $\overline{\mathfrak{M}}\subseteq GL(p^{m+1},q)$. Clearly $\overline{\mathfrak{M}}$ is either absolutely irreducible or it has two absolutely irreducible constituents of degree p^m . In the latter case, $Z(\mathfrak{E})$ would be central in each such constituent and hence in $\overline{\mathfrak{M}}$, a contradiction.

- LEMMA 2.2. Let \mathfrak{M} be a p-group acting faithfully and absolutely irreducibly on F-vector space \mathfrak{B} . Let $\dim_F \mathfrak{B} = k$. Then there exists subgroups \mathfrak{N} and \mathfrak{A} of \mathfrak{M} and an \mathfrak{N} -subspace \mathfrak{U} of \mathfrak{B} with the representation of \mathfrak{M} on \mathfrak{B} induced from that of \mathfrak{N} on \mathfrak{U} . Furthermore $\mathfrak{R} = C_{\mathfrak{M}}(\mathfrak{U})$ and either
 - (i) $[\mathfrak{M}:\mathfrak{N}]=k$, dim $\mathfrak{U}=1$ and $\mathfrak{N}/\mathfrak{R}$ is cyclic, or
- (ii) $[\mathfrak{M}:\mathfrak{N}]=k/2$, dim $\mathfrak{U}=2$, $\mathfrak{N}/\mathfrak{R}$ is dihedral, semidihedral or quaternion and p=2.

Proof. The result is trivial if char F=p so assume this is not the case. Applying Roquette's theorem ([9]) repeatedly we can find $\mathfrak{N},\mathfrak{R}$ and \mathfrak{U} as above with $\mathfrak{N}/\mathfrak{R}$ cyclic, dihedral, semidihedral or quaternion. Since \mathfrak{M} is absolutely irreducible so is the action of $\mathfrak{N}/\mathfrak{R}$ on \mathfrak{U} . Thus dim $\mathfrak{U}=1$ if $\mathfrak{N}/\mathfrak{R}$ is cyclic and dim $\mathfrak{U}=2$ otherwise.

LEMMA 2.3. Let w denote the period of a Sylow p-subgroup of $C_{\mathfrak{S}}(\mathbf{Z}(\mathfrak{S}))$. Then for all $x \in \mathfrak{D}^{\sharp}$ we have

 $\begin{array}{ll} \text{type} & \text{I:} & [\mathfrak{S} : \mathfrak{S}_x]_p \leq p^m \min \left\{ w, \mid q^s - 1 \mid_p \right\} \\ \text{type} & \text{II:} & [\mathfrak{S} : \mathfrak{S}_x]_p \leq p^{m+1} \min \left\{ w, \mid q^2 - 1 \mid_p \right\} \\ \text{type} & \text{III:} & [\mathfrak{S} : \mathfrak{S}_x]_p \leq p^m \min \left\{ w, \mid q^2 - 1 \mid_p \right\} \\ \text{type} & \text{IV:} & [\mathfrak{S} : \mathfrak{S}_x]_p \leq p^{m+1} \min \left\{ w, \mid q^2 - 1 \mid_p \right\}. \end{array}$

Proof. We consider types I, II and III first. Let \mathfrak{P} be a Sylow p-subgroup of \mathfrak{P} . Then $\mathfrak{P} \supseteq \mathfrak{P}$ and $Z(\mathfrak{P})$ is central in \mathfrak{P} . By Lemma 2.1 we can view \mathfrak{P} as a subgroup of $GL(p^m,q^s)$ and this representation is absolutely irreducible. Let \mathfrak{N} , \mathfrak{R} and \mathfrak{U} be as in the preceding lemma with $\mathfrak{M} = \mathfrak{P}$. Note that for $y \in \mathfrak{U}^*$, $\mathfrak{P}_y \supseteq \mathfrak{R}$. If $\mathfrak{N}/\mathfrak{R}$ is cyclic, then $[\mathfrak{P}:\mathfrak{N}] = p^m$, $[\mathfrak{N}:\mathfrak{R}] \leq \min \{w, |q^s - 1|_p\}$ so

$$[\mathfrak{P}:\mathfrak{P}_y] \leq p^m \min \{ \mathbf{w}, |q^s-1|_p \}$$
.

Suppose that $\mathfrak{N}/\mathfrak{R}$ is not cyclic. Then p=2. Now it is clear that $Z(\mathfrak{E}) \subseteq Z(\mathfrak{P}) \subseteq \mathfrak{N}$ and $Z(\mathfrak{E}) \cap \mathfrak{R} = \langle 1 \rangle$. Thus since 2-groups of maximal class have centers of order 2, \mathfrak{E} must be type II. Here $[\mathfrak{P}:\mathfrak{R}] = p^{m-1}$ and $[\mathfrak{R}:\mathfrak{R}] \leq p \min \{w, |q^{2s}-1|_p\}$ since $\mathfrak{R}/\mathfrak{R}$ has a cyclic subgroup of index p=2 which has a faithful irreducible representation in $GF(q^{2s})$. Note that s=1 here. Now by half-transitivity, for all $x \in \mathfrak{B}^{\sharp}$

$$[\mathfrak{G}:\mathfrak{G}_x]_p=[\mathfrak{G}:\mathfrak{G}_y]_p\leqq [\mathfrak{P}:\mathfrak{P}_y]$$
 .

Thus the first three results follow.

Now let $\mathfrak E$ be type IV and again let $\mathfrak P$ be a Sylow p-subgroup of $\mathfrak P$. Let $\mathfrak M=C_{\mathfrak P}(Z(\mathfrak E))$ so that $\mathfrak P>\mathfrak M\supseteq \mathfrak E$ and $[\mathfrak P:\mathfrak M]=2$. By Lemma 2.1, $\mathfrak P$ is absolutely irreducible as a subgroup of $GL(p^{m+1},q)$. We extend the field now to $GF(q^s)=GF(q^s)$. Thus we let $\mathfrak P$ act on $\mathfrak P\otimes GF(q^s)$ and this representation is again absolutely irreducible. If the restriction to $\mathfrak M$ were irreducible, then since $4\mid q^s-1$, $Z(\mathfrak E)$ which is central in $\mathfrak M$ would consist of scalar matrices and hence it would be central in $\mathfrak P$, a contradiction. Thus the representation of $\mathfrak P$ is induced from one of $\mathfrak M$. Let $\mathfrak M$, $\mathfrak R$ and $\mathfrak M\subseteq \mathfrak P\otimes GF(q^s)$ be as in the preceding lemma with $\mathfrak M\subseteq \mathfrak M$. Since $Z(\mathfrak E)\subseteq \mathfrak M$ and $|Z(\mathfrak E)|=4$ we see that $\mathfrak M/\mathfrak R$ is cyclic. Hence $[\mathfrak N:\mathfrak R]\subseteq \min\{w,|q^s-1|_p\}$. Moreover $[\mathfrak P:\mathfrak M]=p^{m+1}$ so

$$[\mathfrak{P}:\mathfrak{R}] \leq p^{m+1}\{w, |q^s-1|_p\}$$
.

Now all elements of \Re have a common nonzero fixed point in $\mathfrak{B} \otimes GF(q^s)$. This means that a certain set of simultaneous linear equations over GF(q) has a nonzero solution over $GF(q^s)$. Thus there is a nonzero solution over GF(q) and hence there exists $y \in \mathfrak{B}^\sharp$ with $\mathfrak{P}_y \supseteq \Re$. The result now follows as above.

LEMMA 2.4. Let $\mathfrak{A} = C_{\mathfrak{G}}(\mathfrak{S})$. Then \mathfrak{A} is a normal cyclic subgroup of \mathfrak{S} which is central in $C_{\mathfrak{S}}(Z(\mathfrak{S}))$ and acts semiregularly on \mathfrak{B}^{\sharp} . Suppose that $m \geq 3$ if p = 2. Then there exists $x \in \mathfrak{B}^{\sharp}$ with $\mathfrak{S}_x \cap \mathfrak{AS} = \langle 1 \rangle$ and hence $[\mathfrak{S} : \mathfrak{S}_x]_p \geq |\mathfrak{A}_p| p^{2m}$ where \mathfrak{A}_p is the normal Sylow p-subgroup of \mathfrak{A} . This yields

 $\begin{array}{lll} \text{type} & \text{I:} & w \geqq p^m \, | \, \mathfrak{A}_p \, |, & | \, q^s - 1 \, |_p \geqq p^{m+1} \\ \text{type} & \text{II:} & w \trianglerighteq p^{m-1} \, | \, \mathfrak{A}_p \, |, & | \, q^2 - 1 \, |_p \trianglerighteq p^m \\ \text{type} & \text{III:} & w \trianglerighteq p^m \, | \, \mathfrak{A}_p \, |, & | \, q^2 - 1 \, |_p \trianglerighteq p^{m+2} \\ \text{type} & \text{IV:} & w \trianglerighteq p^{m-1} \, | \, \mathfrak{A}_p \, |, & | \, q^2 - 1 \, |_p \trianglerighteq p^{m+1}. \end{array}$

Proof. Since \mathfrak{F} is irreducible, Schur's lemma guarantees that \mathfrak{A} is cyclic and acts semiregularly. Clearly $\mathfrak{A} \subseteq C\mathfrak{G}(\mathbf{Z}(\mathfrak{F}))$. By Lemma 2.1, $\mathfrak{F} \subseteq C\mathfrak{G}(\mathbf{Z}(\mathfrak{F})) \subseteq GL(p^m, q^s)$ and this is an absolutely irreducible representation of \mathfrak{F} . Since \mathfrak{A} centralizes \mathfrak{F} , \mathfrak{A} consists of scalar matrices here and hence \mathfrak{A} is central in $C\mathfrak{G}(\mathbf{Z}(\mathfrak{F}))$.

If p>2 set $\mathfrak{S}^*=\mathfrak{S}$ while if p=2 we set $\mathfrak{S}^*=\mathfrak{A}^*\mathfrak{S}$ where $\mathfrak{A}^*=\{A\in\mathfrak{A}\mid A^4=1\}$. Then \mathfrak{S}^* is also of type E(p,m) and every subgroup of $\mathfrak{A}\mathfrak{S}$ of order p is in \mathfrak{S}^* . With the additional assumption that $m\geq 3$ if p=2, Lemma 1.5 applied to \mathfrak{S}^* guarantees the existence of a point $x\in\mathfrak{S}^\sharp$ with $\mathfrak{S}_x\cap\mathfrak{S}^*=\langle 1\rangle$. This clearly yields $\mathfrak{S}_x\cap\mathfrak{A}\mathfrak{S}=\langle 1\rangle$. Now $\mathfrak{A}_p\mathfrak{S}\triangle\mathfrak{S}$ and $|\mathfrak{A}_p\mathfrak{S}|=|\mathfrak{A}_p|p^{2m}$. If x is as above then

$$\mid \mathfrak{S} \mid_{p} \geq \mid \mathfrak{S}_{x}\mathfrak{A}_{p}\mathfrak{E} \mid_{p} = \mid \mathfrak{S}_{x} \mid_{p} \mid \mathfrak{A}_{p}\mathfrak{E} \mid = \mid \mathfrak{S}_{x} \mid_{p} \mid \mathfrak{A}_{p} \mid p^{2m}$$

and hence $[\mathfrak{G}:\mathfrak{G}_x]_p \geq |\mathfrak{A}_p|p^{2m}$. By half-transitivety this holds for all $x \in \mathfrak{B}^{\sharp}$. Combining this with the results of Lemma 2.3 and noting that $|\mathfrak{A}_p| \geq p$ for type I and II groups and $|\mathfrak{A}_p| \geq p^2$ for type III and IV groups, we clearly obtain our result.

Lemma 2.5. Let $\mathfrak{H}=C_{\mathfrak{V}}(Z(\mathfrak{E})).$ Then \mathfrak{G} has the following structure.

- (i) S/S is cyclic
- (ii) §/UE acts faithfuly on $\mathfrak{W} = \mathfrak{C}/\mathbf{Z}(\mathfrak{C})$ and as a linear group on \mathfrak{W} we have §/UE $\subseteq Sp(2m, p)$
 - (iii) $\mathfrak{AG/M}$ is elementary abelian of order p^{2m}
 - (iv) A is cyclic.

Proof. All results but (ii) are clear. Let $\mathfrak{B} = C_{\mathfrak{H}}(\mathfrak{W})$. Clearly $\mathfrak{B} \supseteq \mathfrak{AG}$. The result will follow from Lemma 1.3 if we show that

 $\mathfrak{B}=\mathfrak{AG}$.

Suppose first that $|Z(\mathfrak{C})| = p$ so \mathfrak{C} is type I or II. By Lemma 1.3, $\mathfrak{B}/\mathfrak{A} \subseteq Z(\mathfrak{C}) \times Z(\mathfrak{C}) \times \cdots \times Z(\mathfrak{C})$ (2m times). Hence $[\mathfrak{B}:\mathfrak{A}] \leq p^{2m}$. Since $[\mathfrak{A}\mathfrak{C}:\mathfrak{A}] = p^{2m}$ we have $\mathfrak{B} = \mathfrak{A}\mathfrak{C}$ here. Now let $|Z(\mathfrak{C})| = p^2$ so p = 2 and \mathfrak{C} is type III or IV. As above $\mathfrak{B}/\mathfrak{A} \subseteq Z(\mathfrak{C}) \times Z(\mathfrak{C}) \times \cdots \times Z(\mathfrak{C})$ (2m times) so $\mathfrak{B}/\mathfrak{A}$ is a 2-group. Since \mathfrak{A} is central in \mathfrak{S} , \mathfrak{B} is nilpotent with Sylow 2-subgroup \mathfrak{B}_2 . Now \mathfrak{C} is primitive and $\mathfrak{B}_2 \wedge \mathfrak{C}$ so \mathfrak{B}_2 is of symplectic type. Clearly $Z(\mathfrak{B}_2) = \mathfrak{A}_2$ and $|\mathfrak{A}_2| \geq 4$ here. Hence \mathfrak{B}_2 is the central product of \mathfrak{A}_2 and a group of type E(2, r). Thus $\mathfrak{B}_2/\mathfrak{A}_2$ has period 2 and we can conclude again that $[\mathfrak{B}:\mathfrak{A}] \leq p^{2m}$. The result follows.

LEMMA 2.6. We must have one of the following.

type I: p = 3, $m \le 2$ type II: p = 2, $m \le 6$ type III: p = 2, $m \le 3$ type IV: p = 2, $m \le 5$.

Proof. We first show the following.

 $\begin{array}{ll} \text{type} & \text{I:} & w \leqq p(2m-1) \, | \, \mathfrak{A}_p \, | \\ & w \leqq | \, \mathfrak{A}_p \, | \, \text{ for } m=1, \, \, p > 3 \\ \text{type} & \text{II:} & w \leqq p^2(2m-1) \, | \, \mathfrak{A}_p \, | \\ \text{type} & \text{III:} & w \leqq p(2m-1) \, | \, \mathfrak{A}_p \, | \end{array}$

type IV: $w \leq p(2m-1) | \mathfrak{A}_p |$.

Now the *p*-period of Sp(2m, p) is clearly at most (2m-1)p. If \mathfrak{E} is type I, III or IV, then the period of $\mathfrak{A}_p\mathfrak{E}$ is $|\mathfrak{A}_p|$. If \mathfrak{E} is type II, then the period of $\mathfrak{A}_p\mathfrak{E}$ is at most $p|\mathfrak{A}_p|$. Combining these facts with the structure given in the preceding lemma yields all the above

facts except for the one concerning p > 3, m = 1.

Now let m=1 and p>3. Let $\mathfrak P$ be a Sylow p-subgroup of $C_{\mathfrak P}(Z(\mathfrak E))$ and hence a Sylow p-subgroup of $\mathfrak P$. Thus $\mathfrak P \supseteq \mathfrak A_p \mathfrak E$ and since $|Sp(2,p)|_p=p$ we have $[\mathfrak P:\mathfrak A_p \mathfrak E] \leqq p$. Since $\mathfrak E$ does not act semiregularly we have $p \mid |\mathfrak G_x|$ for all $x \in \mathfrak P^\sharp$. As we have seen, there exists $x \in \mathfrak P^\sharp$ with $\mathfrak G_x \cap \mathfrak A_p \mathfrak E = \langle 1 \rangle$. Let $\bar{\mathfrak P}$ be a subgroup of $\mathfrak G_x$ of order p. By taking a suitable conjugate of $\mathfrak P$ if necessary we can assume that $\bar{\mathfrak P} \subseteq \mathfrak P$. Then $\mathfrak P = \mathfrak A_p(\mathfrak E \bar{\mathfrak P})$. Now $|\mathfrak E \bar{\mathfrak P}| = p^4$ and this group is generated by elements of order p. Hence if p>3, then $\mathfrak E \bar{\mathfrak P}$ has period p. Since $\mathfrak A_p$ is central in $\mathfrak P$ we see that $\mathfrak P$ has period $|\mathfrak A_p|$ and the above follows.

Combining the above with the lower bound for w given in Lemma 2.4 yields the following equations.

 $\begin{array}{ccc} \text{type} & \text{I:} & p^m \mid \mathfrak{A}_p \mid \leq p(2m-1) \mid \mathfrak{A}_p \mid \\ & p \mid \mathfrak{A}_p \mid \leq \mid \mathfrak{A}_p \mid \text{ for } m=1, \ p>3 \\ \text{type} & \text{II:} & p^{m-1} \mid \mathfrak{A}_p \mid \leq p^2(2m-1) \mid \mathfrak{A}_p \mid \\ \text{type} & \text{III:} & p^m \mid \mathfrak{A}_p \mid \leq p(2m-1) \mid \mathfrak{A}_p \mid \end{array}$

type IV: $p^{m-1} | \mathfrak{A}_p | \leq p(2m-1) | \mathfrak{A}_p |$.

Note that the equations for types II, III and IV hold only for $m \ge 3$. The result now follows easily.

We note that the above yields a stronger result than Proposition 2.1 of [6] and the proof is considerably less computational. We now strengthen the above argument to eliminate additional cases. We first eliminate p=3.

LEMMA 2.7. p = 3, m = 1 does not occur.

Proof. Suppose p=3 and m=1. Then \mathfrak{G} has the structure described in Lemma 2.5. In addition, $[\mathfrak{G}:C\mathfrak{G}(Z(\mathfrak{F}))]=1$ or 2 and Sp(2m,p)=SL(2,p). By Lemma 2.4, \mathfrak{A} is central in $C\mathfrak{G}(Z(\mathfrak{F}))=\mathfrak{H}$.

Suppose that $\mathfrak{S}/\mathfrak{A}\mathfrak{C}$ has a normal Sylow 3-subgroup $\mathfrak{B}/\mathfrak{A}\mathfrak{C}$. Then $\mathfrak{B}/\mathfrak{A}$ is a normal Sylow 3-subgroup of $\mathfrak{G}/\mathfrak{A}$. Now both \mathfrak{G} and \mathfrak{A} act half-transitively so by Lemma 1.7 \mathfrak{B} acts half-transitively on \mathfrak{B}^{\sharp} . Since \mathfrak{A} is central in \mathfrak{B} , \mathfrak{B} is nilpotent and hence its normal Sylow 3-subgroup \mathfrak{B}_3 acts half-transitively. By Theorem II of [4], \mathfrak{B}_3 is cyclic, a contradiction since $\mathfrak{B}_3 \supseteq \mathfrak{C}$. Hence $\mathfrak{S}/\mathfrak{A}\mathfrak{C}$ is a subgroup of SL(2,3) which does not have a normal Sylow 3-subgroup. This implies that $\mathfrak{S}/\mathfrak{A}\mathfrak{C} \cong SL(2,3)$, a group of order 24.

We show now that we cannot have $8 \mid |\mathfrak{G}_x|$ for all $x \in \mathfrak{F}^{\sharp}$. Assume by way of contradiction that this is the case. Let \mathfrak{P} be a subgroup of \mathfrak{E} of order 3 having a fixed point $y \neq 0$. Since $\mathfrak{A}_y = \langle 1 \rangle$ we see that $8 \mid |\mathfrak{AG}_y/\mathfrak{A}|$ so $4 \mid |\mathfrak{AG}_y/\mathfrak{A}|$. Now a Sylow 2-subgroup of $\mathfrak{F}/\mathfrak{A}$ is quaternion of order 8 so \mathfrak{F}_y has an element B of order 4. Since $B^2 \notin \mathfrak{AG}$, B does not normalize $\mathfrak{P}Z(\mathfrak{E})/Z(\mathfrak{E})$. Thus $\mathfrak{E} = \langle \mathfrak{P}, \mathfrak{P}^B \rangle \subseteq \mathfrak{G}_y$, a contradiction since $Z(\mathfrak{E})$ acts semiregularly.

Let \mathfrak{P} be a subgroup of \mathfrak{S} of order 3. We show that $\dim C_{\mathfrak{P}}(\mathfrak{P})=0$ or s. Since $\mathfrak{P}\subseteq GL(3,q^s)$ we see that $\dim C_{\mathfrak{P}}(\mathfrak{P})=0$, s or 2s. Suppose the dimension is 2s. By Lemma 1.4, $\mathfrak{P}\nsubseteq \mathfrak{M}\mathfrak{E}$. Since $\mathfrak{F}/\mathfrak{M}\mathfrak{E}\cong SL(2,3)$ there exists $G\in \mathfrak{S}$ such that \mathfrak{P} and \mathfrak{P}^g generate this quotient. Now \mathfrak{P} is 3-dimensional over $GF(q^s)$ and $C_{\mathfrak{P}}(\mathfrak{P})$ and $C_{\mathfrak{P}}(\mathfrak{P}^g)$ are 2-dimensional subspaces. Thus there exists $x\in \mathfrak{P}^\sharp$ with \mathfrak{P} , $\mathfrak{P}^g\subseteq \mathfrak{G}_x$. This implies that $24\mid |\mathfrak{G}_x|$ and this contradicts the comments of the preceding paragraph.

We now proceed to count. The group $\mathfrak{G}/\mathfrak{A}$ is easily seen to contain at most 40 subgroups of order 3. If \mathfrak{P} is a group of order 3 in \mathfrak{G} , then \mathfrak{PA} being abelian has at most 3 subgroups of order 3 other than $Z(\mathfrak{E})$. Hence \mathfrak{G} has at most 3.40 = 120 subgroups of order 3 other than $Z(\mathfrak{E})$. Each such \mathfrak{P} fixes at most $q^s - 1$ points of \mathfrak{P}^\sharp so since clearly $3 \mid \mathfrak{G}_z \mid$ we have

$$120(q^s-1) \geqq |\mathfrak{V}^{\sharp}| = q^{\mathfrak{z}_s}-1$$

and

$$120 \ge q^{2s} + q^s + 1$$
.

Thus $q^s \le 10$. However by Lemma 2.4, $3^s \mid (q^s - 1)$ so q^s being a prime power is at least 19, a contradiction. Thus p = 3, m = 1 does not occur.

LEMMA 2.8. p = 3, m = 2 does not occur.

Proof. The equation obtained in the proof of Lemma 2.6 is an equality at p=3, m=2. Thus all inequalities used in obtaining it must also be equalities. Thus from Lemma 2.4 we must have $w=p^m\mid \mathfrak{A}_p\mid$. Furthermore if $x\in \mathfrak{B}^*$ with $\mathfrak{G}_x\cap \mathfrak{A}_p\mathfrak{G}=\langle 1\rangle$, then $\mid \mathfrak{G}\mid_x=\mid \mathfrak{G}_x\mid_x\mid \mathfrak{A}_p\mathfrak{G}\mid$.

The latter fact implies that $\mathfrak{A}_p \mathfrak{E}$ has a complement \mathfrak{L} in \mathfrak{P} a Sylow p-subgroup of \mathfrak{E} . Since $\mathfrak{L} \subseteq Sp(4,3)$, \mathfrak{L} has period at most (2m-1)p=9 and thus $\mathfrak{E}\mathfrak{L}$ has period at most 3.9=27. Since $\mathfrak{P}=\mathfrak{A}_p(\mathfrak{E}\mathfrak{L})$ and \mathfrak{A}_p is central here, we have clearly $w \leq \max{\{|\mathfrak{A}_p|, p^3\}}$. But $w=p^2|\mathfrak{A}_p|$ so we must have $|\mathfrak{A}_p|=p$ and \mathfrak{L} has period 9.

Let $\mathfrak{F}=\langle J\rangle$ be a subgroup of order 9 with $\mathfrak{F}\cap\mathfrak{A}_p\mathfrak{E}=\langle 1\rangle$. We see clearly that the Jorden form of the matrix of J with respect to its action on $\mathfrak{W}=\mathfrak{E}/\mathbf{Z}(\mathfrak{E})$ is

$$\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right].$$

Thus 3 has

$$(3^4 - 3^3)/3^2 + (3^3 - 3)/3 + 3 = 17$$

orbits on \mathfrak{V} . Note that $\mathfrak{C}\mathfrak{J} \subseteq GL(p^m, q^s)$ and the restriction to \mathfrak{C} is absolutely irreducible. Thus if $a_0 = \dim_{GF(q^s)} C_{\mathfrak{V}}(J)$ then by Lemma 1.6

$$a_{\scriptscriptstyle 0} + a_{\scriptscriptstyle 1} + \cdots + a_{\scriptscriptstyle 8} = p^{\scriptscriptstyle m} = 9$$
 . $a_{\scriptscriptstyle 0}^{\scriptscriptstyle 2} + a_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} + \cdots + a_{\scriptscriptstyle 8}^{\scriptscriptstyle 2} \leq 17$.

These yield easily $a_0 \leq 3$ and hence $\dim_{GF(q)} C_{\mathfrak{B}}(J) = sa_0 \leq 3s$.

Let \mathscr{N} denote the set of subgroups of \mathfrak{F} of order 3 together with the set of cyclic subgroup \mathfrak{F} of order 9 with $\mathfrak{F} \cap \mathfrak{A}_p \mathfrak{F} = \langle 1 \rangle$. By the above and Lemma 1.4, if $\mathfrak{N} \in \mathscr{N}$ then $\dim C_{\mathfrak{P}}(\mathfrak{N}) \leq 3s$. We have also shown above that for all $y \in \mathfrak{F}$ there exists $\mathfrak{N} \in \mathscr{N}$ with $y \in C_{\mathfrak{P}}(\mathfrak{N})$, since in that argument, if $\mathfrak{G}_x \cap \mathfrak{A}_p \mathfrak{F} = \langle 1 \rangle$ then $\mathfrak{F} = \mathfrak{L} \subseteq \mathfrak{G}_x$. Hence $\mathfrak{B} = \bigcup_{\mathscr{N}} C_{\mathfrak{P}}(\mathfrak{N})$. If $|\mathscr{N}| = N$, then this yields

$$q^{9s} = |\mathfrak{B}| \leq Nq^{3s}$$

or $q^{6s} \leq N$. On the other hand by Lemma 2.5,

$$egin{align} | \, \, & \, \, \otimes \, | \, \leq 2 \, | \, \mathfrak{A} \, | \, p^4 \, | \, Sp(4, \, p) \, | \ & \, \leq 2 \, | \, \mathfrak{A} \, | \, p^4 p^4 (p^4 - 1) (p^2 - 1) \, \leq 2 \, | \, \mathfrak{A} \, | \, p^{14} \, . \end{split}$$

Since $\mathfrak A$ is central in the absolutely irreducible representation $\mathfrak A \mathfrak G \subseteq GL(p^m,q^s)$ we have $|\mathfrak A| < q^s$. Thus

$$N \leq | | \otimes |/2 < q^{s} p^{14}$$
.

Combining this with the lower bound we previously obtained for N yields $q^{5s} < p^{1i}$. Finally by Lemma 2.4, $q^s \ge p^3$ so $p^{15} < q^{5s} < p^{14}$, a contradiction. Thus p = 3, m = 2 does not occur.

We now consider special cases with p=2.

LEMMA 2.9. The cases type II, m=6, type III, m=3 and type IV, m=5 do not occur.

Proof. If we consider the inequalities obtained in the proof of Lemma 2.6, we see that any of the above mentioned cases would be eliminated if a strengthening of the inequalities by a factor of p=2 could be obtained. Let us suppose that one of the above occurs.

The results of Lemma 2.4 concerning $[\mathfrak{G}:\mathfrak{G}_x]_p$ and w must be equalities. In particular this implies that for given $x \in \mathfrak{D}^{\sharp}$ with $\mathfrak{G}_x \cap \mathfrak{A}_p \mathfrak{G} = \langle 1 \rangle$ we must have $|\mathfrak{G}|_p = |\mathfrak{G}_x \mathfrak{A}_p \mathfrak{G}|_p$. Thus $\mathfrak{A}_p \mathfrak{G}$ has a complement in a Sylow p-subgroup of \mathfrak{G} and thus also in \mathfrak{P} , a Sylow p-subgroup of \mathfrak{F} . Let $\mathfrak{P} = \mathfrak{A}_p \mathfrak{G} \mathfrak{D}$ where $\mathfrak{L} \cap \mathfrak{A}_p \mathfrak{G} = \langle 1 \rangle$ and let w^* denote the period of the group $\mathfrak{G} \mathfrak{L}/\mathfrak{G}'$. Since \mathfrak{A}_p is central in \mathfrak{P} we have

$$w \leq \max \left\{ \mid \mathfrak{A}_{_{p}} \mid, 2w^{*}
ight\} \leq egin{cases} \mid \mathfrak{A}_{_{p}} \mid w^{*} & ext{type II} \ rac{1}{2} \mid \mathfrak{A}_{_{p}} \mid w^{*} & ext{types III, IV .} \end{cases}$$

We consider w^* . Let $\mathfrak{B}^* = \mathfrak{S}/\mathfrak{S}'$ so \mathfrak{B}^* is elementary abelian of order p^{2m} or p^{2m+1} . Since \mathfrak{L} acts faithfully on $\mathfrak{S}/\mathbf{Z}(\mathfrak{S})$, it also acts faithfully on \mathfrak{B}^* . If \mathfrak{L} has period p^d , then $w^* = p^d$ or p^{d+1} . Note that $\mathfrak{L} \subseteq GL(2m+1,p)$. If $w^* = p^d$, then since $p^d \subseteq p(2m)$ we have $w^* \subseteq p(2m)$. If $w^* = p^{d+1}$, then there must exist an element $L \in \mathfrak{L}$ of order p^d whose minimal polynomial in GL(2m+1,p) has degree p^d . Thus we must have $p^d \subseteq 2m+1$ and $w^* \subseteq p(2m+1)$. The latter bound being the larger of the two holds in all cases. Now w^* is a power of 2 and in the three cases we are considering neither 2m+1 nor 2m is a power of 2. Hence we have $w^* \subseteq p(2m-1)$ and

$$w \le p(2m-1) \, | \, \mathfrak{A}_{_p} \, |$$
 for type II $w \le (2m-1) \, | \, \mathfrak{A}_{_p} \, |$ for types III, IV .

This therefore improves the bounds on w given in the proof of Lemma 2.6 by a factor of p=2 and, as we mentioned above, this yields a contradiction.

LEMMA 2.10. The case type IV, m = 4 does not occur.

Proof. We see that in the inequalities obtained in the proof of Lemma 2.6, a strengthening by a factor of p=2 would eliminate this possibility. Hence if this case occurs, then we must have the following. If $x \in \mathfrak{D}^{\sharp}$, then either x is fixed by a subgroup of \mathfrak{E} of order 2 or a cyclic subgroup $\mathfrak{F} \subseteq \mathfrak{F}$ of order 8 with $\mathfrak{F} \cap \mathfrak{AE} = \langle 1 \rangle$. Let \mathscr{N} denote collection of such subgroups of both types.

We show now that if $\mathfrak{F} \in \mathscr{N}$ then $\dim C_{\mathfrak{B}}(\mathfrak{F}) \leq n/2$. We know this to be the case if $\mathfrak{F} \subseteq \mathfrak{F}$ so suppose $\mathfrak{F} = \langle J \rangle$ has order 8. Then \mathfrak{F} acts faithfully on $\mathfrak{B} = \mathfrak{F}/\mathbf{Z}(\mathfrak{F})$. Since $|\mathfrak{F}| = 8$ we see that in its action on \mathfrak{B} , J must have one Jordan block of rank at least 5. This implies easily that \mathfrak{F} has at most

$$\frac{2^8 - 2^7}{8} + \frac{2^7 - 2^5}{4} + \frac{2^5 - 2^4}{2} + 2^4 = 2^6$$

orbits on \mathfrak{B} . We apply Lemma 1.6 to each of the two absolutely irreducible constituents of $\mathfrak{C}\mathfrak{F}$ on $\mathfrak{B}\otimes GF(q^2)$. Hence

$$a_0^2 + a_1^2 + \cdots + a_7^2 \leq 2^6$$
.

Thus $a_0 \leq 8$ and since dim $C_{\mathfrak{B}}(\mathfrak{F})$ is invariant under field extension we have dim $C_{\mathfrak{B}}(\mathfrak{F}) \leq 2a_0 \leq n/2$. Now

$$\mathfrak{V} = \bigcup_{\mathfrak{F} \in \mathscr{N}} C_{\mathfrak{F}}(\mathfrak{F})$$

and if $N=|\hspace{.05cm} \mathscr{N} \hspace{.05cm}|$, then $q^{\scriptscriptstyle n}=|\hspace{.05cm} \mathfrak{V} \hspace{.05cm}| \leqq Nq^{\scriptscriptstyle n/2}$ and $q^{\scriptscriptstyle n/2} \leqq N$. By Lemma 2.5

$$|\mathfrak{H}| \leq |\mathfrak{A}| 2^{2m} |Sp(2m,2)|$$
.

Since $|\mathfrak{A}| \le q^s$ and $|Sp(8,2)| \le 2^{36}$ we have $N \le |\mathfrak{B}| \le q^s \cdot 2^{44}$. With $n=2^m s=16s$ this yields

$$q^{ss}=q^{n/2} \leqq N \leqq q^s \cdot 2^{44}$$

or $q^{7s} \le 2^{44}$. Now s=2 and by Lemma 2.4, $2^5 = 2^{m+1}$ divides $q^2-1=q^s-1$. Since s=2 and $q^s>9$ it follows (see for example Lemma 4 of [4]) that q^s-1 cannot be a power of 2. Hence $q^s>q^s-1\ge 3\cdot 2^5$ so $q^{7s}>3^7\cdot 2^{35}$. Combining this with the above yields $3^7\cdot 2^{35}< q^{7s}\le 2^{44}$ or $3^7<2^9$, a contradiction. Therefore this case does not occur.

LRMMA 2.11. The case type II, m = 5 does not occur.

Proof. In the inequality in the proof of Lemma 2.6 for type II, m=5 we see that a strengthening by a factor of $p^2=4$ will yield a contradiction. Hence if $x\in \mathfrak{B}^*$ is such that $\mathfrak{G}_x\cap \mathfrak{AG}=\langle 1\rangle$ and if \mathfrak{P} is a Sylow 2-subgroup of \mathfrak{G} extending one of \mathfrak{G}_x , then either (a) $\mathfrak{P}_x\mathfrak{G}=\mathfrak{P}$ and $w\geq 32$ or (b) $[\mathfrak{P}:\mathfrak{P}_x\mathfrak{G}]=2$ and $w\geq 64$. In the latter case $\mathfrak{P}_x\mathfrak{G} \wedge \mathfrak{P}$ so in both cases $\mathfrak{P}_x\mathfrak{G}$ has period ≥ 32 and \mathfrak{P}_x has period ≥ 8 . Note $|\mathfrak{A}_z|=2$ here by Lemma 2.6.

Let $\mathfrak{F}=\langle J\rangle$ be a cyclic subgroup of \mathfrak{P}_x of order 8 and let $a_0=\dim_{\mathscr{GF}(q)}C_{\mathfrak{B}}(J)$. Since \mathfrak{F} acts faithfully on $\mathfrak{W}=\mathfrak{E}/Z(\mathfrak{E})$ and $|\mathfrak{F}|=8$ we see that J must have one Jordan block of rank at least 5. This implies easily that \mathfrak{F} has at most

$$\frac{2^{10}-2^9}{8}+\frac{2^9-2^7}{4}+\frac{2^7-2^6}{2}+2^6=2^8$$

orbits on \mathbb{W}. Hence by Lemma 1.6

$$a_{\scriptscriptstyle 0} + a_{\scriptscriptstyle 1} + \cdots + a_{\scriptscriptstyle 7} = p^{\scriptscriptstyle m} = 32 \ a_{\scriptscriptstyle 0}^{\scriptscriptstyle 2} + a_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} + \cdots + a_{\scriptscriptstyle 7}^{\scriptscriptstyle 7} \leqq 2^{\scriptscriptstyle 8} \ .$$

Thus $a_0 < 2^4 = 16$ and $|C_{\mathfrak{B}}(J)| = q^{a_0} \leq q^{15}$.

Now if $\mathfrak T$ is a subgroup of $\mathfrak A\mathfrak G$ of order 2 then $|C_{\mathfrak A}(\mathfrak T)| \leq q^{n/2} = q^{16}$. We have shown that with the above notation

$$\mathfrak{V} = \bigcup_{\mathfrak{F}} C_{\mathfrak{F}}(\mathfrak{F}) \cup \bigcup_{\mathfrak{T}} C_{\mathfrak{F}}(\mathfrak{T})$$
.

Now $\mathfrak A$ is cyclic and central and by Lemma 2.6, $4 \not \mid \mathfrak A \mid$. Hence the number of choices for $\mathfrak X$ is at most $|\mathfrak E| = 2^{11}$ and the number of choices for $\mathfrak F$ is at most $1/4 \mid \mathfrak G/\mathfrak A_{2'} \mid$. Here $\mathfrak A_{2'}$ is the normal 2-complement of $\mathfrak A$ and the 1/4 factor comes from the fact that $\mathfrak F$ has four distinct generators. Since $|\mathfrak G/\mathfrak A_{2'}| \leq |\mathfrak E| \mid Sp(10,2) \mid \leq 2^{66}$, the above union yields

$$q^{\scriptscriptstyle 32} = |\, \mathfrak{B}\,| \leqq 2^{\scriptscriptstyle 66} q^{\scriptscriptstyle 15}/4 \, + \, 2^{\scriptscriptstyle 11} q^{\scriptscriptstyle 16}$$
 .

Putting $q^{15} < q^{16}/2$ in the above we have

$$q^{32} < (2^{63} + 2^{11})q^{16} < 2^{64}q^{16}$$

so $q^{16} < 2^{64}$ and $q < 2^4 = 16$. On the other hand by Lemma 2.4 $2^5 \mid q^2 - 1$ so $16 \mid q \pm 1$. This yields $q \ge 17$, a contradiction.

The following partial result will be completed later under the additional assumption of solvability.

LEMMA 2.12. In the case type II, m=4 we have $q \geq 7$ and $|\mathfrak{G}/\mathfrak{AG}| > 10^4$.

Proof. In the inequalities of the proof of Lemma 2.6 for type II, m=4, we see that a strengthening by a factor of $p^2=4$ will yield a contradiction. Suppose $x \in \mathfrak{B}^{\sharp}$ with $\mathfrak{G}_x \cap \mathfrak{AC} = \langle 1 \rangle$ and let \mathfrak{P} be a Sylow 2-subgroup of \mathfrak{G} extending one of \mathfrak{G}_x . Using the same argument as in the preceding lemma we conclude that $\mathfrak{P}_x\mathfrak{C}$ has period ≥ 16 and hence $\mathfrak{P}_x\mathfrak{C}/\mathbf{Z}(\mathfrak{C})$ has period ≥ 8 .

Suppose first that \mathfrak{P}_x has a cyclic subgroup $\mathfrak{F}=\langle J\rangle$ of order 8. Then in its action on $\mathfrak{W}=\mathfrak{E}/\mathbf{Z}(\mathfrak{E})$, J has a Jordan block of rank at least 5 so \mathfrak{F} has at most

$$\frac{2^{8}-2^{7}}{8}+\frac{2^{7}-2^{5}}{4}+\frac{2^{5}-2^{4}}{2}+2^{4}=64$$

orbits on \mathfrak{W} . By Lemma 1.6 if $a_0 = \dim C_{\mathfrak{V}}(J)$ then

$$a_0^2 + a_1^2 + \cdots + a_7^2 \le 64$$

and $a_0 \leq 8$.

Now suppose \mathfrak{P}_x has period 4. Then since $\mathfrak{P}_x\mathfrak{E}/\mathbb{Z}(\mathfrak{E})$ has period 8, \mathfrak{P}_x must contain an element J of order 4 with a Jordan block of rank 4. If $\mathfrak{F} = \langle J \rangle$, then \mathfrak{F} has at most

$$\frac{2^8 - 2^6}{4} + \frac{2^6 - 2^5}{2} + 2^5 = 96$$

orbits on \mathfrak{W} . By Lemma 1.6 if $a_0 = \dim C_{\mathfrak{B}}(J)$ then

$$a_{\scriptscriptstyle 0} + a_{\scriptscriptstyle 1} + a_{\scriptscriptstyle 2} + a_{\scriptscriptstyle 3} = p^{\scriptscriptstyle m} = 16$$
 $a_{\scriptscriptstyle 0}^{\scriptscriptstyle 2} + a_{\scriptscriptstyle 1}^{\scriptscriptstyle 2} + a_{\scriptscriptstyle 2}^{\scriptscriptstyle 2} + a_{\scriptscriptstyle 3}^{\scriptscriptstyle 2} \leqq 96$.

It is easy to see that the possibility $a_0 = 9$ is excluded and hence in both cases $a_0 \le 8$.

We have

$$\mathfrak{B} = \bigcup C_{\mathfrak{B}}(\mathfrak{F}) \cup \bigcup C_{\mathfrak{B}}(\mathfrak{T})$$

where the subgroups $\mathfrak F$ are as above and the subgroups $\mathfrak T$ have order 2 and are contained in $\mathfrak F$. This follows since $4 \not\mid \mathfrak A \mid$ by Lemma 2.6. The number of choices for $\mathfrak F$ or $\mathfrak T$ is clearly at most $|\mathfrak G/\mathfrak A_{2'}|$ where $\mathfrak A_{2'}$ is the normal 2-complement of $\mathfrak A$. Since $4 \not\mid \mathfrak A \mid$ we have $|\mathfrak G/\mathfrak A_{2'}| = 2^9 |\mathfrak G/\mathfrak A \mathfrak E|$. Therefore the above union yields

$$q^{\scriptscriptstyle 16} = |\, \mathfrak{V}\,| \leqq q^{\scriptscriptstyle 8}2^{\scriptscriptstyle 9}\,|\, \mathfrak{V}/\mathfrak{UE}\,|$$

since $|C_{\mathfrak{B}}(\mathfrak{J})|$ and $|C_{\mathfrak{B}}(\mathfrak{T})|$ are both at most q^{s} . Thus $|\mathfrak{G}/\mathfrak{AG}| \geq q^{s}/2^{s}$. By Lemma 2.4, $2^{4} |q^{2} - 1$ so $q \geq 7$. This yields

$$\mid \text{G/MG} \mid \geq 7^8/2^9 = (2401)^2/2^9 > 10^4$$

and the result follows.

We now temporarily drop the assumptions stated at the beginning of this section and prove the first of our three theorems.

Proof of Theorem A. Let $\mathfrak B$ be a linear group acting on vector space $\mathfrak B$ of order q^* and suppose that $\mathfrak B$ acts half-transitively but not semiregularly on $\mathfrak B^*$. Let $\mathfrak P=O_p(\mathfrak B)$ be the maximal normal p-subgroup of $\mathfrak B$. By assumption $\mathfrak B$ is primitive so $\mathfrak P$ is of symplectic type. Suppose first that p>2. If $\mathfrak P$ is not cyclic, then $\mathfrak P$ contains a characteristic subgroup $\mathfrak E$ of type E(p,m). By the Reduction Lemma (Lemma 1.8) and Lemmas 2.6, 2.7 and 2.8 we have a contradiction.

Now let p=2 so that $\Phi(\mathfrak{P})$ is cyclic. Suppose $[\mathfrak{P}:\Phi(\mathfrak{P})]>2^s$. Then \mathfrak{P} has a characteristic subgroup \mathfrak{E} of type E(2,m) with m>3. Thus by the Reduction Lemma and Lemmas 2.6 through 2.11 we see that m=4 and $|\mathbf{Z}(\mathfrak{E})|=2$. But then $|\Phi(\mathfrak{P})|=2$ so $\mathfrak{P}=\mathfrak{E}$ and $|\mathfrak{P}:\Phi(\mathfrak{P})|\leq 2^s$ here also. This completes the proof.

3. Solvable cases, m=1. We have seen in the preceding section that if \mathfrak{E} is a group of type E(p,m) normal in a half-transitive linear group \mathfrak{G} , then p=2 and $m\leq 4$. We will consider these cases in the next few sections under the additional assumption that \mathfrak{G} is solvable.

For convenience we restate Lemmas 1.3 and 1.4 of [5].

LEMMA 3.1. Suppose \mathfrak{G} is an irreducible linear group of degree n over GF(q) and $\mathfrak{A} = \langle \mathfrak{A} \rangle$ is a cyclic normal subgroup all of whose irreducible constituents are similar. Let ζ be an eigenvalue of A with $GF(q)(\zeta) = GF(q^r)$ and n/r = k. Let p be a prime and suppose that for all vectors x, $p \mid |\mathfrak{G}_x|$. Consider those subgroups $\mathfrak{P}/\mathfrak{A}$ of $\mathfrak{G}/\mathfrak{A}$ of order p for which there exists an $x \neq 0$ with $\mathfrak{P} \cap \mathfrak{G}_x \neq \langle 1 \rangle$. If λ_1 of the \mathfrak{P} are contained in $C\mathfrak{G}(\mathfrak{A})$ and λ_2 are not, then

$$\begin{array}{l} \text{If λ_1 of the \mathfrak{P} are contained in $C_{\mathfrak{S}}(\mathfrak{A})$ and λ_2 are not, then} \\ \text{(i)} \quad \frac{q^{kr}-1}{q^r-1} \leqq \lambda_1 \Big\{1+\frac{q^{r(k-1)}-1}{q^r-1}\Big\} + \lambda_2 \Big\{\frac{q^{rk/p}-1}{q^{r/p}-1}\Big\} \end{array}$$

- (ii) $q^r+1 \leq 2\lambda_1 + \lambda_2(q^{r/p}+1)$ for k=2
- (iii) $q^r < 2(\lambda_{\scriptscriptstyle 1} + \lambda_{\scriptscriptstyle 2})$ for k > 2 .

This is a very coarse statement which we will have to strengthen at times. The following assumptions hold throughout the remainder of this section.

Assumptions. Group $\mathfrak G$ acts faithfully on vector space $\mathfrak B$ of order q^n and half-transitively but not semiregularly on $\mathfrak B^\sharp$. $\mathfrak G$ is a group of type E(2,1) which is normal in $\mathfrak G$ and acts irreducibly on $\mathfrak B$. Note that we do not assume that $\mathfrak G$ is primitive here. The

reason for this, is that part (v) of the Reduction Lemma does not guarantee primitivity in this case.

LEMMA 3.2. Let $\mathfrak{G} \cong \mathfrak{Q}$ (that is, $\mathfrak{G} = \text{iso } I$). Then $q^n = 3^2, 5^2, 7^2, 11^2$ or 17^2 .

Proof. Clearly $q^n = q^2$ and hence $C_{\mathfrak{G}}(\mathfrak{G})$ consists of scalar matrices so $C_{\mathfrak{G}}(\mathfrak{G}) = \mathbf{Z}(\mathfrak{G})$. Note that Aut $\mathfrak{G} \cong \operatorname{Sym}_4$, the symmetric group of degree 4.

Suppose first that $3 \nmid | \mathfrak{G}/Z(\mathfrak{G})|$. Then $| \mathfrak{G}/Z(\mathfrak{G})| = 4$ or 8 and hence \mathfrak{G} is nilpotent. Thus $\mathfrak{G}_2 = O_2(\mathfrak{G})$ is half-transitive. Since $O_2(\mathfrak{G}) \subseteq Z(\mathfrak{G})$ acts semiregularly, we conclude that \mathfrak{G}_2 is not semiregular. Hence $\mathfrak{G}_2 > \mathfrak{G}$ and since $[\mathfrak{G}_2 : Z(\mathfrak{G}_2)] = 4$ or 8 we have by Theorem II of [4], $q^n = 3^2$, 5^2 or 7^2 .

We assume now that $3 \mid |\mathfrak{G}/Z(\mathfrak{G})|$. We consider the possibility $3 \mid |\mathfrak{G}_x|$ first. If \mathfrak{L} is a subgroup of \mathfrak{G} of order 3 fixing a vector x, then $|C_{\mathfrak{B}}(\mathfrak{L})| = q$ clearly. Also either q = 3 or by complete reducibility $3 \mid q - 1$. Now $\mathfrak{G}/Z(\mathfrak{G})$ has at most 4 subgroups of order 3 and since $Z(\mathfrak{G})$ is cyclic, we see that \mathfrak{G} contains at most $4 \cdot 3 = 12$ subgroups of order 3 not contained in $Z(\mathfrak{G})$. From $\mathfrak{B} = \bigcup C_{\mathfrak{B}}(\mathfrak{L})$ we obtain easily

$$|q^2 - 1| = |\mathfrak{B}^{\sharp}| \le 12(q-1)$$

so $q+1 \le 12$. Since either q=3 or $3 \mid q-1$ we have q=3 or 7 here.

We now assume that $3 \nmid |\mathfrak{G}_x|$. If $\mathfrak{G}_x \cap Z(\mathfrak{S})\mathfrak{E} \neq \langle 1 \rangle$ for all $x \in \mathfrak{B}^\sharp$, then by Lemma 1.5 $q^* = 3^2$ or 5^2 . Thus we can suppose that some $x \in \mathfrak{B}^\sharp$, $\mathfrak{G}_x \cap Z(\mathfrak{S})\mathfrak{E} = \langle 1 \rangle$. This yields $|\mathfrak{G}_x| = 2$ and by Lemma 1.9, $I(\mathfrak{S}) = q + 1$. We have actually shown above that $|\mathfrak{S}/Z(\mathfrak{S})|$ is divisible by $3 \cdot 8$ so $\mathfrak{S}/Z(\mathfrak{S}) \cong \operatorname{Sym}_4$ and this group has two conjugacy classes of involutions, \mathfrak{C}_1 of size 3 and \mathfrak{C}_2 of size 6. If $\overline{T} \in \mathfrak{S}/Z(\mathfrak{S})$ is an involution then since $Z(\mathfrak{S})$ is cyclic of even order and central, the coset corresponding to \overline{T} will contain either 0 or 2 noncentral involutions of \mathfrak{S} and this number is the same for all conjugates of \overline{T} . Thus we have

$$q+1=I(\mathfrak{G})=\delta_1\cdot 2\cdot 3+\delta_2\cdot 2\cdot 6$$

where δ_1 , $\delta_2=0$ or 1. Moreover since for some $x\in\mathfrak{V}^{\sharp}$, $\mathfrak{G}_x\cap Z(\mathfrak{G})\mathfrak{E}=\langle 1\rangle$ we have $\delta_2=1$. Thus $q+1=6\delta_1+12$ and q=11 or 17. This completes the proof.

LEMMA 3.3. Let $\mathfrak{E} \cong \mathfrak{D}$ (that is, $\mathfrak{E} = \text{iso II}$). Then $q^n = 3^2$, 5^2 or 7^2 .

Proof. Clearly $q^n = q^2$ so $C_{\mathfrak{G}}(\mathfrak{F}) = \mathbb{Z}(\mathfrak{F})$ consists of scalar matrices.

Now $| \text{Aut } \mathfrak{S} | = 8$ so $[\mathfrak{S} : \mathbf{Z}(\mathfrak{S})] = 4$ or 8 and hence \mathfrak{S} is nilpotent. Then $\mathfrak{S}_2 = O_2(\mathfrak{S})$ is half-transitive but not semiregular and $[\mathfrak{S}_2 : \mathbf{Z}(\mathfrak{S}_2)] = 4$ or 8. By Theorem II of [4], $q^n = q^2 = 3^2$, 5^2 or 7^2 .

LEMMA 3.4. Let $\mathfrak{C} \cong \mathfrak{Z} \mathfrak{D}$ (that is, $\mathfrak{C} = \text{iso III}$). Then $q^n = 5^2$, 17^2 or \mathfrak{C} is imprimitive and $q^n = 3^4$.

Proof. Here $q^n=q^2$ if $q\equiv 1 \mod 4$ and $q^n=q^4$ if $q\equiv -1 \mod 4$. Say $q^n=q^{2r}$.

Suppose first that \mathfrak{G} is imprimitive. Here we can apply Theorem 1.1. Note that if q^r-1 is not a power of 2 then $O_2(\mathscr{T}_0(q^r))$ is abelian. Hence by Theorem 1.1 either $q^n=3^4$ or $\mathfrak{G}=\mathscr{T}_0(q)$ for Fermat prime q. Here $q\equiv 1 \mod 4$ so $q\geq 5$. Let \mathfrak{B} be the diagonalized subgroup of \mathfrak{G} of index 2 so \mathfrak{B} is abelian. Then $\mathfrak{G}=\mathfrak{B}\mathfrak{G}$ and $\mathfrak{G}'=(\mathfrak{B},\mathfrak{G})\subseteq\mathfrak{G}$. Since \mathfrak{G}' is cyclic of order (q-1)/2 we have $(q-1)/2\leq 4$ so $q\leq 9$ and hence since q is a Fermat prime q=5 and $q^n=5^2$.

Now we assume that \mathfrak{G} is primitive and we use the notation of Lemma 2.5. Then $[\mathfrak{G}:\mathfrak{G}]=1$ or 2 where $\mathfrak{G}=C\mathfrak{G}(Z(\mathfrak{G}))$ and $\mathfrak{G}/\mathfrak{A}\mathfrak{G}\subseteq Sp(2,2)=SL(2,2)$, a group of order 6. Now \mathfrak{G} has precisely 3 abelian subgroups of order 8 and these are not cyclic. Since \mathfrak{G} is primitive none of these groups is normal. Hence \mathfrak{G} permutes these transitively so $3\mid \mathfrak{G}/\mathfrak{A}\mathfrak{G}\mid$. Now $\mathfrak{G}/\mathfrak{A}\mathfrak{G}$ also acts on $\mathfrak{G}/\mathfrak{G}'$ and this action is clearly faithful on $\mathfrak{G}/\mathfrak{A}\mathfrak{G}$. If $\mathfrak{F}=\mathfrak{F}/\mathfrak{A}\mathfrak{G}$ is the normal 3-subgroup of $\mathfrak{G}/\mathfrak{A}\mathfrak{G}$ then \mathfrak{F} centralizes $Z(\mathfrak{G})/\mathfrak{G}'$ and acts faithfully on the commutator $\mathfrak{G}_0/\mathfrak{G}'$, a 2-dimensional complement. Clearly $\mathfrak{G}_0\cong\mathfrak{Q}$ and $\mathfrak{G}_0\wedge\mathfrak{G}$. If n=2, then by Lemma 3.2 and the fact that $q\equiv 1$ mod 4 we have $q^n=5^2$ or 17^2 .

Let n=4 so $q\equiv -1 \mod 4$. $\mathfrak{G}/\mathfrak{A}$ acts on \mathfrak{E}_0 and the kernel acts faithfully on $Z(\mathfrak{E})$. Thus we see that either $\mathfrak{G}/\mathfrak{A} \subseteq \operatorname{Aut} \mathfrak{E}_0 = \operatorname{Sym}_4$ or $\mathfrak{G}/\mathfrak{A} \subseteq \mathfrak{F}/\mathfrak{A} \times \mathfrak{F}/\mathfrak{A} \subseteq \operatorname{Sym} 4 \times \mathfrak{F}$ where $|\mathfrak{F}| = |\mathfrak{F}/\mathfrak{A}| = 2$. We apply Lemma 3.1 with p=2. We have clearly $\lambda_1 \leq 9$, $\lambda_2 \leq 10$ and since r=2, k=2, n=4 we obtain

$$q^2 + 1 \le 18 + 10(q+1)$$

or $q(q-10) \leq 27$ so q < 13. Since $q \equiv 3 \mod 4$ we have $q \equiv 3$, 7 or 11. Suppose $3 \mid |\mathfrak{G}_x|$. Let T be a noncentral involution of \mathfrak{E} . By Lemma 1.5 there exists a point $x \in \mathfrak{F}^*$ with $\mathfrak{E}_x = \langle T \rangle$. Let \mathfrak{L} be a subgroup of \mathfrak{G}_x of order 3. Then $\mathfrak{L} \cap \mathfrak{AE} = \langle 1 \rangle$, $\mathfrak{L} \subseteq \mathfrak{L}$ and \mathfrak{L} normalizes $\mathfrak{G}_x \cap \mathfrak{E} = \mathfrak{E}_x$, a contradiction since \mathfrak{L} acts irreducibly on $\mathfrak{E}/\mathbf{Z}(\mathfrak{E})$. Hence $3 \nmid |\mathfrak{G}_x|$ and since $3 \mid |\mathfrak{G}|$ we conclude that $q \neq 3$.

Let q=7 or 11. By Lemma 1.5 there exists a point $x \in \mathfrak{D}^{\sharp}$ with $\mathfrak{G}_x \cap \mathfrak{AG} = \langle 1 \rangle$. Since $3 \nmid |\mathfrak{G}_x|$ we see that $|\mathfrak{G}_x| = 2$ or 4. Suppose $|\mathfrak{G}_x| = 4$. Then certainly $2 \mid |\mathfrak{F}_x|$ for all $x \in \mathfrak{D}^{\sharp}$ and Lemma 3.1

applies to §. Here $\lambda_1 \leq 9$, $\lambda_2 = 0$, r = 2, n = 4, k = 2 so

$$q^2 + 1 \leq 2 \cdot 9 + 0$$
,

a contradiction. Thus $|\mathfrak{G}_x|=2$ and by Lemma 1.9, $I(\mathfrak{S})=q^2+1$. Let \mathfrak{L} be a Sylow 3-subgroup of \mathfrak{S} . Then \mathfrak{L} permutes by conjugation the noncentral involutions of \mathfrak{S} . Since $3 \not\mid (q^2+1)$, \mathfrak{L} must centralize such an involution. Now subgroups of Sym, of order 3 are self-centralizing so this implies that $\mathfrak{S}/\mathfrak{L} \not\subseteq \operatorname{Sym}_4$. Hence $\mathfrak{S}/\mathfrak{L} \subseteq \mathfrak{S}/\mathfrak{L} \times \mathfrak{S}/\mathfrak{L}$ where $\mathfrak{L}/\mathfrak{L} \subseteq \operatorname{Sym}_4$ and $|\mathfrak{L}/\mathfrak{L}|=2$. Clearly $\mathfrak{L}/\mathfrak{L} \supseteq \operatorname{Alt}_4$ and if $\mathfrak{L}/\mathfrak{L} \cong \operatorname{Alt}_4$ then in the notation of Lemma 3.1 with p=2, $\lambda_1 \subseteq 3$, $\lambda_2 \subseteq 4$ and

$$(q^2+1) \le 2\lambda_1 + (q+1)\lambda_2 \le 6 + 4(q+1)$$

a contradiction for q=7,11. Hence $\mathfrak{G}/\mathfrak{A}\cong \operatorname{Sym}_4$ and $\mathfrak{G}/\mathfrak{A}$ has five classes \mathfrak{C}_i of involutions. These satisfy \mathfrak{C}_1 , $\mathfrak{C}_2\subseteq \mathfrak{G}/\mathfrak{A}$ with $|\mathfrak{C}_1|=3$, $|\mathfrak{C}_2|=6$ and C_3 , \mathfrak{C}_4 , $\mathfrak{C}_5\not\subseteq \mathfrak{G}/\mathfrak{A}$ with $|\mathfrak{C}_3|=1$, $|\mathfrak{C}_4|=3$, $|\mathfrak{C}_5|=6$.

Let \overline{T} be an involution of $\mathfrak{G}/\mathfrak{A}$. If the coset of \overline{T} contains α involutions, then the same is true for all conjugates of \overline{T} . If $\overline{T} \in \mathfrak{F}/\mathfrak{A}$ then certainly $\alpha = 0$ or 2. If $T \notin \mathfrak{F}/\mathfrak{A}$, then by Lemma 1.1 of [5] \overline{T} acts on \mathfrak{A} like a field automorphism of $GF(q^2)$ of order 2 (that is, the map $x \to x^q$). Suppose the coset contains an involution T. Then for $B \in \mathfrak{A}$, BT is an involution if and only if $B^q = B^T = B^{-1}$. Hence $\alpha = 0$ or the number N of elements of \mathfrak{A} of order dividing q+1. Note that since $|Z(\mathfrak{E})|=4$ we have N=4 or 8 for q=7 and N=4 or 12 for q=11. Now if $\delta_i=1$ or 0 according to whether the coset of $\overline{T} \in \mathfrak{C}_i$ contains an involution of \mathfrak{B} then we obtain

$$q^2 + 1 = I(\mathfrak{G}) = 6\delta_1 + 12\delta_2 + N(\delta_3 + 3\delta_4 + 6\delta_5)$$
.

Considering this modulo 3 we have

$$2 \equiv q^2 + 1 \equiv \mathrm{N}\delta_3 \,\mathrm{mod}\,3$$
 .

This shows that $q \neq 11$. If q = 7 then N = 8 so $8 \mid \mid \mathfrak{A} \mid$ and $\delta_3 = 1$. Furthermore $\delta_5 = 0$ and then $\delta_1 = \delta_2 = \delta_3 = \delta_4 = 1$.

Since $\delta_2 = 1$ we can find an involution $T \in \mathfrak{F}$ corresponding to a transposition in $\mathfrak{F}/\mathfrak{A} \cong \operatorname{Sym}_4$. Now T normalized $\mathfrak{E}_0 \cong \mathfrak{Q}$ as mentioned before and T does not fix $\mathfrak{E}_0/\mathfrak{E}_0'$ since T does not fix $\mathfrak{E}/Z(\mathfrak{E})$. Thus $\langle \mathfrak{E}_0, T \rangle$ is a maximal class group of order 16 and hence this group has a cyclic subgroup \mathfrak{B} of order 8. The group $\mathfrak{A}_2\mathfrak{B}$ is abelian and has period $|\mathfrak{A}_2|$ since $\mathfrak{B} \subseteq \mathfrak{F}$ and $|\mathfrak{A}_2| \ge |\mathfrak{B}|$. Also $|\mathfrak{B} \cap \mathfrak{A}_2| = 2$ so $|\mathfrak{A}_2\mathfrak{B}| = 4 |\mathfrak{A}_2|$. Let $\mathfrak{A} \subseteq \mathfrak{B}$ be an irreducible $\mathfrak{A}_2\mathfrak{B}$ -submodule and let $\mathfrak{A} \subseteq \mathfrak{A}_2\mathfrak{B}$ be the kernel. Then $\mathfrak{A}_2\mathfrak{B}/\mathfrak{A}$ is cyclic so $|\mathfrak{A}_2\mathfrak{B}/\mathfrak{A}| \le |\mathfrak{A}_2|$ and

hence $|\Re| \ge 4$. If $x \in \mathfrak{U}^{\sharp}$, then $\mathfrak{G}_x \supseteq \Re$ and $|\mathfrak{G}_x| \ge 4$, a contradiction. This completes the proof.

The examples with $q^n = 3^2$, 5^2 , 7^2 and 11^2 can occur EXAMPLES. as transitive groups and these are given in [3]. We consider the case $q^n = 17^2$. Let $SL(2, 17)^*$ denote the subgroup of GL(2, 17)consisting of those matrices with determinant ± 1 . Let $\mathfrak{H} = \mathfrak{DM}$ where $\mathfrak Q$ is the quaternion group of order 8, $\mathfrak Q \triangle \mathfrak Q$ and $\mathfrak W \cong \operatorname{Sym}_{\mathfrak q}$ acts faithfully on $\mathfrak{Q}/\mathfrak{Q}'$. Clearly $\mathfrak{F}'=\mathfrak{QW}'\cong SL(2,3)$. This group has a unique faithful irreducible rational character of degree 2. Hence \mathfrak{H} has a faithful character χ of degree 2 with $\chi \mid \mathfrak{H}'$ rational. Now all elements of $\mathfrak{F} - \mathfrak{F}'$ are 2-elements and a Sylow 2-subgroup of \mathfrak{H} has period 8. Thus $Q(\chi) \subseteq Q(\varepsilon)$ where ε is a primitive 8th root of unity. Since $8 | |GF(17)^{\sharp}|$, this representation of \mathfrak{F} is realizable over GF(17) and hence we can assume $\mathfrak{F}\subseteq GL(2,17)$. All subgroups of \mathfrak{H} of order 3 are contained in SL(2,17) since $3 \nmid |GF(17)^{\sharp}|$ so $\mathfrak{H}' \subseteq SL(2,17)$ and $\mathfrak{H} \subseteq SL(2,17)^*$. Let $i = \sqrt{-1} \in GF(17)$ and let $\mathfrak{Z}=\left\langle\left(egin{array}{cc} i & 0 \\ 0 & i \end{array}\right)\right\rangle$. Then \mathfrak{Z} is cyclic of order 4, $\mathfrak{Z}\subseteq SL(2,17)^*$ and \mathfrak{Z} is central in GL(2, 17). Set $\mathfrak{G} = \mathfrak{Z}\mathfrak{F}$ so $\mathfrak{G} \subseteq SL(2, 17)^*$.

We show first that $\mathfrak G$ has precisely 17+1=18 noncentral involutions. Now $|\mathfrak Z|=4$ and $\mathfrak G/\mathfrak Z\cong \operatorname{Sym}_4$. This quotient group has two classes of involutions $\mathfrak C_1,\mathfrak C_2$ with $|\mathfrak C_1|=3$, $|\mathfrak C_2|=6$. If $\overline T\in\mathfrak C_i$ and the coset of $\overline T$ contains an involution of $\mathfrak G$, then the same is true for all conjugates of $\overline T$. Moreover the coset would then clearly contain precisely two such involutions. Thus if $\delta_i=0,1$ has the obvious meaning, then

$$I(\mathfrak{G}) = 2\delta_1 |\mathfrak{C}_1| + 2\delta_2 |\mathfrak{C}_2| = 6\delta_1 + 12\delta_2$$
.

Let $W \subseteq \mathfrak{W}$ have order 2. Then $\overline{W} \in \mathfrak{C}_2$ so $\delta_2 = 1$. Let $Q \in \mathfrak{D}$ have order 4 and let $\mathfrak{Z} = \langle Z \rangle$. Then QZ has order 2 and $\overline{QZ} \in \mathfrak{C}_1$. Hence $\delta_1 = 1$ and $I(\mathfrak{S}) = 18$.

Let $\mathfrak B$ be a 2-dimensional GF(17)-vector space and let $x\in \mathfrak B^\sharp$. Since $|\mathfrak B|$ is prime to 17 we can write $\mathfrak G_x \subseteq \left\{ \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} \middle| a \in GF(17)^\sharp \right\}$ by taking a suitable basis. Now $\mathfrak B \subseteq SL(2,17)^*$ and $\det \begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix} = a$ so we see that $|\mathfrak G_x| = 1$ or 2. If T is a noncentral involution of $\mathfrak B$, then $\mathfrak B > C_{\mathfrak B}(T) > \{0\}$ and hence $|C_{\mathfrak B}(T)^\sharp| = 17 - 1$. By the above the centralizer spaces for the involutions are disjoint. Hence

$$egin{aligned} |igcup_{T}C_{\mathfrak{B}}(T)^{\sharp}| &= I(\mathfrak{G})(17-1) = (17+1)(17-1) \ &= 17^{2}-1 = |\mathfrak{B}^{\sharp}| \; . \end{aligned}$$

Thus $\bigcup_T C_{\mathfrak{B}}(T) = \mathfrak{B}$ and so for all $x \in \mathfrak{D}^{\sharp}$, $|\mathfrak{G}_x| \geq 2$. This yields $|\mathfrak{G}_x| = 2$ and \mathfrak{G} is half-transitive but not semiregular. Finally

We close this section with some additional information about the degree 17² group.

LEMMA 3.5. If $q^n = 17^2$, then $|\mathfrak{G}| = 96$.

Proof. These groups occur in Lemmas 3.2 and 3.4. However the latter case was deduced from the former so we can assume \mathfrak{G} is as described in the proof of Lemma 3.2. We showed there that $|\mathfrak{G}_x|=2$, $\mathfrak{G}/Z(\mathfrak{G})\cong \operatorname{Sym}_4$ and $\delta_1=\delta_2=1$. The latter says that if \overline{T} is any involution of $\mathfrak{G}/Z(\mathfrak{G})$, then its coset contains an involution of \mathfrak{G} .

Now $\mathfrak{A}=\mathbf{Z}(\mathfrak{G})$ has order dividing $|GF(17)^\sharp|=16$. If $|\mathfrak{A}|=2$, then an involution T in the four groups of Sym_4 would not have an involution of \mathfrak{G} in its coset. We assume that $|\mathfrak{A}|\geq 8$ and derive a contradiction. Let T be an involution of \mathfrak{G} corresponding to a transposition of Sym_4 . Then $\langle \mathfrak{G}, T \rangle$ is a maximal class group of order 16 and this group has a cyclic subgroup \mathfrak{B} of order 8. We see that $|\mathfrak{A}\cap\mathfrak{B}|=2$ so $|\mathfrak{AB}|=4|\mathfrak{A}|$ and \mathfrak{AB} has period $|\mathfrak{A}|$ since $|\mathfrak{A}|\geq |\mathfrak{B}|=8$. As in the last paragraph of the proof of the preceding lemma, this implies that $|\mathfrak{G}_x|\geq 4$, a contradiction. Thus $|\mathfrak{A}|=4$ and since $\mathfrak{G}/\mathfrak{A}\cong \mathrm{Sym}_4$ we have $|\mathfrak{G}|=4\cdot 24=96$. This completes the proof of the lemma.

4. Solvable case, m=2. In this and the next section the following assumptions hold.

ASSUMPTIONS. Group $\mathfrak G$ acts faithfully on vector space $\mathfrak V$ of order q^n and half-transitively but not semiregularly on $\mathfrak V^{\sharp}$. $\mathfrak C$ is a group of type E(2,m) with $\mathfrak C \triangle \mathfrak G$. In addition $\mathfrak C$ acts irreducibly on $\mathfrak V$, $\mathfrak G$ is primitive as a linear group and $\mathfrak G$ is solvable.

We will use the notation of Lemma 2.5. Moreover set $\mathfrak{F} = \mathfrak{F}/\mathfrak{V}\mathfrak{F}$ so that $\bar{\mathfrak{F}}$ is a solvable subgroup of Sp(2m, 2). We let $\bar{\mathfrak{F}} = F(\bar{\mathfrak{F}})$, the Fitting subgroup of $\bar{\mathfrak{F}}$, and for each prime p we let $\bar{\mathfrak{F}}_p$ be the normal Sylow p-subgroup $\bar{\mathfrak{F}}$. By Fitting's theorem, $C\bar{\mathfrak{F}}(\bar{\mathfrak{F}}) \subseteq \bar{\mathfrak{F}}$. Recall the possible isomorphism classes for \mathfrak{F} namely: iso I if $\mathfrak{F} \cong \mathfrak{DD} \mathfrak{D} \cdots \mathfrak{D}$, iso II if $\mathfrak{F} \cong \mathfrak{DDD} \cdots \mathfrak{D}$ and iso III if $\mathfrak{F} \cong \mathfrak{DDD} \cdots \mathfrak{D}$.

LEMMA 4.1. Suppose $\overline{\mathfrak{F}}_2 \neq \langle 1 \rangle$. Then $|\overline{\mathfrak{F}}_2| = 2$, $\mathfrak{E} = \text{iso I or II}$ and \mathfrak{G} has a normal subgroup \mathfrak{E}_0 of type E(2, m-1) with $\mathfrak{E}_0 = \text{iso III}$.

Proof. Let \mathfrak{S} be the complete inverse image of $\overline{\mathfrak{F}}_2$ in \mathfrak{S} so $\mathfrak{S}/\mathfrak{AG} = \overline{\mathfrak{F}}_2$. Then $\mathfrak{S}/\mathfrak{A}$ is a 2-group and since \mathfrak{A} is central in \mathfrak{S} , \mathfrak{S}

is nilpotent. If \mathfrak{S}_2 is the normal Sylow 2-subgroup of \mathfrak{S} , then $\mathfrak{S}_2 \supseteq \mathfrak{V}$ and $\mathfrak{S}_2 \triangle \mathfrak{G}$. Since \mathfrak{G} is primitive, \mathfrak{S}_2 is of symplectic type. Suppose $4 \mid \mid \mathfrak{A}_2 \mid$. Then since \mathfrak{A}_2 is central in \mathfrak{S}_2 , \mathfrak{S}_2 has a center of order at least 4 and hence \mathfrak{S}_2 is the central product of $\mathbf{Z}(\mathfrak{S}_2)$ with a number of nonabelian groups of order 8. Note that since $\mathfrak{E} \subseteq \mathfrak{S}_2$, $Z(\mathfrak{S}_2) \subseteq C\mathfrak{G}(\mathfrak{E}) = \mathfrak{A} \text{ so that } Z(\mathfrak{S}_2) = \mathfrak{A}_2. \text{ Since } |\mathfrak{F}_2| > 1, \mathfrak{S}_2 \neq \mathfrak{A}_2\mathfrak{E} \text{ and }$ thus $\mathfrak{S}_2 \supseteq \mathfrak{A}_2 \mathfrak{S} \mathfrak{B}$ where $|\mathfrak{B}| = 8$, $\mathfrak{B} \not\subseteq \mathfrak{A}_2$ and $\mathfrak{B} \subseteq C \mathfrak{S}(\mathfrak{S})$, a contradiction. Thus $|\mathfrak{A}_2|=2$ and hence $|\mathbf{Z}(\mathfrak{G})|=2$. This implies that dim $\mathfrak{B}=2^m$ and since \mathfrak{S}_2 acts faithfully on $\mathfrak{B},\mathfrak{S}_2$ has at most m nonabelian factors. Since $|Z(\mathfrak{S}_2)| = |\mathfrak{A}_2| = 2$ we see that $\mathfrak{S}_2 = \mathfrak{B}_0\mathfrak{B}_1 \cdots \mathfrak{B}_{m-1}$, a central product of nonabelian groups with $|\mathfrak{B}_i|=8$ if i>0 and \mathfrak{B}_0 a maximal class group. Now $\mathfrak{B}_0 \cap \mathfrak{E}$ is a 2-generator subgroup of \mathfrak{E} so $|\mathfrak{B}_0 \cap \mathfrak{E}| \leq 8$. Thus $|\mathfrak{B}_0 \mathfrak{E}| \geq |\mathfrak{B}_0| |\mathfrak{E}|/8 = |\mathfrak{B}_0| |2^{2(m-1)} = |\mathfrak{S}_2|$. Hence we have equality throughout and $|\mathfrak{B}_0 \cap \mathfrak{E}| = 8$. Now $\mathfrak{B}_0 \cap \mathfrak{E} \triangle \mathfrak{B}_0$ As is well known this implies that and $\mathfrak{B}_0 \cap \mathfrak{E}$ is noncyclic. $[\mathfrak{B}_0:\mathfrak{B}_0\cap\mathfrak{E}]\leq 2 \ \ ext{so} \ \ |\mathfrak{B}_0|\leq 16 \ \ ext{and} \ \ [\mathfrak{S}_2:\mathfrak{E}]\leq 2. \ \ \ ext{If} \ \ |\mathfrak{F}_2|\geq 1, \ \ ext{then}$ $|\Re_2|=2$. Finally $\Phi(\Im_2)$ is cyclic of order 4 and from $\Im_2=\Re_0 \Im$ we see that $\mathfrak{E}_0 = C_{\mathfrak{E}}(\Phi(\mathfrak{S}_2))$ has the appropriate properties. Thus the result follows.

We assume throughout the remainder of this section that m=2. Since $\bar{\mathfrak{F}}\subseteq Sp(4,2)$ here, we make some comments about this latter group. Suppose Sp(4,2) acts on symplectic space \mathfrak{B} . If \mathfrak{U} is an isotropic subspace of \mathfrak{B} of dimension 2, then the symplectic form restricted to \mathfrak{U} is trivial. We see easily that \mathfrak{B} contains 15 such subspaces. Note that $|Sp(4,2)|=2^4\cdot 3^2\cdot 5$.

Let $\bar{\Re}$ be a Sylow 3-subgroup of Sp(4,2). Then $\bar{\Re}$ is abelian of type (3,3) and contains the four subgroups $\bar{\mathbb{Z}}_1, \bar{\mathbb{Z}}_2, \bar{\mathbb{Z}}_3, \bar{\mathbb{Z}}_4$ of order 3. We can take (see [10]) the following concrete realization for $\bar{\mathbb{R}}$. Write $\mathfrak{W} = \mathfrak{W}_1 \oplus \mathfrak{W}_2$, a direct sum of two nonisotropic 2-dimensional subspaces and then let $\bar{\mathbb{Z}}_1$ centralize \mathfrak{W}_2 and act irreducibly on \mathfrak{W}_1 and $\bar{\mathbb{Z}}_2$ centralize \mathfrak{W}_1 and act irreducibly on \mathfrak{W}_2 .

Let $\mathfrak{L}=\mathfrak{L}_1$ or \mathfrak{L}_2 . Then $\mathfrak{W}=C_{\mathfrak{W}}(\mathfrak{L})\oplus(\mathfrak{W},\mathfrak{L})$ a direct sum of 2-dimensional subspaces. Let \mathfrak{U} be a 2-dimensional $\bar{\mathfrak{L}}$ -subspace of \mathfrak{W} . If $\mathfrak{U}\cap(\mathfrak{W},\bar{\mathfrak{L}})=\{0\}$, then certainly $\mathfrak{U}\subseteq C_{\mathfrak{W}}(\bar{\mathfrak{L}})$ so $\mathfrak{U}=C_{\mathfrak{W}}(\bar{\mathfrak{L}})$. If $\mathfrak{U}\cap(\mathfrak{W},\bar{\mathfrak{L}})\neq\{0\}$, then since $\bar{\mathfrak{L}}$ acts irreducibly on $(\mathfrak{W},\bar{\mathfrak{L}})$ we have $\mathfrak{U}\supseteq(\mathfrak{W},\bar{\mathfrak{L}})$ so $\mathfrak{U}=(\mathfrak{W},\bar{\mathfrak{L}})$. Thus $\mathfrak{U}=\mathfrak{W}_1$ or \mathfrak{W}_2 . In particular $\bar{\mathfrak{L}}_1$ and $\bar{\mathfrak{L}}_2$ do not normalize a 2-dimensional isotropic subspace of \mathfrak{W} . If \mathfrak{U} is a 1-dimensional $\bar{\mathfrak{L}}$ -subspace, then certainly $\mathfrak{U}\subseteq C_{\mathfrak{W}}(\bar{\mathfrak{L}})$ so $\mathfrak{U}\subseteq \mathfrak{W}_1$ or \mathfrak{W}_2 .

Now let $\bar{\mathfrak{L}} = \bar{\mathfrak{L}}_3$ or $\bar{\mathfrak{L}}_4$. Then $\bar{\mathfrak{L}}$ acts irreducibly on both \mathfrak{W}_1 and \mathfrak{W}_2 so $\bar{\mathfrak{L}}$ has no 1-dimensional invariant subspace. Let \mathfrak{U} be a 2-dimensional $\bar{\mathfrak{L}}$ -invariant subspace. If $\mathfrak{U} = \mathfrak{W}_1$ or \mathfrak{W}_2 , then \mathfrak{U} is nonisotropic.

Suppose $\mathbb{1} \neq \mathfrak{B}_1$ or \mathfrak{B}_2 and $w_1 + w_2 \in \mathbb{1}$ with $w_i \in \mathfrak{B}_i$. Clearly $w_1, w_2 \neq 0$. It is now easy to see that we get precisely three subspaces $\mathbb{1}$ and since \mathfrak{B}_1 and \mathfrak{B}_2 are orthogonal each such $\mathbb{1}$ is isotropic. Thus $\overline{\mathfrak{L}}$ normalizes two nonisotropic 2-dimensional subspaces and three isotropic ones.

If $\bar{\mathfrak{F}}$ is a subgroup of Sp(4,2) of order 5, then $\bar{\mathfrak{F}}$ acts irreducibly on \mathfrak{B} . Then $|C(\bar{\mathfrak{F}})||2^4-1$ so $|C(\bar{\mathfrak{F}})|=5$ or 15. In the latter case let $\bar{\mathfrak{F}}$ be a subgroup of order 3 centralizing $\bar{\mathfrak{F}}$. Then $\bar{\mathfrak{F}}$ permutes the two 2-dimensional nonisotropic subspaces normalized by $\bar{\mathfrak{F}}$ and hence $\bar{\mathfrak{F}}$ normalizes each, a contradiction. Thus Sp(4,2) has no elements of order 10 or 15.

LEMMA 4.2. $\bar{\Re}$ is a normal 2-complement of $\bar{\&}$ and $|\bar{\&}| = 3.5$ or $\bar{\&}$ is abelian of type (3.3).

Proof. Suppose first that $\overline{\mathfrak{F}}_2 \neq \langle 1 \rangle$. By Lemma 4.1, \mathfrak{G} has a normal subgroup $\mathfrak{F}_0 \cong \mathfrak{FD}$ and moreover $4 \nmid |\mathbf{Z}(\mathfrak{G})|$. By the Reduction Lemma and Lemma 3.4 we have q=3,5 or 17. Suppose q=3. Since $|\mathbf{Z}(\mathfrak{F})|=2$ and \mathfrak{F} acts irreducibly, $q^n=3^4$ and thus \mathfrak{F}_0 also acts irreducibly. By Lemma 4.1 \mathfrak{G} is imprimitive, a contradiction. Let q=5 or 17. Then 4|q-1 and since \mathfrak{G} is primitive and $\mathbf{Z}(\mathfrak{F}_0) \triangle \mathfrak{G}$ with $|\mathbf{Z}(\mathfrak{F}_0)|=4$ we conclude that $\mathbf{Z}(\mathfrak{F}_0)$ consists of scalar matrices and $4||\mathbf{Z}(\mathfrak{F}_0)|$, a contradiction.

Now suppose $\widetilde{\mathfrak{F}}=\langle 1 \rangle$. Then $\widetilde{\mathfrak{F}}=\langle 1 \rangle$. If $Z(\mathfrak{E})$ is central then $\mathfrak{G}=\mathfrak{AE}$ is nilpotent so $\mathfrak{G}_2 \supseteq \mathfrak{E}$ is half-transitive. By Theorem II of [4], $\mathfrak{G}_2 \cong \mathfrak{DD}$ and $q^n=3^4$. Then $|\mathfrak{A}| |q-1$ so $\mathfrak{G}=\mathfrak{G}_2 \cong \mathfrak{DD}$ and this group is imprimitive, a contradiction. Thus $Z(\mathfrak{E})$ is not central and in particular $|Z(\mathfrak{E})|=4$. Since $|\mathfrak{G}/\mathfrak{F}|=2$ we see that \mathfrak{G} normalizes a hyperplane in $\mathfrak{W}=\mathfrak{E}/Z(\mathfrak{E})$, say $\mathfrak{W}_0=\mathfrak{E}_0/Z(\mathfrak{E})$. Then $\mathfrak{E}_0 \bigtriangleup \mathfrak{G}$ and \mathfrak{E}_0 has period 4. Since \mathfrak{G} is primitive $Z(\mathfrak{E}_0)$ is cyclic so $Z(\mathfrak{E}_0)=Z(\mathfrak{E})$ and then $\mathfrak{E}_0/Z(\mathfrak{E}_0)$ has odd dimension, a contradiction.

Using the fact that Sp(4,2) has no elements of order 15 we conclude that $\overline{\mathfrak{F}}$ is one of the three possibilities mentioned in the statement of the lemma. Since $\overline{\mathfrak{F}}$ is abelian, $\overline{\mathfrak{F}}/\overline{\mathfrak{F}} \subseteq \operatorname{Aut} \overline{\mathfrak{F}}$ and from this we see easily that $\overline{\mathfrak{F}}$ is a normal 2-complement.

Lemma 4.3. $\mathfrak{E} = \text{iso I does not occur.}$

Proof. Suppose $\mathfrak{E}\cong\mathfrak{DD}\cong\mathfrak{DD}$. Then $\mathfrak{F}=\mathfrak{G}$ and $\overline{\mathfrak{F}}$ permutes the involution vectors of $\mathfrak{B}=\mathfrak{E}/Z(\mathfrak{E})$. By Lemma 1.3, $i(\mathfrak{B})=9$ and this clearly implies that $|\overline{\mathfrak{F}}|\neq 5$. Thus $\overline{\mathfrak{F}}$ is abelian of type (3) or (3, 3). Since $\mathfrak{E}\cong\mathfrak{DD}$ we see easily that \mathfrak{E} contains an abelian subgroup \mathfrak{B} of type (2, 2, 2). If \mathfrak{B}_1 is an irreducible \mathfrak{B} -submodule of \mathfrak{B} then by Schur's lemma, $[\mathfrak{B}:C_{\mathfrak{B}}(\mathfrak{B}_1)]\leq 2$ so for $x\in\mathfrak{B}_1^\sharp$, $4\mid |\mathfrak{B}_x|$ and hence $4\mid |\mathfrak{G}_x|$. Moreover since \mathfrak{E}_x is abelian and $\mathfrak{E}_x\cap Z(\mathfrak{E})=\langle 1\rangle$ we

see easily that $\mathfrak{C}_x = \mathfrak{B}_x$. Suppose $|\bar{\mathfrak{F}}| = 3$. By Lemma 1.5 there exists $y \in \mathfrak{D}^*$ with $\mathfrak{G}_y \cap \mathfrak{AC} = \langle 1 \rangle$. Since $\mathfrak{G} = \mathfrak{G}$ and $|\bar{\mathfrak{G}}| = 3$ or 6 by Fitting's theorem, we have $|\mathfrak{G}_y| |6$, a contradiction. Thus $\bar{\mathfrak{F}}$ is abelian of type (3,3).

First suppose q=3. Then a Sylow 3-subgroup of $\mathfrak B$ has a fixed point in $\mathfrak B^\sharp$ and thus by half-transitively $\mathfrak G_x\supseteq\mathfrak R$ where x is the above mentioned point and $\mathfrak R$ is a Sylow 3-subgroup of $\mathfrak B$. Note that if $\bar{\mathfrak R}$ is the image of $\mathfrak R$ in $\bar{\mathfrak G}$ then $\bar{\mathfrak R}=\bar{\mathfrak F}$. Since $\mathfrak E_x=\mathfrak E\cap\mathfrak G_x\bigtriangleup\mathfrak G_x$ we see that $\bar{\mathfrak R}$ normalizes $Z(\mathfrak E)\mathfrak E_x/Z(\mathfrak E)=\mathfrak B/Z(\mathfrak E)$ a 2-dimensional isotropic subspace of symplectic space $\mathfrak B$. This contradicts our preceding remarks about Sp(4,2) since the subgroup $\bar{\mathfrak L}_1$ of $\bar{\mathfrak R}$ normalizes no such subspaces. Thus $q\neq 3$.

Now $\overline{\mathfrak{F}}$ acts on $\mathfrak{B}=\mathfrak{E}/Z(\mathfrak{E})$ and let $\mathfrak{B}=\mathfrak{B}_1\oplus\mathfrak{B}_2$ be the decomposition of \mathfrak{B} given in our earlier discussion of Sp(4,2). If $Z(\mathfrak{E})\subseteq \mathfrak{E}_i\subseteq \mathfrak{E}$ with $\mathfrak{E}_i/Z(\mathfrak{E})=\mathfrak{B}_i$, then \mathfrak{E}_i is nonabelian since \mathfrak{B}_i is nonisotropic, and since \mathfrak{E}_i admits an automorphism of order 3 we have $\mathfrak{E}_i\cong \mathfrak{D}$. Hence we can find a noncentral involution $T\in \mathfrak{E}-(\mathfrak{E}_1\cup \mathfrak{E}_2)$. By Lemma 1.5 there exists $x\in \mathfrak{F}^\sharp$ with $\mathfrak{E}_x=\langle T\rangle$. Now a Sylow 3-subgroup of \mathfrak{B} is not cyclic, since $\overline{\mathfrak{F}}$ is not cyclic and hence it cannot act semiregularly. By half-transitivety \mathfrak{G}_x contains a subgroup \mathfrak{L} of order 3. Then $\mathfrak{L}\cap \mathfrak{A}\mathfrak{E}=\langle 1\rangle$ so if $\overline{\mathfrak{L}}$ denotes the image of \mathfrak{L} in $\overline{\mathfrak{L}}$, then $|\overline{\mathfrak{L}}|=3$. Since $\langle T\rangle=\mathfrak{E}_x=\mathfrak{E}\cap \mathfrak{G}_x \bigtriangleup \mathfrak{G}_x$ we see that $\overline{\mathfrak{L}}$ normalizes the 1-dimensional subspace $\mathfrak{E}_xZ(\mathfrak{E})/Z(\mathfrak{E})=\mathfrak{U}$. Now T was chosen in such a way that $\mathfrak{U}\nsubseteq \mathfrak{B}_1$ or \mathfrak{B}_2 . Hence in the notation of our discussion of Sp(4,2) we see that $\overline{\mathfrak{L}}\neq \overline{\mathfrak{L}}_1$ or $\overline{\mathfrak{L}}_2$. On the other hand $\overline{\mathfrak{L}}_3$ and $\overline{\mathfrak{L}}_4$ do not normalize 1-dimensional subspaces. Hence $\overline{\mathfrak{L}}\neq \overline{\mathfrak{L}}_1$, $\overline{\mathfrak{L}}_2$, $\overline{\mathfrak{L}}_3$ or $\overline{\mathfrak{L}}_4$, a contradiction.

LEMMA 4.4. If $\mathfrak{E} = \text{iso II}$, then $q^n = 3^4$.

Proof. Let us assume that $q^* \neq 3^4$. Since \mathfrak{E} acts irreducibly on \mathfrak{B} we have $|\mathfrak{B}| = q^* = q^4$ so $q \geq 5$. We consider the possibilities for $\overline{\mathfrak{F}}$. Suppose $\overline{\mathfrak{F}}$ is abelian of type (3,3). Then $\overline{\mathfrak{F}}$ is a Sylow 3-subgroup of Sp(4,2) and we can write $\mathfrak{W} = \mathfrak{W}_1 \oplus \mathfrak{W}_2$, the corresponding decomposition of $\mathfrak{E}/\mathbf{Z}(\mathfrak{E}) = \mathfrak{W}$. If $\mathfrak{E}_i/\mathbf{Z}(\mathfrak{E}) = \mathfrak{W}_i$, then since \mathfrak{W}_i is nonisotropic, \mathfrak{E}_i is nonabelian of order 8. Now \mathfrak{E}_i admits an automorphism of order 3 so $\mathfrak{E}_i \cong \mathfrak{Q}$ and $\mathfrak{E} \cong \mathfrak{Q}\mathfrak{Q}$, a contradiction. Thus $|\overline{\mathfrak{F}}| = p$ for p = 3 or 5.

Note that $\mathfrak{F}=\mathfrak{G}$ and $|\bar{\mathfrak{F}}/\bar{\mathfrak{F}}||(p-1)$. Thus $\bar{\mathfrak{F}}/\bar{\mathfrak{F}}$ is a cyclic 2-group. Suppose $p||\mathfrak{G}_x|$ for all $x\in\mathfrak{B}^\sharp$. Let T be a noncentral involution of \mathfrak{F} . Since $q\neq 3$ there exists by Lemma 1.5 an $x\in\mathfrak{B}^\sharp$ with $\mathfrak{F}_x=\langle T\rangle$. Let \mathfrak{F} be a subgroup of \mathfrak{F}_x of order p. Since

 $\mathfrak{L} \cap \mathfrak{AC} = \langle 1 \rangle$, $\overline{\mathfrak{L}}$, the image of \mathfrak{L} in $\overline{\mathfrak{L}}$, has order p so $\overline{\mathfrak{L}} = \overline{\mathfrak{L}}$. Since $\langle T \rangle = \mathfrak{C}_x = \mathfrak{G}_x \cap \mathfrak{C}$ we see that $\overline{\mathfrak{L}}$ centralizes the involution vector in \mathfrak{L} corresponding to T. By Lemma 1.2, $\overline{\mathfrak{L}}$ centralizes \mathfrak{L} , a contradiction. Thus $p \nmid |\mathfrak{G}_x|$ and in particular $p \neq q$.

Suppose p=3. By Lemma 1.5 there exists $x\in \mathfrak{B}^\sharp$ with $\mathfrak{G}_x\cap \mathfrak{A}\mathfrak{G}=\langle 1\rangle$. Hence $|\mathfrak{G}_x|||\tilde{\mathfrak{G}}|$. Since $|\tilde{\mathfrak{G}}|=6$ we conclude that $|\mathfrak{G}_x|=2$. We note now that $4\nmid |\mathfrak{A}|$. Otherwise $\mathfrak{A}\mathfrak{G}$ contains $\mathfrak{E}^*\cong \mathfrak{F}\mathfrak{D}\mathfrak{D}$ and this group contains an abelian subgroup of type (2,2,2). This easily implies that $4\mid |\mathfrak{G}_x|$, a contradiction. Let \mathfrak{L} be a Sylow 3-subgroup of \mathfrak{G} . Since $\bar{\mathfrak{G}}/\bar{\mathfrak{F}}$ acts faithfully on $\bar{\mathfrak{F}}$ we see by the above that if T is a noncentral involution of \mathfrak{G} and $T\subseteq C_{\bar{\mathfrak{F}}}(\mathfrak{L})$ then $T\in \mathfrak{C}$. Now $\bar{\mathfrak{L}}=\bar{\mathfrak{F}}$ permutes faithfully the $i(\mathfrak{M})=5$ involution vectors of \mathfrak{M} . Thus $\bar{\mathfrak{L}}$ moves 3 such and fixes 2 such. Since each involution vector corresponds to two noncentral involutions of \mathfrak{G} we see that \mathfrak{L} centralizes precisely four noncentral involutions of \mathfrak{G} . Thus clearly $I(\mathfrak{G})\equiv 4$ mod 3. On the other hand by Lemma 1.9 we have $I(\mathfrak{G})=1+q^2$. Thus $q^2\equiv 0$ mod 3, a contradiction since $q\neq 3$.

We consider p=5 so $q\geq 7$. Let \overline{I} denote the number of involutions of $\mathfrak{G}/\mathfrak{A}$. Since \mathfrak{A} is cyclic and central in \mathfrak{G} , each involution of $\mathfrak{G}/\mathfrak{A}$ corresponds to at most two noncentral involutions of \mathfrak{G} so $I(\mathfrak{G}) \leq 2\overline{I}$. Now $\mathfrak{WF} \wedge \mathfrak{G}/\mathfrak{A}$ where \mathfrak{W} is elementary abelian of order 2^4 , $|\mathfrak{F}|=5$ and \mathfrak{F} acts irreducibly on \mathfrak{W} . Furthermore $(\mathfrak{G}/\mathfrak{A})/(\mathfrak{WF})$ is a cyclic 2-group which acts faithfully on $(\mathfrak{WF})/\mathfrak{W}$. Hence we see easily that $\overline{I} \leq 15 + 5 \cdot 4 = 35$ and $I(\mathfrak{G}) \leq 70$.

Let T be a noncentral involution of \mathfrak{G} . If $T \in \mathfrak{AG}$ then certainly $|C_{\mathfrak{B}}(T)| = q^2$. Suppose $T \nsubseteq \mathfrak{AG}$. From the structure of $\overline{\mathfrak{G}}$ we see that for some $F \in \mathfrak{G}$, $\langle \overline{T}, \overline{T^F} \rangle \supseteq \overline{\mathfrak{F}}$. Since $5 \nmid |\mathfrak{G}_x|$ we see that $C_{\mathfrak{B}}(T) \cap C_{\mathfrak{B}}(T^F) = \{0\}$. Hence $|C_{\mathfrak{B}}(T)| \leq q^2$ here also. Now every element of \mathfrak{B}^{\sharp} is fixed by some noncentral involution of \mathfrak{G} so $\mathfrak{B}^{\sharp} = \bigcup_T C_{\mathfrak{B}}(T)^{\sharp}$ and hence

$$q^4-1=|\mathfrak{B}|\leqq I(\mathfrak{G})(q^2-1)$$

or $q^2 + 1 \le I(S) \le 70$. Since q > 5, we have q = 7.

For q=7 the argument is somewhat involved. Since $|\mathfrak{A}| | q-1$ we have $|\mathfrak{A}| = 2$ or 6. Now $O_3(\mathfrak{A})$ is central in \mathfrak{B} and is a Sylow 3-subgroup of \mathfrak{B} . Thus \mathfrak{B} has a normal 3-complement. Since this group is also half-transitive we see that it suffices to assume that $O_3(\mathfrak{A}) = \langle 1 \rangle$ and hence $|\mathfrak{A}| = 2$, $\mathfrak{A}\mathfrak{E} = \mathfrak{E}$.

We can now get a tighter count on $I(\mathfrak{C})$. Let $\overline{I}=\overline{I}_1+\overline{I}_2$ where \overline{I}_1 counts the number of involutions of $\mathfrak{C}/\mathfrak{A}$ and \overline{I}_2 counts those of $\mathfrak{C}/\mathfrak{A}$ not in $\mathfrak{C}/\mathfrak{A}$. We have as before $\overline{I}_1=15$, $\overline{I}_2\leq 20$. If $I(\mathfrak{C})=I_1+I_2$ is the corresponding break up of $I(\mathfrak{C})$, then $I_2\leq 2\overline{I}_2\leq 40$ and

 $I_1 = I(\mathfrak{C}) = 10$. Hence $I(\mathfrak{C}) \leq 50$ here. As above $\mathfrak{V}^{\sharp} = \bigcup_{T} C_{\mathfrak{V}}(T)$ yields $50 = q^2 + 1 \leq I(\mathfrak{C}) \leq 50$. Thus we must have equality throughout and hence $\bigcup_{T} C_{\mathfrak{V}}(T)$ is a disjoint union. This implies that every element $x \in \mathfrak{V}^{\sharp}$ is centralized by precisely one involution so \mathfrak{G}_x has a unique involution.

Let \Re be the subgroup of $\mathfrak S$ with $\Re \supseteq \mathfrak E$ and $[\widehat{\Re}:\widehat{\mathfrak F}]=2$. Since $\overline{\mathfrak S}/\overline{\mathfrak F}$ is cyclic, \Re contains all the involutions of $\mathfrak E$. We study the group \Re . Note that $\overline{\Re}$ is dihedral of order 10 and $\overline{\mathfrak F}$ acts irreducibly on $\mathfrak B=\mathfrak E/Z(\mathfrak E)$. Let $\mathfrak L$ be a Sylow 5-subgroup of \Re so that $|\mathfrak L|=5$ and let $\Re=N_{\mathfrak R}(\mathfrak L)$. From the above we see that $\Re/Z(\mathfrak E)$ is dihedral of order 10. Let $\mathfrak L=\langle L\rangle$ and let $N\in \mathfrak R-Z(\mathfrak E)$ be a 2-element. Then $L^N=L^{-1}$.

Now $\mathfrak R$ permutes the 10 noncentral involutions of $\mathfrak E$ and the corresponding five involution vectors of $\mathfrak B$. Using (()) to denote cyclic permutations, it is clear that we can label the involutions by X_i , Y_i , $i=1,2,\cdots,5$ such that $Y_i=-X_i$ and as a permutation

$$L = ((X_1, X_2, X_3, X_4, X_5))((Y_1, Y_2, Y_3, Y_4, Y_5))$$
.

Here for convenience we denoted the central involution of \mathfrak{E} by -1. We consider N. As a permutation, it has order 2. Since N acts on the five involution vectors of \mathfrak{W} , N must fix at least one such, say the one corresponding to $\{X_1, Y_1\}$. Then either N fixes both X_1 and Y_1 or N interchanges the two. Since $L^N = L^{-1}$ this completely determines the cycle structure of N and we have either

- (a) $N = ((X_1))((X_2, X_5))((X_3, X_4))((Y_1))((Y_2, Y_5))((Y_3, Y_4))$ or
- (b) $N = ((X_1, Y_1))((X_2, Y_5))((X_3, Y_4))((X_4, Y_3))((X_5, Y_2))$.

Note that it is easy to see that for $i \neq j$, $(X_i, X_j) = (Y_i, Y_j) = -1$. Now the sum of the five involution vectors of $\mathfrak W$ is L invariant and hence must be 0. Thus $Z = X_1 X_2 X_3 X_4 X_5 \in Z(\mathfrak V)$. If N acts like (b) above, then

$$Z = Z^N = (X_1 X_2 X_3 X_4 X_5)^N = Y_1 Y_5 Y_4 Y_3 Y_2$$

= $-X_1 (X_5 X_4 X_3 X_2) = -Z^{-1}$.

Thus $Z^2=-1$, a contradiction and hence N must act like (a) above. Suppose N has order 2. Then $\langle N, X_1, Y_1 \rangle$ is elementary abelian of order 8. This yields as usual an element $x \in \mathfrak{B}^{\sharp}$ such that \mathfrak{G}_x contains a subgroup of type (2, 2) and this contradicts our preceding remarks. Hence $N^2=-1$.

Now $\mathfrak{S}=\langle \mathfrak{C},N\rangle$ is a Sylow 2-subgroup of \mathfrak{R} . We show that every involution of \mathfrak{S} is contained in \mathfrak{C} . This will imply that \mathfrak{S} contains only 10 noncentral involutions and this will yield the required contradiction. Suppose $T\in\mathfrak{S}-\mathfrak{C}$ is an involution. Then T=NE for some $E\in\mathfrak{C}$. Since $N^2=-1$ we have

$$1 = T^2 = NENE = -E^NE$$

so $E^N = -\mathbf{E}^{-1}$. In particular the image of E in $\mathfrak{W} = \mathfrak{C}/Z(\mathfrak{C})$ is centralized by N. Now $C_{\mathfrak{W}}(N)$ is a 2-dimensional subspace which is clearly spanned by the images in \mathfrak{W} of X_1 and X_2X_5 . Note that X_1 and X_2X_5 commute and X_2X_5 has order 4. Hence $E \in \langle X_1, X_2X_5 \rangle = \mathfrak{B}$. We have $X_1^N = X_1 = X_1^{-1}$ and $(X_2X_5)^N = X_5X_2 = (X_2X_5)^{-1}$ so since \mathfrak{B} is abelian, N acts in a dihedral manner on \mathfrak{B} . Thus $E^N = E^{-1}$ which contradicts the previous relation $E^N = -E^{-1}$. This implies that T does not exist and the proof is complete.

If $q^n = 3^4$ above then $\mathfrak{E} = F(\mathfrak{S})$ is half-transitive. Thus these groups are given in [5] where uniqueness was proved. Since \mathfrak{S} is primitive, we see that \mathfrak{S} is transitive and hence it is one of the groups given in [3].

LEMMA 4.5. $\mathfrak{E} = \text{iso III does not occur.}$

Proof. Suppose $\mathfrak{G}\cong\mathfrak{ZQQ}$. Since $|\mathbf{Z}(\mathfrak{G})|=4$ and \mathfrak{G} acts irreducibly we see that $|\mathfrak{B}|=q^4$ if $q\equiv 1 \mod 4$ and $|\mathfrak{B}|=q^8$ if $q\equiv -1 \mod 4$. If $\mathfrak{H}=C\mathfrak{G}(\mathbf{Z}(\mathfrak{G}))$, then $[\mathfrak{G}:\mathfrak{H}]=1$ or 2. Moreover if $[\mathfrak{G}:\mathfrak{H}]=2$ then $q\equiv -1$.

We consider $\overline{\mathfrak{F}}$. Suppose $|\overline{\mathfrak{F}}| = 5$ or 9 so that $C_{\mathfrak{B}}(\overline{\mathfrak{F}}) = \langle 1 \rangle$. Clearly $\overline{\mathfrak{F}}$ acts faithfully on $\mathfrak{E}/\mathfrak{E}'$ and centralizes $Z(\mathfrak{E})/\mathfrak{E}'$. Let \mathfrak{E}_0 be the commutator subgroup of $\mathfrak{E}\overline{\mathfrak{F}}$. Then clearly $|\mathfrak{E}_0/\mathfrak{E}'| = 2^4$, $\mathfrak{E}_0 \triangle \mathfrak{G}$ and $\mathfrak{E}_0 = \text{iso I or II.}$ By the Reduction Lemma and the previous two lemmas, $\mathfrak{E}_0 = \text{iso II}$ and q = 3. Since as we have seen, this group does not admit an automorphism group of type (3,3) we must have $|\overline{\mathfrak{F}}| = 5$. Since q = 3, $q^n = 3^8$.

Now $\mathfrak E$ has an abelian subgroup of type (2,2,2) so it follows that $4 \mid \mid \mathfrak G_x \mid$ and hence $2 \mid \mid \mathfrak G_x \mid$ for all $x \in \mathfrak B^{\sharp}$. As in the proof of the previous lemma we see that $5 \nmid \mid \mathfrak G_x \mid$ and hence if T is a noncentral involution of $\mathfrak S$, then $\mid C_{\mathfrak B}(T) \mid \leq 3^4$. Now $\mathfrak S/\mathfrak A$ contains at most $15 + 5 \cdot 4 = 35$ involutions and hence since $\mathfrak A$ is central and cyclic we have $I(\mathfrak S) \leq 2 \cdot 35 = 70$. Since $\mathfrak B = \bigcup_T C_{\mathfrak D}(T)$ we have

$$3^8 = |\mathfrak{V}| \leq 3^4 I(\mathfrak{H}) \leq 3^4 \cdot 70$$

or $3^4 \leq 70$, a contradiction.

Finally let $|\bar{\mathfrak{F}}|=3$. As above we see that $4||\mathfrak{G}_x|$. Since by Lemma 1.5 there exists $x\in\mathfrak{B}^\sharp$ with $\mathfrak{G}_x\cap\mathfrak{AG}=\langle 1\rangle$, we conclude that $4||\mathfrak{G}/\mathfrak{AG}|$. Hence $|\bar{\mathfrak{F}}|=6$ and $[\mathfrak{G}:\mathfrak{F}]=2$ so $q\equiv -1 \mod 4$, $q^n=q^8$ and $q\neq 5$. By Lemma 1.5, if T is a noncentral involution of \mathfrak{F} then for some $x\in\mathfrak{B}^\sharp$, $\mathfrak{F}_x=\langle T\rangle$. Hence if $3||\mathfrak{G}_x|$, then $\bar{\mathfrak{F}}$ fixes all involution vectors of \mathfrak{B} and $\bar{\mathfrak{F}}$ centralizes \mathfrak{B} , a contradiction. Thus

 $3 \nmid |\mathfrak{G}_x|$ and this implies easily that if T is an involution of \mathfrak{F} , then $|C_{\mathfrak{B}}(T)| \leq q^4$. Also $q \neq 3$ so $q \geq 7$. We have clearly $I(\mathfrak{F}) \leq 2 \cdot 2 \cdot 16 \cdot 3 = 192$ and since $\mathfrak{B} = \bigcup_T C_{\mathfrak{F}}(T)$ we have

$$q^8 = |\mathfrak{V}| \leq q^4 I(\mathfrak{H}) \leq 192 q^4$$
 .

Thus $7^4 \le q^4 \le 192$, a contradiction. This completes the proof of the lemma.

5. Solvable case, m=3 and 4. We continue with the assumptions of the preceding section except that m=3 or 4 here. First let m=3. Now $|Sp(2m,2)|=2^{\circ}\cdot 3^{\circ}\cdot 5\cdot 7$. We consider the possibilities for $\overline{\Im}$.

LEMMA 5.1. $\bar{\mathfrak{F}}$ is a 3-group.

Proof. If p is a prime, we let $\bar{\mathfrak{F}}_p$ denote the normal Sylow p-subgroup of $\bar{\mathfrak{F}}$. We show here that $\bar{\mathfrak{F}}_2 = \bar{\mathfrak{F}}_5 = \bar{\mathfrak{F}}_7 = \langle 1 \rangle$.

Suppose $\bar{\mathfrak{F}}_2 \neq \langle 1 \rangle$. By Lemma 4.1 \otimes has a normal subgroup $\mathfrak{F}_0 \cong \mathfrak{ZD}$. By the Reduction Lemma and Lemma 4.5 this does not occur.

Suppose $\overline{\mathfrak{F}}_7 \neq \langle 1 \rangle$. Then $|\overline{\mathfrak{F}}_7| = 7$ and $\overline{\mathfrak{F}}_7$ acts irreducibly on \mathfrak{B} . By Schur's lemma, $C_{\overline{\mathfrak{F}}}(\overline{\mathfrak{F}}_7)$ is a cyclic group of odd order and $[\overline{\mathfrak{F}}:C_{\overline{\mathfrak{F}}}(\overline{\mathfrak{F}}_7)] \mid 6$. Hence if $\mathfrak{E}=\text{iso I}$ or II then $4 \nmid [\mathfrak{G}:\mathfrak{AE}]$ while if $\mathfrak{E}=\text{iso III}$, then $8 \nmid [\mathfrak{G}:\mathfrak{AE}]$. Now if $\mathfrak{E}=\text{iso I}$ or II then \mathfrak{E} has an abelian subgroup of type (2,2,2) so for some $y \in \mathfrak{B}^{\sharp}$, $4 \mid |\mathfrak{G}_y|$. If $\mathfrak{E}=\text{iso III}$, then \mathfrak{E} has an abelian subgroup of type (2,2,2,2) so $8 \mid |\mathfrak{G}_y|$. Finally by Lemma 1.5 there exists $x \in \mathfrak{B}^{\sharp}$ with $\mathfrak{G}_x \cap \mathfrak{AE} = \langle 1 \rangle$ so $|\mathfrak{G}_x| \mid [\mathfrak{G}:\mathfrak{AE}]$. Since $|\mathfrak{G}_x| = |\mathfrak{G}_y|$ we have a contradiction.

Suppose $\overline{\mathfrak{F}}_5 \neq \langle 1 \rangle$. Then $|\overline{\mathfrak{F}}_5| = 5$ and we can write $\mathfrak{W} = \mathfrak{W}_1 \oplus \mathfrak{W}_2$ where $|\mathfrak{W}_1| = 2^2$, $|\mathfrak{W}_2| = 2^4$, both these spaces are $\overline{\mathfrak{F}}_5$ invariant and $\mathfrak{W}_1 = C_{\mathfrak{W}}(\overline{\mathfrak{F}}_5)$. Let $\mathfrak{C} \supseteq \mathfrak{C}_i \supseteq Z(\mathfrak{C})$ with $\mathfrak{C}_i/Z(\mathfrak{C}) = \mathfrak{W}_i$. Clearly $\mathfrak{C}_i \triangle \mathfrak{G}$ and since \mathfrak{G} is primitive each \mathfrak{C}_i is of symplectic type. By the Reduction Lemma applied to \mathfrak{C}_2 and Lemmas 4.3, 4.4 and 4.5 we have q = 3 and $\mathfrak{C}_2 \cong \mathfrak{DD}$. Hence $|Z(\mathfrak{C})| = 2$ so $\mathfrak{C} \neq 1$ iso III.

Now \mathfrak{W}_1 and \mathfrak{W}_2 are nonisotropic and we know that $\overline{\mathfrak{F}}_5$ is self-centralizing in its action on \mathfrak{W}_2 . Write $C_{\overline{\mathfrak{P}}}(\overline{\mathfrak{F}}_5) = \overline{\mathfrak{B}} \times \overline{\mathfrak{F}}_5$ where $\overline{\mathfrak{B}} \triangle \overline{\mathfrak{F}}_5$. Then $\overline{\mathfrak{B}}$ acts faithfully on \mathfrak{W}_1 so since $\overline{\mathfrak{F}}_2 = \langle 1 \rangle$, either $\overline{\mathfrak{B}} = \langle 1 \rangle$ or $\overline{\mathfrak{B}}$ has a normal 3-subgroup of order 3 which is clearly $\overline{\mathfrak{F}}_3$. Suppose $\overline{\mathfrak{B}} = \langle 1 \rangle$. Then $\overline{\mathfrak{S}}/\overline{\mathfrak{F}}_5$ is a 2-group which acts on \mathfrak{W}_1 and hence there is a 1-dimensional $\overline{\mathfrak{F}}$ -invariant subspace \mathfrak{W}_0 of \mathfrak{W}_1 . Note that $\overline{\mathfrak{F}} = \overline{\mathfrak{G}}$ since $\mathfrak{E} \neq$ iso III and thus if $\mathfrak{E} \supseteq \mathfrak{E}_3 \supseteq \mathbf{Z}(\mathfrak{E})$ with $\mathfrak{E}_3/\mathbf{Z}(\mathfrak{E}) = \mathfrak{W}_0 \oplus \mathfrak{W}_2$ then $\mathfrak{E}_3 \triangle \mathfrak{G}$. By the Reduction Lemma and Lemma 4.5 we have a contradiction since clearly $\mathfrak{E}_3 \cong \mathfrak{Z}\mathfrak{D}$.

Thus $\bar{\mathfrak{B}} \supseteq \bar{\mathfrak{F}}_3$ and $|\bar{\mathfrak{F}}_3| = 3$. Since q = 3 we see that the Sylow 3-subgroups of \mathfrak{B} have order 3. Now $\bar{\mathfrak{F}}_3$ centralizes \mathfrak{W}_2 so clearly \mathfrak{B} contains precisely four Sylow 3-subgroups say \mathfrak{L}_i for i = 1, 2, 3, 4. Since q = 3 each \mathfrak{L}_i has a fixed point on \mathfrak{V}^\sharp so by half-transitivety $\mathfrak{B} = \bigcup_{i=1}^4 C_{\mathfrak{B}}(\mathfrak{L}_i)$. Hence since the \mathfrak{L}_i are all conjugate in \mathfrak{B} we see that each $C_{\mathfrak{B}}(\mathfrak{L}_i)$ has codimension 1 in \mathfrak{B} . But $|\mathfrak{B}| = 3^8$ so $\mathfrak{B}_0 = \bigcap C_{\mathfrak{B}}(\mathfrak{L}_i) \neq \{0\}$. Since \mathfrak{B}_0 is clearly a proper \mathfrak{B} -invariant subspace of \mathfrak{B} we have a contradiction.

LEMMA 5.2. $\bar{\mathfrak{F}}$ is not cyclic and $q \neq 3$.

Proof. We have shown that $\overline{\mathfrak{F}} = \overline{\mathfrak{F}}_3$. If $\overline{\mathfrak{F}}$ is cyclic (including the possibility that $\overline{\mathfrak{F}} = \langle 1 \rangle$) then clearly $4 \not\mid |\overline{\mathfrak{F}}|$. If $\mathfrak{F} = \text{iso I}$ or II then $\mathfrak{G} = \mathfrak{F}$ so $4 \not\mid |\mathfrak{G}/\mathfrak{AE}|$. If $\mathfrak{E} = \text{iso III}$ then $8 \not\mid |\mathfrak{G}/\mathfrak{AE}|$. If $\mathfrak{E} = \text{iso I or II}$, then \mathfrak{E} has an abelian subgroup of type (2, 2, 2) so we see that $4 \mid |\mathfrak{G}_x|$. If $\mathfrak{E} = \text{iso III}$, then \mathfrak{E} has an abelian subgroup of type (2, 2, 2, 2) so $8 \mid |\mathfrak{G}_x|$. Now by Lemma 1.5 there exists $y \in \mathfrak{B}^\sharp$ with $\mathfrak{G}_y \cap \mathfrak{AE} = \langle 1 \rangle$. Hence $|\mathfrak{G}_y| \mid [\mathfrak{G} : \mathfrak{AE}]$, a contradiction.

Let q=3 so that for all $x\in \mathfrak{B}^\sharp$, \mathfrak{S}_x contains a Sylow 3-subgroup of \mathfrak{S} . Let \mathfrak{F} be the complete inverse image of $\overline{\mathfrak{F}}$ in \mathfrak{S} . For any $x\in \mathfrak{B}^\sharp$, let \mathfrak{L} be a Sylow 3-subgroup of $\overline{\mathfrak{F}}_x$. Then clearly $\overline{\mathfrak{L}}=\mathfrak{L}\mathfrak{U}\mathfrak{S}/\mathfrak{U}\mathfrak{S}=\overline{\mathfrak{F}}$ and since $\mathfrak{S}_x=\mathfrak{S}\cap\mathfrak{S}_x \bigtriangleup \mathfrak{S}_x$ we see that $\overline{\mathfrak{F}}$ normalizes $\mathfrak{S}_x \mathbf{Z}(\mathfrak{S})/\mathbf{Z}(\mathfrak{S})$. If $\mathfrak{S}=$ iso II or III, then by Lemma 1.5 if T is any noncentral involution of \mathfrak{S} then for some $x\in \mathfrak{D}^\sharp$, $\mathfrak{S}_x=\langle T\rangle$. This implies that $\overline{\mathfrak{F}}$ fixes all involution vectors and $\overline{\mathfrak{F}}=\langle 1\rangle$, a contradiction. If $\mathfrak{S}=$ iso I then by Lemma 1.5, $|\mathfrak{S}_x|=1$ or 4. However here it is easy to see that for each such T we can find two points $x_1, x_2 \in \mathfrak{D}^\sharp$ with $\langle T\rangle = \mathfrak{S}_{x_1} \cap \mathfrak{S}_{x_2}$. This again implies that $\overline{\mathfrak{F}}$ fixes all involution vectors and the result follows.

Lemma 5.3. $\mathfrak{E} = \text{iso I does not occur.}$

Proof. Here $\mathfrak{E}\cong\mathfrak{DD}$ and we see easily that Aut \mathfrak{E} contains $\bar{\mathfrak{F}}\sim\bar{\mathfrak{F}}$ where $|\bar{\mathfrak{F}}|=3$ and this is a full Sylow 3-subgroup of Sp(6,2). Then any 3-group acting on \mathfrak{E} can be embedded in this Sylow 3-subgroup. Let $\bar{\mathfrak{R}}$ be a Sylow 3-subgroup of Aut \mathfrak{E} . Then $\bar{\mathfrak{R}}$ acts faithfully on $\mathfrak{B}=\mathfrak{E}/\mathbf{Z}(\mathfrak{E})$. As a Sylow 3-subgroup of Sp(6,2) we know that it has the following structure. We can write $\mathfrak{B}=\mathfrak{B}_1\oplus\mathfrak{B}_2\oplus\mathfrak{B}_3$, a direct sum of orthogonal 2-dimensional nonisotropic subspaces. $\bar{\mathfrak{R}}$ has a subgroup $\bar{\mathfrak{R}}$ of index 3 with $\bar{\mathfrak{R}}=\bar{\mathfrak{L}}_1\times\bar{\mathfrak{L}}_2\times\bar{\mathfrak{L}}_3$. Here $|\bar{\mathfrak{L}}_i|=3$ and $\bar{\mathfrak{L}}_i$ acts irreducibly on \mathfrak{B}_i and centralizes the remaining \mathfrak{B}_j . Further, any element of $\bar{\mathfrak{R}}-\bar{\mathfrak{R}}$ permutes these three subspaces. Now let \mathfrak{E}_i

be the subgroup of $\mathfrak E$ with $\mathfrak E_i/\mathbf Z(\mathfrak E)=\mathfrak W_i$. Then $\mathfrak E_i$ is nonabelian of order 8 and admits an automorphism of order 3. Thus $\mathfrak E_i\cong\mathfrak Q$. Suppose $T=T_1T_2T_3$ is a noncentral involution of $\mathfrak E$ with $T_i\in\mathfrak E_i$. Since $\mathfrak E_i\cong\mathfrak Q$ we see that precisely one of the T_i is contained in $\mathbf Z(\mathfrak E)$, say for example T_1 . Then we can write $T=T_2T_3$. If some subgroup $\overline{\mathfrak L}$ of $\overline{\mathfrak R}$ centralizes the involution vector corresponding to T then clearly $\overline{\mathfrak L}$ normalizes $\mathfrak W_1$. Thus $\overline{\mathfrak L}\subseteq\overline{\mathfrak L}$ so $\overline{\mathfrak L}$ normalizes $\mathfrak W_2$ and $\mathfrak W_3$. This clearly implies that $\overline{\mathfrak L}$ centralizes $\mathfrak W_2$ and $\mathfrak W_3$ and thus $\overline{\mathfrak L}=\overline{\mathfrak L}_1$. Hence the only subgroups of $\overline{\mathfrak R}$ which centralize involution vectors are $\overline{\mathfrak L}_1$, $\overline{\mathfrak L}_2$ and $\overline{\mathfrak L}_3$.

Now $\overline{\mathfrak{F}}$ is not cyclic and hence a Sylow 3-subgroup of \mathfrak{G} is not cyclic. Thus $3 \mid \mid \mathfrak{G}_x \mid$ for all $x \in \mathfrak{B}^\sharp$. By the preceding lemma again $q \neq 3$. Hence if $T \in \mathfrak{F}$ is an involution, then by Lemma 1.5 there exists $x \in \mathfrak{B}^\sharp$ with $\mathfrak{E}_x = \langle T \rangle$. Let \mathfrak{L} be a Sylow 3-subgroup of \mathfrak{G}_x so $\mid \mathfrak{L} \mid \geq 3$ and $\mathfrak{L} \cap \mathfrak{A}\mathfrak{E} = \langle 1 \rangle$. Then $\overline{\mathfrak{L}}$ acts faithfully on \mathfrak{E} so we can extend \mathfrak{L} to $\overline{\mathfrak{R}}$ as above. Since $\overline{\mathfrak{L}}$ normalizes the involution vector corresponding to T we see that $\overline{\mathfrak{L}} = \overline{\mathfrak{L}}_i$ for some i. Thus $\mid \overline{\mathfrak{L}} \mid = 3$ and $9 \nmid \mid \mathfrak{G}_x \mid$.

Suppose $\bar{\mathbb{S}}=\mathbb{S}/\mathfrak{A}\mathbb{C}$ contains a copy of $\bar{\mathfrak{A}}\subseteq\bar{\mathfrak{A}}$. Then let $\widehat{\otimes}$ be a 3-subgroup of \mathbb{S} with $\mathfrak{SAE}/\mathfrak{AE}=\bar{\mathfrak{A}}$. Certainly $\mathfrak{S}'\subseteq\mathfrak{A}$. Now \mathfrak{S} acts on \mathfrak{S} , a vector space of dimension $n=2^4$. Since \mathfrak{S} is a 3-group we conclude that \mathfrak{S}' is in the kernel of some irreducible constituent and hence \mathfrak{S}' has a fixed point in \mathfrak{S}^{\sharp} . Since $\mathfrak{S}'\subseteq\mathfrak{A}$ we see that $\mathfrak{S}'=\langle 1\rangle$ and \mathfrak{S} is abelian. Now $\mathfrak{S}/\mathfrak{S}\cap\mathfrak{A}$ is abelian of type (3,3,3) and hence \mathfrak{S} contains a subgroup of type (3,3,3). But this implies that $9\mid |\mathfrak{S}_x|$, a contradiction. In particular we see that a Sylow 3-subgroup of $\overline{\mathfrak{S}}$ has order $\leq 3^3$.

Let T and $\mathfrak L$ be as above and set $\overline{\mathfrak L}=\mathfrak L\mathfrak L(\mathfrak L)\mathfrak L(\mathfrak L)$. This time embed 3-group $\overline{\mathfrak R}$ in $\overline{\mathfrak R}$. Again $\overline{\mathfrak L}=\overline{\mathfrak L}_i$ for some i. Now $\overline{\mathfrak R}$ is generated by $\overline{\mathfrak L}_i$ and any element outside $\overline{\mathfrak R}$. Since $\overline{\mathfrak L}$ $\overline{\mathfrak L}$ we must have $\overline{\mathfrak L}\subseteq \overline{\mathfrak L}$ and hence $\overline{\mathfrak L}\subseteq \overline{\mathfrak L}$. Since $\overline{\mathfrak L}$ centralizes $\overline{\mathfrak L}$ we have $\overline{\mathfrak L}\subseteq \overline{\mathfrak L}$.

Now embed $\bar{\mathfrak{F}}$ alone in $\bar{\mathfrak{R}}$. We have shown that for each involution vector of \mathfrak{B} , $\bar{\mathfrak{F}}$ contains a subgroup of order 3 centralizing it. Thus $\bar{\mathfrak{F}} \supseteq \bar{\mathfrak{L}}_1$, $\bar{\mathfrak{L}}_2$, $\bar{\mathfrak{L}}_3$ and $\bar{\mathfrak{F}} \supseteq \bar{\mathfrak{N}}$, a contradiction since $\bar{\mathfrak{G}} \not\supseteq \bar{\mathfrak{N}}$. This completes the proof of this result.

LEMMA 5.4. $\mathfrak{E} = \text{iso II}$ and III do not occur.

Proof. Suppose $C_{\mathfrak{B}}(\overline{\mathfrak{F}})=\mathfrak{B}_1\neq \langle 1\rangle$. Then $\mathfrak{W}=\mathfrak{W}_1\oplus \mathfrak{W}_2$ where $\mathfrak{W}_2=(\mathfrak{W},\overline{\mathfrak{F}})$. Since \mathfrak{W}_2 has even dimension (the nonprincipal irreducible representations of a 3-group over GF(2) have even dimension) so does \mathfrak{W}_1 . One of these two subspaces, say \mathfrak{W}_i has dimension equal to 4.

Let \mathfrak{C}_i be the subgroup of \mathfrak{C} with $\mathfrak{C}_i/Z(\mathfrak{C})=\mathfrak{W}_i$. Then $\mathfrak{C}_i \triangle \mathfrak{S}$ and \mathfrak{G} is primitive so \mathfrak{C}_i is of symplectic type. By the Reduction Lemma and Lemmas 4.3, 4.4 and 4.5 we have q=3, a contradiction by Lemma 5.2.

Now let $\mathfrak{E}=$ iso II. By Lemma 1.3, \mathfrak{F} permutes the $i(\mathfrak{W})=35$ involution vectors. Hence \mathfrak{F} must fix one of these and $C_{\mathfrak{W}}(\mathfrak{F})\neq \langle 1 \rangle$, a contradiction.

Having already eliminated $\mathfrak{E}=$ iso I and II we now eliminate iso III. \mathfrak{F} acts on $\mathfrak{E}/\mathfrak{E}'=\mathfrak{U}$ and centralizes $\mathbf{Z}(\mathfrak{E})/\mathfrak{E}'$. Since $\mathbf{C}_{\mathfrak{B}}(\overline{\mathfrak{F}})=\langle 1\rangle$ we see that $\mathfrak{U}=\mathfrak{U}_1\oplus\mathfrak{U}_2$ where $\mathfrak{U}_1=\mathbf{C}_{\mathfrak{B}}(\overline{\mathfrak{F}}),\ \mathfrak{U}_2=(\mathfrak{U},\overline{\mathfrak{F}}),\ |\mathfrak{U}_1|=2,\ |\mathfrak{U}_2|=2^4$. Let \mathfrak{E}_2 be a subgroup of \mathfrak{E} with $\mathfrak{E}_2/\mathfrak{E}'=\mathfrak{U}_2$. Then $\mathfrak{E}_2 \triangle \mathfrak{G}$ and \mathfrak{E}_2 is type $\mathbf{E}(2,3)$ and iso I or II. By the Reduction Lemma and the above we have a contradiction.

We now consider m=4. Here we have partial results in Lemmas 2.6, 2.10 and 2.12. Thus $\mathfrak{E}\neq \text{iso III},\ q\geq 7$ and $|\mathfrak{G}/\mathfrak{AE}|>10^4$. We consider $\bar{\mathfrak{F}}$.

Lemma 5.5. All irreducible constituents of $\overline{\mathfrak{F}}_{\mathfrak{p}}$ on \mathfrak{B} have the same degree. Thus $\overline{\mathfrak{F}}_{\mathfrak{p}} = \langle 1 \rangle$, $\overline{\mathfrak{F}}_{\mathfrak{p}} = \langle 1 \rangle$ if $p \nmid i(\mathfrak{B})$ and $\overline{\mathfrak{F}}_{\mathfrak{F}}$ is elementary abelian.

Proof. Suppose $\bar{\mathfrak{F}}_2 \neq \langle 1 \rangle$. Then by Lemma 4.1, \mathfrak{G} has a normal subgroup \mathfrak{F}_0 of type E(2,3) and iso III. By the Reduction Lemma and Lemma 5.4 this is a contradiction.

If $p \neq 2$ then \mathfrak{F}_p acts in a completely reducible manner on \mathfrak{B} . If all its irreducible constituents do not have the same degree, then certainly we can write $\mathfrak{B}=\mathfrak{B}_1\oplus\mathfrak{B}_2$ where $\mathfrak{B}_i\neq\langle 1\rangle$ and \mathfrak{B}_i is $\bar{\mathfrak{G}}$ invariant. One of these two, say \mathfrak{B}_1 , has dimension at least 4. If $\mathfrak{E}_1/\mathbf{Z}(\mathfrak{E})=\mathfrak{B}_1$ then $\mathfrak{E}_1\bigtriangleup\mathfrak{G}$ and since \mathfrak{G} is primitive, \mathfrak{E}_1 is type E(2,m') with m'=2 or 3. Since $q\geq 7$. the Reduction Lemma and the m=2 and 3 results yield a contradiction. Now if $p\nmid i(\mathfrak{B})$, then certainly $\bar{\mathfrak{F}}_p$ has a 1-dimensional constituent so they are all 1-dimensional and over GF(2) this implies that $\bar{\mathfrak{F}}_p$ centralizes \mathfrak{B} so $\bar{\mathfrak{F}}_p=\langle 1\rangle$.

Finally we consider $\overline{\mathfrak{F}}_3$. If $\overline{\mathfrak{F}}_3$ is nonabelian then the degree of an irreducible representation of $\overline{\mathfrak{F}}_3$, with $\overline{\mathfrak{F}}_3'$ not in the kernel is divisible by 3. Since $3 \not\mid \dim \mathfrak{B}, \overline{\mathfrak{F}}_3'$ is in the kernel of all constituents so $\overline{\mathfrak{F}}_3' = \langle 1 \rangle$ and $\overline{\mathfrak{F}}_3$ is abelian. Let \mathfrak{B}_0 be an irreducible $\overline{\mathfrak{F}}_3$ -constituent of \mathfrak{B} with dimension j. Then $j \mid \dim \mathfrak{B}$ so j = 1, 2, 4 or 8. In all these cases $9 \not\mid 2^j - 1$ and hence clearly $\overline{\mathfrak{F}}_3$ is elementary abelian.

Lemma 5.6. $\mathfrak{E} = \text{iso I } does \ not \ occur.$

Proof. Here by Lemma 1.3, $i(\mathfrak{W}) = 3^{\mathfrak{z}} \cdot 5$ so only $\overline{\mathfrak{F}}_{\mathfrak{z}}$ and $\overline{\mathfrak{F}}_{\mathfrak{z}}$ can

be nontrivial. We show first that $\overline{\mathfrak{F}}_5 = \langle 1 \rangle$. Note that a Sylow 5-subgroup of Sp(8,2) is abelian of type (5,5).

Suppose first that $|\bar{\mathfrak{F}}_5|=5^2$. Then $\bar{\mathfrak{F}}_5$ is elementary abelian and a Sylow 5-subgroup of $\bar{\mathfrak{G}}$. We can write $\mathfrak{W}=\mathfrak{W}_1\oplus\mathfrak{W}_2$, $\bar{\mathfrak{F}}_5=\bar{\mathfrak{L}}_1\bar{\mathfrak{L}}_2$ where dim $\mathfrak{W}_i=4$, $|\bar{\mathfrak{L}}_i|=5$ and $\bar{\mathfrak{L}}_i$ acts irreducibly on \mathfrak{W}_i and centralizes the other \mathfrak{W}_j . Now a Sylow 5-subgroup of \mathfrak{G} is not cyclic so $5||\mathfrak{G}_x||$ for all $x\in\mathfrak{V}^\sharp$. We have $i(\mathfrak{W})=135$ and $|\mathfrak{W}_1\cup\mathfrak{W}_2|=31$. Hence we can find a noncentral involution $T\in\mathfrak{E}$ with $TZ(\mathfrak{E})/Z(\mathfrak{E})\not\equiv\mathfrak{W}_1\cup\mathfrak{W}_2$. By Lemma 1.5 there exists $x\in\mathfrak{V}^\sharp$ with $\mathfrak{C}_x=\langle T\rangle$ and if $\mathfrak{L}\subseteq\mathfrak{G}_x$ has order 5, then \mathfrak{L} normalizes $\mathfrak{G}_x\cap\mathfrak{E}=\langle T\rangle$. Thus $\bar{\mathfrak{L}}=\mathfrak{L}\mathfrak{W}/\mathfrak{U}\mathfrak{E}\subseteq\bar{\mathfrak{F}}_5$ centralizes the involution vector corresponding to T. Since $C_{\mathfrak{W}}(\bar{\mathfrak{L}}_1)=\mathfrak{W}_2$ and $C_{\mathfrak{W}}(\bar{\mathfrak{L}}_2)=\mathfrak{W}_1$ we see by our choice of T that $\bar{\mathfrak{L}}\neq\bar{\mathfrak{L}}_1$ or $\bar{\mathfrak{L}}_2$. But then $\bar{\mathfrak{L}}$ acts irreducibly on \mathfrak{W}_1 and \mathfrak{W}_2 so by the Jordan-Holder Theorem, $C_{\mathfrak{W}}(\bar{\mathfrak{L}})=\langle 1\rangle$, a contradiction.

Now let $|\overline{\mathfrak{F}}_5|=5$. By the preceding lemma $\overline{\mathfrak{F}}$ is abelian. Since the irreducible nonprincipal representations of $\overline{\mathfrak{F}}_5$ over GF(2) have degree 4 we see that either $\overline{\mathfrak{F}}$ is irreducible or it has two irreducible constituents of dimension 4. Thus $\overline{\mathfrak{F}}$ has two generators and $\overline{\mathfrak{F}}$ is abelian of type (5), (3,5) or (3,3,5). Hence

$$|\bar{\otimes}| \leq 3^{2} |GL(2,3)| \cdot 5 \cdot 4 = 8640 < 10^{4}$$
,

a contradiction.

Thus $\bar{\mathfrak{F}}=\bar{\mathfrak{F}}_3$ is elementary abelian. If $|\bar{\mathfrak{F}}_3|\leq 3^2$, then

$$|\,ar{\&}\,| \leqq 3^{\scriptscriptstyle 2}\,|\,GL(2,\,3)\,| = 432 < 10^{\scriptscriptstyle 4}$$
 ,

a contradiction. If $|\bar{\mathfrak{F}}_3|=3^3$, then $|\bar{\mathfrak{G}}|$ divides both $|\bar{\mathfrak{F}}_3||GL(3,3)|=2^5\cdot 3^6\cdot 13$ and $|Sp(8,2)|=2^{16}\cdot 3^5\cdot 5^2\cdot 7\cdot 17$ so $|\bar{\mathfrak{G}}|$ divides $2^5\cdot 3^5=7776<10^4$, a contradiction. Since the Sylow 3-subgroup of Sp(8,2) is nonabelian of order 3^5 this leaves only $|\bar{\mathfrak{F}}_3|=3^4$.

Let \mathfrak{S} be a 3-subgroup of \mathfrak{S} with $\mathfrak{SUG/MS} = \overline{\mathfrak{F}}_3$. Clearly $\mathfrak{S}' \subseteq \mathfrak{A}$. The action of \mathfrak{S} on \mathfrak{B} is completely reducible since $q \neq 3$ and since $\dim \mathfrak{B} = 2^4$ is not divisible by 3 it follows that \mathfrak{S}' is in the kernel of some constituent so \mathfrak{S}' has a fixed point in \mathfrak{B}^\sharp . Since \mathfrak{A} acts semiregularly, $\mathfrak{S}' = \langle 1 \rangle$. Now \mathfrak{S} is abelian and $\mathfrak{S}/(\mathfrak{S} \cap \mathfrak{A})$ is abelian of type (3, 3, 3, 3). Thus \mathfrak{S} contains a subgroup of type (3, 3, 3, 3) and hence $3^3 \mid \mathfrak{S}_x \mid$.

Now $\mathfrak{E}\cong\mathfrak{DDD}$ so it is clear that the automorphism group of \mathfrak{E} contains $\overline{\mathfrak{R}}=\overline{\mathfrak{J}}\times(\overline{\mathfrak{J}}\sim\overline{\mathfrak{J}})$ where $|\overline{\mathfrak{J}}|=3$. This group is a Sylow 3-subgroup of Sp(8,2) and hence is a Sylow 3-subgroup of Aut \mathfrak{E} . We describe it more precisely. Write $\mathfrak{E}=\mathfrak{E}_0\mathfrak{E}_1\mathfrak{E}_2\mathfrak{E}_3$ where each $\mathfrak{E}_i\cong\mathfrak{D}$. Then $\overline{\mathfrak{R}}$ has an elementary abelian subgroup $\overline{\mathfrak{N}}$ of index 3 with

 $\bar{\mathfrak{N}} = \bar{\mathfrak{L}}_0 \bar{\mathfrak{L}}_1 \bar{\mathfrak{L}}_2 \bar{\mathfrak{L}}_3$. Here $\bar{\mathfrak{L}}_i$ acts nontrivially on \mathfrak{C}_i and centralizes the remaining \mathfrak{C}_j . Every element of $\bar{\mathfrak{N}} - \bar{\mathfrak{N}}$ normalizes \mathfrak{C}_0 and cyclically permutes \mathfrak{C}_1 , \mathfrak{C}_2 and \mathfrak{C}_3 . Let $\mathfrak{W} = \mathfrak{W}_0 \oplus \mathfrak{W}_1 \oplus \mathfrak{W}_2 \oplus \mathfrak{W}_3$ be the corresponding decomposition of \mathfrak{W} .

Let T be a noncentral involution of \mathfrak{E} . Then there exists $x \in \mathfrak{B}^*$ by Lemma 1.5 with $\mathfrak{E}_x = \langle T \rangle$. Since $3^3 \mid \mid \mathfrak{G}_x \mid$ let \mathfrak{L} be a subgroup of \mathfrak{G}_x of order 3^3 . Then \mathfrak{L} normalizes $\mathfrak{G}_x \cap \mathfrak{E} = \mathfrak{E}_x = \langle T \rangle$. Since $\mathfrak{L} \cap \mathfrak{U} \mathfrak{E} = \langle 1 \rangle$, \mathfrak{L} acts faithfully on \mathfrak{E} . Thus a suitable conjugate $\bar{\mathfrak{L}}$ of \mathfrak{L} in Aut \mathfrak{E} is contained in $\bar{\mathfrak{R}}$ and clearly $\bar{\mathfrak{L}}$ also centralizes an involution vector of \mathfrak{W} . Let $W = W_0 + W_1 + W_2 + W_3 \in \mathfrak{W}$ with $W_i \in \mathfrak{W}_i$. Then we see easily that W is an involution vector if and only if either none or two of the W_i are zero. Suppose two of the W_i are zero. Then clearly $C_{\bar{\mathfrak{R}}}(W) \subseteq \bar{\mathfrak{N}}$ and then $|C_{\bar{\mathfrak{R}}}(W)| \leq 3^2$. If none of the W_i are zero, then $C_{\bar{\mathfrak{R}}}(W) \cap \bar{\mathfrak{R}} = \langle 1 \rangle$ so $|C_{\bar{\mathfrak{R}}}(W)| \leq 3$. This contradicts the fact that $|\bar{\mathfrak{L}}| = 3^3$ and $\bar{\mathfrak{L}}$ fixes an involution vector.

Lemma 5.7. $\mathfrak{E} = \text{iso II } does \text{ not occur.}$

Proof. Here $i(\mathfrak{W})=7\cdot 17$ by Lemma 1.3. Hence only $\overline{\mathfrak{F}}_7$ and $\overline{\mathfrak{F}}_{17}$ can be nontrivial. If $\overline{\mathfrak{F}}_7\neq \langle 1\rangle$ then since $7^2\nmid |Sp(8,2)|, |\overline{\mathfrak{F}}_7|=7$. But the nonprincipal irreducible representations of this group over GF(2) all have degree 3. Since $3\nmid \dim \mathfrak{W}$ we have a contradiction. Then $\overline{\mathfrak{F}}=\overline{\mathfrak{F}}_{17}$ has order 1 or 17 and $|\overline{\mathfrak{G}}|\leq 17\cdot 16<10^4$, a contradiction.

We have therefore shown in this section that if @ is solvable then m=3 and 4 do not occur.

6. Theorem B. The following assumption holds throughout this section.

ASSUMPTION. Group & acts faithfully on vector space & of order q^n , q a prime, and acts half-transitively but not semiregularly on &. Further & is primitive as a linear group and & is solvable.

Let $\mathscr{J}(q^n)$ denote the group of all semilinear transformations on $GF(q^n)$ of the form $x \to ax^\sigma$ where $a \in GF(q^n)^{\sharp}$ and σ is a field automorphism. Thus $\mathscr{J}(q^n)$ is the stabilizer in the permutation group $\mathscr{S}(q^n)$ of the point 0.

LEMMA 6.1. Let $\mathfrak{F} = F(\mathfrak{G})$ and set $\mathfrak{A} = \mathbf{Z}(C_{\mathfrak{F}}(\Phi(\mathfrak{F})))$. Then \mathfrak{A} is a normal cyclic subgroup of \mathfrak{G}

- (i) If $\mathfrak{A} = C_{\mathfrak{F}}(\Phi(\mathfrak{F}))$, then with suitable identification we have $\mathfrak{G} \subseteq \mathscr{I}(q^n)$.
- (ii) If $\mathfrak{A} \neq C_{\mathfrak{F}}(\Phi(\mathfrak{F}))$, then $C_{\mathfrak{F}}(\Phi(\mathfrak{F})) = \mathfrak{A}\mathfrak{E}$ where \mathfrak{E} is a group of type E(2, m) and $\mathfrak{E} \triangle \mathfrak{G}$. Moreover m = 1 or 2.

(iii) In the above if m = 1 and $4 \nmid |\mathfrak{A}|$, then either $\mathfrak{G} \subseteq \mathscr{F}(q^n)$ or $q^n = 3^2, 7^2$ or 11^2 .

Proof. Let \mathfrak{F}_p be the normal Sylow p-subgroup of \mathfrak{F} . By Theorem A \mathfrak{F}_p is cyclic for p>2 and \mathfrak{F}_2 is a group of symplectic type. Since $\mathfrak{A}=Z(C_{\mathfrak{F}}(\Phi(\mathfrak{F})))$ is a normal abelian subgroup of a primitive group it is cyclic.

From the structure of 2-groups of symplectic type we see that if $\mathfrak{A} = C_{\mathfrak{F}}(\varPhi(\mathfrak{F}))$, then \mathfrak{F}_2 is either cyclic or maximal class of order at least 16. Now $\mathfrak{F} = \mathfrak{A}\mathfrak{F}_2$ so $C_{\mathfrak{G}}(\mathfrak{A})/Z(\mathfrak{F})$ acts faithfully on \mathfrak{F}_2 . Since Aut \mathfrak{F}_2 is a 2-group and $Z(\mathfrak{F}) \subseteq \mathfrak{A}$ we see that $C_{\mathfrak{G}}(\mathfrak{A})$ is a normal nilpotent subgroup of \mathfrak{G} and hence $C_{\mathfrak{G}}(\mathfrak{A}) \subseteq \mathfrak{F}$. This yields easily $C_{\mathfrak{G}}(\mathfrak{A}) = \mathfrak{A}$. By Proposition 1.2 of [5] we see that $\mathfrak{G} \subseteq \mathscr{F}(q^n)$ and (i) follows.

Suppose $\mathfrak{A}\neq C_{\mathfrak{F}}(\varPhi(\mathfrak{F}))$. Then as we pointed out in § 1, $C_{\mathfrak{F}}(\varPhi(\mathfrak{F}))=\mathfrak{A}$ where \mathfrak{E} is a group of type E(2,m) and $\mathfrak{E}\bigtriangleup\mathfrak{G}$. By Theorem A and the results of § 5, m=1 or 2.

Let m=1 and suppose $4 \nmid |\mathfrak{A}|$. Then $\mathfrak{F}_2 \cong \mathfrak{D}$ or \mathfrak{D} . If $\mathfrak{F}_2 \cong \mathfrak{D}$ then \mathfrak{F} has a characteristic cyclic subgroup \mathfrak{B} of index 2. Since Aut \mathfrak{D} is a 2-group, the above argument yields $\mathfrak{G} \subseteq \mathscr{T}(q^n)$ again. If $\mathfrak{F}_2 \cong \mathfrak{D}$, then by Proposition 1.10 of [5] $q^n = 3^2, 7^2$ or 11^2 . This completes the proof.

We assume now that $\mathfrak{A} \neq C_{\mathfrak{F}}(\Phi(\mathfrak{F}))$.

LEMMA 6.2. Let $\mathfrak{B} = C\mathfrak{G}(\mathfrak{A})/\mathfrak{AG}$. Then $O_2(\mathfrak{B}) = \langle 1 \rangle$, \mathfrak{B} acts faithfully on $\mathfrak{E}/\mathbf{Z}(\mathfrak{E})$ and $\mathfrak{B} \subseteq Sp(2m,2)$.

Proof. Let $\mathfrak{L}/\mathfrak{AG}=O_2(\mathfrak{B})$. Since \mathfrak{A} is central in \mathfrak{L} and $\mathfrak{L}/\mathfrak{A}$ is a 2-group, we see that \mathfrak{L} is a normal nilpotent subgroup of \mathfrak{G} and hence $\mathfrak{L}\subseteq\mathfrak{F}$. Now $\Phi(\mathfrak{F})\subseteq\mathfrak{A}$ and $C_{\mathfrak{F}}(\Phi(\mathfrak{F}))=\mathfrak{AG}$. Hence

$$\mathfrak{L} \subseteq C_{\mathfrak{F}}(\mathfrak{A}) \subseteq C_{\mathfrak{F}}(\Phi(\mathfrak{F})) = \mathfrak{A}\mathfrak{E}$$

so $\mathfrak{L} = \mathfrak{AE}$ and $O_2(\mathfrak{B}) = \langle 1 \rangle$.

Let $\mathfrak{F} = \mathfrak{C}_{\mathfrak{G}}(\mathfrak{X})$ and let $\mathfrak{R} = C_{\mathfrak{F}}(\mathfrak{B})$ where $\mathfrak{W} = \mathfrak{E}/Z(\mathfrak{E})$. We have of course $\mathfrak{R} \supseteq \mathfrak{A}\mathfrak{E}$. First \mathfrak{R} centralizes $O_{2'}(\mathfrak{F}) \subseteq \mathfrak{A}$. If $\mathfrak{F}_2 = O_2(\mathfrak{F})$, then since clearly $[\mathfrak{F}_2 : \mathfrak{A}_2\mathfrak{E}] = 2$, where $\mathfrak{A}_2 = \mathfrak{A} \cap \mathfrak{F}_2$, we see that \mathfrak{R} stabilizes the chain $\mathfrak{F}_2 \supseteq \mathfrak{A}_2\mathfrak{E} \supseteq \mathfrak{A}_2 \supseteq \langle 1 \rangle$. Thus $\mathfrak{R}/C_{\mathfrak{R}}(\mathfrak{F})$ is a 2-group. Since $\mathfrak{R} \supseteq Z(\mathfrak{F})$, $C_{\mathfrak{R}}(\mathfrak{F}) = Z(\mathfrak{F})$ and hence $\mathfrak{R}/Z(\mathfrak{F})$ is a 2-group. But $Z(\mathfrak{F}) \subseteq \mathfrak{A}$ and \mathfrak{A} is central in \mathfrak{R} so \mathfrak{R} is a normal nilpotent subgroup of \mathfrak{G} and $\mathfrak{R} \subseteq \mathfrak{F}$. This yields easily $\mathfrak{R} = \mathfrak{A}\mathfrak{E}$ and thus $\mathfrak{B} = \mathfrak{F}/\mathfrak{R}$ acts faithfully on \mathfrak{B} . It now follows immediately that $\mathfrak{B} \subseteq Sp(2m,2)$.

LEMMA 6.3. Let $\mathfrak{A} = \langle A \rangle$ and let ζ be an eigenvalue of A with $GF(q)(\zeta) = GF(q^r)$. Then

- (i) $C\mathfrak{G}(\mathfrak{A}) \subseteq GL(n/r, q^r), |\mathfrak{A}| |(q^r 1)$
- (ii) $\mathfrak{G}/C\mathfrak{G}(\mathfrak{A})$ is cyclic of order dividing r.
- (iii) $n = w2^m r$ for some integer w.

Proof. Parts (i) and (ii) follow from Lemma 1.1 of [5]. Now all irreducible constituents of \mathfrak{E} are faithful and the same is clearly true if we view $\mathfrak{E} \subseteq GL(n/r,q^r)$. Thus n/r is divisible by 2^m , the degree of the nonlinear absolutely irreducible representations of \mathfrak{E} .

LEMMA 6.4. If m = 1 and $4 | |\mathfrak{A}|$, then $q^n = 5^2$ or 17^2 .

Proof. We can assume that $|Z(\mathfrak{C})|=4$ so $\mathfrak{C}\cong\mathfrak{ZD}$. By the Reduction Lemma and Lemma 3.4, q=3.5 or 17. Set $\mathfrak{F}=C_{\mathfrak{C}}(\mathfrak{A})$. Then by the above $\mathfrak{F}/\mathfrak{AC}=\mathfrak{B}$ is contained isomorphically in $Sp(2,2)=SL(2,2)\cong \mathrm{Sym}_3$. Since $O_2(\mathfrak{B})=\langle 1\rangle, \ |\mathfrak{B}|=1,\ 3$ or 6.

Suppose $|\mathfrak{B}|=1$. Now $2||\mathfrak{G}_x|$ so we can apply Lemma 3.1 with p=2. Note that $\mathfrak{G}/\mathfrak{AG}$ is cyclic of order dividing r and k=n/r=2w. If r is odd, then $\lambda_1 \leq 3$, $\lambda_2=0$ so by Lemma 3.1, (ii) and (iii), we have $q^r < 6$ so r=1. If r is even, then $\lambda_1 \leq 3$, $\lambda_2 \leq 4$ so we get easily $q^{r/2} \leq 5$ and hence r=2. Now \mathfrak{G} has precisely three normal abelian subgroups of type (2,2). Since $\mathfrak{G}/\mathfrak{AG}$ is a 2-group one of these three abelian groups will be normal in \mathfrak{G} , a contradiction since \mathfrak{G} is primitive. Thus $|\mathfrak{B}|=3$ or 6.

Suppose $3 \mid | \mathfrak{G}_x |$. We again apply Lemma 3.1. If $3 \nmid r$ then $\lambda_1 \leq 4$, $\lambda_2 = 0$ while if $3 \mid r$, then $\lambda_1 \leq 4$ and we see easily that $\lambda_2 \leq 9$. Let $3 \nmid r$ so by Lemma 3.1 we have $q^r < 8$. Since $4 \mid q^r - 1$, $q^r = 5$ and then by Lemma 3.1 (i) we have k = 2 and n = 2. But $3 \nmid q - 1$ so no element of GL(2,5) of order 3 can have a nonzero fixed point, a contradiction. Let $3 \mid r$. Then Lemma 3.1, (ii) and (iii), yields $q^{r/3} < 4$ so $q^r = 3^s$. This is a contradiction since $4 \nmid (3^s - 1)$. Now $3 \mid |\mathfrak{G}|$ so we see also that $q \neq 3$ and thus q = 5 or 17. We assume that $q^n \neq 5^2$ or 17^2 and derive a contradiction.

Suppose first that r is odd. We apply Lemma 3.1 with p=2. Then $\lambda_1 \leq 9$, $\lambda_2=0$ so we have $q^r < 18$. Thus $q^r=5$ or 17 and r=1. By Lemma 1.5, there exists $x \in \mathfrak{B}^\sharp$ with $\mathfrak{G}_x \cap \mathfrak{AG} = \langle 1 \rangle$. Since r=1 and $3 \not \mid |\mathfrak{G}_x|$ we have $|\mathfrak{G}_x|=2$. Hence by Lemma 1.9, $I(\mathfrak{G})=q^{n/2}+1$. Now \mathfrak{A} is central in \mathfrak{G} and cyclic so each involution of $\mathfrak{G}/\mathfrak{A}$ corresponds to at most two noncentral involutions of \mathfrak{G} . Thus

$$q^{n/2} + 1 = I(\mathfrak{G}) \le 2 \cdot 9 = 18$$

so $q^n = 5^2$ or 17², a contradiction.

Now let r be even. We have easily $\lambda_1 \leq 9$, $\lambda_2 \leq 10$. Thus if k > 2 then Lemma 3.1 (iii) yields $q^r = 5^2$ and then by Lemma 3.1 (i)

with k>2 we have a contradiction. Thus k=2 and by Lemma 3.1 (ii), $q^r+1\leq 18+10(q^{r/2}+1)$ so $q^{r/2}<13$. Since r is even $q^r=5^2$. By Lemma 1.5 there exists $x\in \mathfrak{B}^\sharp$ with $\mathfrak{S}_x\cap \mathfrak{AE}=\langle 1\rangle$ and hence since $3\nmid |\mathfrak{S}_x|$ we have $|\mathfrak{S}_x|=2$ or 4.

Suppose $|\mathfrak{G}_x|=4$. Since $[\mathfrak{G}:\mathfrak{G}]=2$ where $\mathfrak{G}=C(\mathfrak{A})$ we see that $2\,|\,|\mathfrak{G}_x|$ for all $x\in\mathfrak{B}^\sharp$. Clearly \mathfrak{G} acts irreducibly on \mathfrak{B} so by Lemma 3.1 applied to \mathfrak{G} with p=2 we have $\lambda_1 \leq 9$, $\lambda_2=0$ so $25=q^r<18$, a contradiction. Thus $|\mathfrak{G}_x|=2$.

Now here n = kr = 4. By Lemma 1.9, we have $I(\mathfrak{G}) = 1 + q^{n/2} =$ 26. Let \mathfrak{L} be a Sylow 3-subgroup of \mathfrak{L} . Since $3 \nmid |\mathfrak{L}_x|$, \mathfrak{L} is cyclic and acts semiregularly so $|\mathfrak{L}| |\mathfrak{S}^4 - 1$ and $|\mathfrak{L}| = 3$. Since $3 | |\mathfrak{B}|$ we have $\mathfrak{L} \cap \mathfrak{AG} = \langle 1 \rangle$. Now \mathfrak{L} permutes by conjugation the noncentral involutions of \mathfrak{G} and since $3 \nmid I(\mathfrak{G})$ we see that \mathfrak{L} centralizes a noncentral involution of \mathfrak{G} . The group $\mathfrak{G}/\mathfrak{AE}$ acts on $\mathfrak{W} = \mathfrak{E}/\mathbf{Z}(\mathfrak{E})$. If the action is faithful then clearly $\mathfrak{G}/\mathfrak{A} \subseteq \operatorname{Sym}_4$. Since subgroups of order 3 of Sym, are self-centralizing we have a contradiction. Hence the action is not faithful so say R/AE is the kernel with $\Re > \mathfrak{AE}$. Now $\mathfrak{H}/\mathfrak{AE}$ does act faithfully so $[\Re : \mathfrak{AE}] = 2$. Note that $\Re \bigtriangleup \Im$. Also $3
mid | \mathfrak{A} | | \mathfrak{A} |$ and $|\mathfrak{A} | | | 5^2 - 1$ implies \mathfrak{A} is a 2-group and hence \Re is a 2-group. Since \Im is primitive, \Re is of symplectic type. Moreover $Z(\mathfrak{C}) \triangle \mathfrak{G}$, $|Z(\mathfrak{C})| = 4$ and 4 | q - 1. Hence $Z(\mathfrak{C})$ is central in S so R must be the central product of a cyclic group with a nonabelian group of order 8. Now $\Re \subseteq \Re$ and since $[\Re : \mathfrak{AG}] \leq 2$ we have $\Re = \Re$. Then $\Phi(\Re)$ is central in \Re and $\Re = C_{\Re}(\Phi(\Re)) = \Re \Im$, a contradiction. This completes the proof of the lemma.

LEMMA 6.5. If m = 2, then $q^n = 3^4$.

Proof. By the Reduction Lemma and Lemmas 4.3, 4.4 and 4.5 we have q=3 and $\mathfrak{C}\cong\mathfrak{D}\mathfrak{D}$. Hence $4\not\mid \mathfrak{A}\mid$. We consider $\bar{\mathfrak{R}}=F(\mathfrak{S}/\mathfrak{A}\mathfrak{C})$. By Lemma 6.2, $\bar{\mathfrak{R}}_z=O_2(\hat{\mathfrak{R}})=\langle 1\rangle$. Suppose $\bar{\mathfrak{R}}_3=O_3(\bar{\mathfrak{R}})\neq\langle 1\rangle$. Since q=3, a Sylow 3-subgroup of \mathfrak{S} has a fixed point in \mathfrak{S}^\sharp and hence by half-transitivety \mathfrak{S}_x contains a Sylow 3-subgroup of \mathfrak{S} for all $x\in\mathfrak{S}^\sharp$ Let T be a noncentral involution of \mathfrak{C} . By Lemma 1.5 there exists $x\in\mathfrak{S}^\sharp$ with $\mathfrak{C}=\langle T\rangle$. Now we can find 3-subgroup \mathfrak{L} of \mathfrak{S}_x such that $\bar{\mathfrak{L}}=\mathfrak{L}\mathfrak{A}\mathfrak{C}/\mathfrak{A}\mathfrak{C}=\bar{\mathfrak{R}}_3$. Since \mathfrak{L} normalizes $\mathfrak{C}\cap\mathfrak{S}_x=\mathfrak{C}_x$ we see that $\bar{\mathfrak{R}}_3$ centralizes the involution vector corresponding to T. Thus $\bar{\mathfrak{R}}_3$ centralizes all the involution vectors of $\mathfrak{W}=\mathfrak{C}/\mathbf{Z}(\mathfrak{C})$ so by Lemma 6.3, $\bar{\mathfrak{R}}_3=\langle 1\rangle$.

Now $\mathfrak{B} \subseteq Sp(4,2)$ and $|Sp(4,2)| = 2^4 \cdot 3^2 \cdot 5$. Since $\overline{\mathfrak{R}} = O_5(\mathfrak{B})$ by the above we have $|\overline{\mathfrak{R}}| = 1$ or 5 and hence $|\mathfrak{B}| \le 20$ and $|\mathfrak{S}/\mathfrak{A}| \le 16 \cdot 20 = 320$. We use Lemma 3.1 with p = 2. Note that $k = n/r \ge 2^m = 4$ so Lemma 3.1 (iii) always applies. Certainly $\lambda_2 \le 320$. From the

structure of $\bar{\mathfrak{G}}=\mathfrak{G}/\mathfrak{A}$ we see that $\lambda_1 \leq 15+5\cdot 4=35$. Hence

$$q^r < 2(\lambda_{\scriptscriptstyle 1} + \lambda_{\scriptscriptstyle 2}) = 710$$
 .

Since q=3, this yields $r \le 5$. However if r=5, then [S: S] is odd so $\lambda_2=0$ and then $q^r<2\lambda_1=70$, a contradiction. Thus $r\le 4$.

Since $r \leq 4$ we see that $\overline{\Re}$ is a Sylow 5-subgroup of $\mathfrak{G}/\mathfrak{AG}$. Hence if $5 \mid \mid \mathfrak{G}_x \mid$, then as in the preceding argument with $\overline{\Re}_3$ we conclude that $\overline{\Re}$ fixes all involution vectors of $\mathfrak{B} = \mathfrak{G}/\mathbf{Z}(\mathfrak{G})$ and thus $\overline{\Re} = \langle 1 \rangle$. This certainly contradicts $5 \mid \mid \mathfrak{G}_x \mid$. Hence $5 \nmid \mid \mathfrak{G}_x \mid$. Let T be a noncentral involution of \mathfrak{G} . We show that $|C_{\mathfrak{B}}(T)| \leq q^{n/2}$. This is certainly the case if $T \in \mathfrak{AG}$. Let $T \in \mathfrak{F} - \mathfrak{AG}$. Then $|\overline{\Re}| = 5$ since $\mathfrak{F}/\mathfrak{AG} \neq \langle 1 \rangle$. Clearly there exists $K \in \mathfrak{F}$ so that the image of $\langle T, T^K \rangle$ in $\mathfrak{F}/\mathfrak{AG}$ contains $\overline{\Re}$. Since $5 \nmid |\mathfrak{G}_x|$ we see that $C_{\mathfrak{B}}(T) \cap C_{\mathfrak{B}}(T^K) = \{0\}$. Thus the result follows here. Finally if $T \in \mathfrak{G} - \mathfrak{F}$, then there exists $A \in \mathfrak{A}$ with $\langle T, T^A \rangle \cap \mathfrak{A} \neq \langle 1 \rangle$. Since \mathfrak{A} acts semiregularly the result follows.

We show that r is not even. If r is even, then r=2 or 4. If r=2 then $|\mathfrak{A}| | q^r-1$ and $q^r-1=8$. Since $4 \nmid |\mathfrak{A}|$ we have $|\mathfrak{A}|=2$ and $|\mathfrak{A}| | q-1$. This violates the definition of r and hence r=4. Here $|\mathfrak{A}| | q^r-1$ and $q^r-1=2^4\cdot 5$ so $|\mathfrak{A}| | 10$. Since $|\mathfrak{A}| \leq 10$ each involution of $(\mathfrak{G}-\mathfrak{S})/\mathfrak{A}$ comes from at most 10 of $\mathfrak{G}-\mathfrak{S}$. Thus

$$I(S) \le 2.35 + 10.320 = 3270$$
.

Since $2 \mid |\mathfrak{G}_x|$ we have $\mathfrak{B} = \bigcup C_{\mathfrak{B}}(T)$ over involutions T and hence

$$q^n = |\mathfrak{V}| \leq I(\mathfrak{V})q^{n/2} \leq 3270q^{n/2}$$

so $q^{n/2} \le 3270$. Thus n < 16. But r = 4 and $n \ge 2^m r = 16$ so we have a contradiction. Thus r is odd.

Since r is odd, all involutions of \mathfrak{G} are contained in \mathfrak{F} . Now \mathfrak{A} is cyclic and central in \mathfrak{F} so each involution of $\mathfrak{F}/\mathfrak{A}$ comes from at most two of \mathfrak{F} . Hence $I(\mathfrak{G}) \leq 2 \cdot 35 = 70$ and since $2 \mid |\mathfrak{G}_x|$ we have

$$q^n = |\mathfrak{B}| \le I(\mathfrak{G})q^{n/2} \le 70q^{n/2}$$

or $q^{n/2} \le 70$. Since $4 \mid n$ we have n = 4 and thus r = 1. This completes the proof of the lemma.

Combining Lemmas 6.1, 6.4 and 6.5 we obtain

THEOREM 6.6. Let \mathfrak{G} act faithfully on vector space \mathfrak{F} of order q^n and let \mathfrak{G} act half-transitively but not semiregularly on \mathfrak{F}^{\sharp} . If \mathfrak{G} is primitive as a linear group and if \mathfrak{G} is solvable, then \mathfrak{G} satisfies one of the following.

- (i) $\mathfrak{G} \subseteq \mathcal{J}(q^n)$.
- (ii) $q^n = 3^2, 5^2, 7^2, 11^2, 17^2$ or 3^4 .

The proof of the main theorem now follows easily.

Proof of Theorem B. Let \mathfrak{G} be the given solvable 3/2-transitive permutation group and assume that \mathfrak{G} is not a Frobenius group. By Theorem 10.4 of [11], \mathfrak{G} is primitive. Let \mathfrak{V} be a minimal normal subgroup of \mathfrak{G} . Since \mathfrak{G} is solvable, \mathfrak{V} is elementary abelian of order q^n . Since \mathfrak{G} is primitive, \mathfrak{V} is transitive and hence regular. If α is a point being permuted, then by Theorem 11.2 of [11], \mathfrak{G}_{α} is an automorphism group of \mathfrak{V} which acts half-transitively but not semiregularly on \mathfrak{V}^{\sharp} . By Theorems 1.1 and 6.6 we have $\mathfrak{G}_{\alpha} = \mathscr{F}_0(q^{n/2})$, $\mathfrak{G}_{\alpha} \subseteq \mathscr{F}(q^n)$ or $q^n = 3^2$, 5^2 , 7^2 , 11^2 , 17^2 , 3^4 . Note that the exception of Theorem 1.1 of degree 2^6 is a subgroup of $\mathscr{F}(2^6)$. Since deg $\mathfrak{G} = q^n$ and $\mathfrak{G} = \mathfrak{V}\mathfrak{G}_{\alpha}$, the result follows.

7. Theorem C. We can now obtain several easy corollaries.

COROLLARY 7.1. Let \mathfrak{G} be a solvable 3/2-transitive permutation group. Then for all points $\alpha \neq \beta$ the stabilizers $\mathfrak{G}_{\alpha\beta}$ are isomorphic. In fact if $q^n \neq 3^2$, then $\mathfrak{G}_{\alpha\beta}$ is cyclic, while if $q^n = 3^2$, then $\mathfrak{G}_{\alpha\beta} \subseteq \operatorname{Sym}_3$.

Proof. The result is clear if \mathfrak{G} is a Frobenius group, $\mathfrak{G} \subseteq \mathscr{S}(q^n)$ or $\mathfrak{G} = \mathscr{S}_0(q^n)$. Thus we need only consider the exceptions. Here \mathfrak{G}_{α} acts on \mathfrak{V} and $\mathfrak{G}_{\alpha\beta}$ is the stabilizer of $\beta \in \mathfrak{V}^{\sharp}$. Suppose $q^n = 5^2$, 7^2 , 11^2 or 17^2 . Since we see easily that $|\mathfrak{G}_{\alpha}|$ is prime to q it follows by complete reducibility that $\mathfrak{G}_{\alpha\beta}$ has a faithful 1-dimensional representation and hence is cyclic. Suppose $q^n = 3^2$. Since $\mathfrak{G}_{\alpha} \supseteq \mathfrak{C} \cong \mathfrak{Q}$ we see that \mathfrak{G}_{α} is transitive on \mathfrak{V}^{\sharp} . Also $\mathfrak{G}_{\alpha}/\mathfrak{C} \subseteq \operatorname{Sym}_3$ and $\mathfrak{G}_{\alpha\beta} \cap \mathfrak{C} = \langle 1 \rangle$ so the result follows here. Finally let $q^n = 3^4$ so that $\mathfrak{C} \triangle \mathfrak{G}_{\alpha}$ with $\mathfrak{C} \cong \mathfrak{D}\mathfrak{Q}$. Then $\mathfrak{C} = O_2(\mathfrak{G}_{\alpha})$. If $\mathfrak{C} = \mathfrak{G}_{\alpha}$ then $|\mathfrak{G}_{\alpha\beta}| = 2$. If $\mathfrak{G}_{\alpha} > \mathfrak{C}$ then as we have seen $\mathfrak{S} \mid |\mathfrak{G}_{\alpha}/\mathfrak{C}|$. This implies that \mathfrak{G}_{α} acts transitively on \mathfrak{V}^{\sharp} . The result now follows by Lemma 2.4 of [5].

COROLLARY 7.2. Let \mathfrak{G} be a solvable linear group acting on GF(q)-vector space \mathfrak{F} . Suppose \mathfrak{G} acts half-transitively on \mathfrak{F}^{\sharp} . If $q \neq 2$ and $|\mathfrak{G}|$ is even, then \mathfrak{G} has a central involution.

Proof. The result is well known if \mathfrak{G} acts semi-regularly and obvious in all of the remaining cases with the exception of $\mathfrak{G} \subseteq \mathscr{T}(q^n)$. Here the argument of Step 1 of the proof of Proposition 2.7 of [8] yields the result.

Finally we consider the transitive extensions of these exceptional 3/2-transitive groups.

Proof of Theorem C. Let \mathfrak{G} be a 5/2-transitive permutation group on the set Ω and assume that \mathfrak{G} is not a Zassenhaus group. Let ∞ , $0 \in \Omega$ and assume that \mathfrak{G}_{∞} is solvable. Thus \mathfrak{G}_{∞} is a solvable 3/2-transitive group which is not a Frobenius group. If $\mathfrak{G}_{\infty} \subseteq \mathscr{S}(q^n)$ or $\mathfrak{G}_{\infty} = \mathscr{S}_0(q^{n/2})$ then by the results of [8], $\bar{\Gamma}(q^n) < \mathfrak{G} \subseteq \Gamma(q^n)$. Hence we need only consider the exceptional groups. We show that these have no transitive extensions.

Set $\mathfrak{G}=\mathfrak{G}_{\infty_0}$ so that $\mathfrak{G}_{\infty}=\mathfrak{SB}$ where \mathfrak{B} is a regular normal elementary abelian subgroup of order q^n . Let Z denote the central involution of \mathfrak{F} . Then Z fixes 0 and ∞ and moves all the rest. Since \mathfrak{G} is doubly transitive we can find a suitable conjugate T of Z with $T=((0,\infty))\cdots$. Thus T normalizes \mathfrak{F} . By Lemma 1.3 of $[8], \ |\mathfrak{F}| \geq (q^n-1)/2$. If $q^n=17^2$, then by Lemma 3.5

$$96 = | \mathfrak{G} | \ge (17^2 - 1)/2$$
.

a contradiction.

We will use results of § 3 and § 4 about these exceptional groups which were not explicitly stated. Let $\mathfrak{C} = O_2(\mathfrak{F})$ so that T normalizes \mathfrak{C} . Suppose T fixes the point α . Since T centralizes Z we see that $(\alpha Z)T = \alpha TZ = \alpha Z$ so T also fixes $\beta = \alpha Z$ and these must be the two points of Ω fixed by T. Since T is conjugate to Z and Z is central in \mathfrak{G}_{∞_0} we see that T is central in $\mathfrak{G}_{\alpha\beta}$. Thus T centralizes $\mathfrak{F}_{\alpha\beta}$. Note that $\mathfrak{F}_{\alpha\beta} = \mathfrak{F}_{\alpha} = \mathfrak{F}_{\beta}$ since $\alpha Z = \beta$. Conversely let T centralize $H \in \mathfrak{F}$. Then $(\alpha H)T = \alpha TH = \alpha H$ so $\alpha H = \alpha$ or β . Hence $H \in \mathcal{F}_{\alpha\beta}$ and hence $C\mathfrak{F}_{\alpha\beta}(T) = \langle Z, \mathfrak{F}_{\alpha} \rangle$.

Suppose $3 \mid \mid \mathfrak{F}_x \mid$ for $x \in \mathfrak{V}^\sharp$. This implies easily that $q^n = 3^2$ or 7^2 and $\mathfrak{E} \cong \mathfrak{D}$. Since \mathfrak{E} acts semiregularly on \mathfrak{V}^\sharp , $C_{\mathfrak{E}}(T) = \langle Z \rangle$ and thus T acts nontrivially on $\mathfrak{E}/Z(\mathfrak{E})$. Let \mathfrak{F} be a subgroup of \mathfrak{F}_α of order 3. Then $\langle T, \mathfrak{F} \rangle$ is cyclic of order 6 and acts faithfully on $\mathfrak{E}/Z(\mathfrak{E})$, a contradiction. Thus $|\mathfrak{F}_x|$ is a cyclic 2-group. Note that if $q^n = 3^2$, then $3 \nmid |\mathfrak{F}|$ so clearly $\mathfrak{F} \cong \mathscr{T}(3^2)$ and \mathfrak{G}_∞ is not exceptional.

Set $\Re = \Im \cap \operatorname{Alt} \Omega$. Since $\Re \supseteq \Im$, T, Z \Re is doubly transitive and \Re_{∞_0} has a central involution. Also $[\Im : \Re] \leqq 2$. Let $q^n = 7^2$ or 11^2 . Then $|\Im_x| |q-1$ so clearly $|\Im_x| = 2$. If H is a noncentral involution of \Im then H moves $q^2 - q$ points and hence H is a product of q(q-1)/2 transpositions. Thus with q=7 or 11, $H \notin \Re$ and therefore \Re is a Zassenhaus group. Since \Re_{∞_0} has a central involution the results of [12] yield $\Re \subseteq \mathscr{T}(q^2)$ and hence \Re_{∞_0} has a normal Sylow 3-subgroup, a contradiction. This leaves only $q^n = 5^2$ and 3^4 .

Let $q^n = 5^2$. Suppose $H \in \mathfrak{G}$ has order 4 and fixes a point of \mathfrak{B}^{\sharp} .

(1968), 555-577

Since H and H^2 fix the same set of points here, we see that H is a product of $(5^2-5)/4=5$ 4-cycles. Thus $H \notin \Re$. Now \mathfrak{G}_{∞} is exceptional so $3 \mid \mid \mathfrak{G}_{\infty 0} \mid$ and hence by the above remarks $\mid \mathfrak{R}_{\infty 0} \mid = 16 \cdot 3 = 48$. Thus $\mid \mathfrak{R} \mid = 26 \cdot 25 \cdot 48$. Let \mathfrak{P} be a Sylow 13-subgroup of \mathfrak{R} . Then $\left[\mathfrak{R}:\mathfrak{P}\right]=2 \cdot 25 \cdot 48\equiv 8 \mod 13$. If $\mathfrak{R}=N_{\mathfrak{R}}(\mathfrak{P})$, then by Sylow's theorem, $\left[\mathfrak{R}:\mathfrak{P}\right]\equiv 8 \mod 13$. We see easily that \mathfrak{P} has two orbits of size 13. If \mathfrak{A} is an abelian subgroup of \mathfrak{R} containing \mathfrak{P} , then either \mathfrak{A} has two orbits and then $\mathfrak{A}=\mathfrak{P}$ or \mathfrak{A} is transitive. In the latter case \mathfrak{A} is regular so if $A\in \mathfrak{A}$ has order 2, then A is a product of 13 transpositions and $A\notin \mathrm{Alt}\,\mathfrak{Q}$, a contradiction. Hence $\mathfrak{A}=\mathfrak{P}$ and $\mathfrak{P}=C_{\mathfrak{R}}(\mathfrak{P})$. Thus $\mathfrak{R}/\mathfrak{P}\subseteq \mathrm{Aut}\,\mathfrak{P}$ so $\left[\mathfrak{R}:\mathfrak{P}\right]\mid 12$. Since $\left[\mathfrak{R}:\mathfrak{P}\right]\equiv 8 \mod 13$, we have a contradiction.

Finally let $q^*=3^4$ so that $\mathfrak B$ has degree $3^4+1=2\cdot 41$. Now $|\mathfrak G|\geq (q^*-1)/2=40$ so we cannot have $\mathfrak G\cong\mathfrak D\mathfrak D$. Hence we must have $5||\mathfrak G|$ so $\mathfrak G$ is transitive on $\mathfrak B^*$ and we thus see easily that $\mathfrak B$ is triply transitive. Now $|\mathfrak G_x|=2,4$ or 8 so write $|\mathfrak R_x|=2\cdot 2^s$ where $2^s=1,2$ or 4. Then

$$|\Re| = 82(82-1)(82-2)\cdot 2\cdot 2^{\delta}$$
.

Let \mathfrak{P} be a Sylow 41-subgroup of \mathfrak{R} so that $[\mathfrak{R}:\mathfrak{P}] \equiv 8 \cdot 2^{\delta} \mod 41$. Hence if $\mathfrak{R} = N_{\mathfrak{R}}(\mathfrak{P})$, then $[\mathfrak{R}:\mathfrak{P}] \equiv 8 \cdot 2^{\delta} \mod 41$. As in the $q^n = 5^2$ case we see easily that \mathfrak{P} is self-centralizing so $\mathfrak{R}/\mathfrak{P} \subseteq \mathrm{Aut} \ \mathfrak{P}$ and $[\mathfrak{R}:\mathfrak{P}] \mid 40$. Since $2^{\delta} \subseteq 4$ this yields $2^{\delta} = 1$ and $[\mathfrak{R}:\mathfrak{P}] = 8$.

The fact that $2^{\delta} = 1$ implies that $\mathfrak{C} \cong \mathfrak{D}\mathfrak{D}$ is normal in \mathfrak{R}_{∞_0} and $[\mathfrak{R}_{\infty_0} \colon \mathfrak{C}] = 5$. Since $\mathfrak{R}/\mathfrak{P}$ is cyclic, let $\mathfrak{L} = \langle L \rangle$ be a subgroup of \mathfrak{R} of order 8. \mathfrak{L} permutes the two orbits of \mathfrak{P} . If it fixes each then L clearly has fixed points in each orbit. Thus some conjugate of L is contained in \mathfrak{R}_{∞_0} , a contradiction since $\mathfrak{C} \cong \mathfrak{D}\mathfrak{D}$ has period 4. Thus \mathfrak{L} interchanges the two orbits. This implies easily that L is a product of ten 8-cycles and one transposition. Hence L is an odd permutation, a contradiction. This completes the proof of the theorem.

REFERENCES

- 1. D. Gorenstein, On a theorem of Philip Hall, Pacific J. Math. 19 (1966), 77-80.
- 2. P. Hall and G. Higman, On the p-length of p-soluble groups and reduction theorems for Burnside's problem, Proc. London Math. Soc. (3) 6 (1956), 1-42.
- 3. B. Huppert, Zweifach transitive, auflösbare Permutationsgruppen, Math. Z. 68 (1957), 126-150.
- 4. I. M. Isaacs and D. S. Passman, Half transitive automorphism groups, Canad. J. Math. 18 (1966), 1243-1250.
- D. S. Passman, Solvable half-transitive automorphism groups, J. Algebra 6 (1967), 285-304.
- 6. ——, Solvable 3/2-transitive permutation groups, J. Algebra 7 (1967), 192-207.
 7. ——, p-Solvable doubly transitive permutation groups, Pacific J. Math. 26

- 8. ——, Some 5/2-transitive permutation groups, Pacific J. Math. 28 (1969), 157-171.
 9. P. Roquette, Realisierung von Darstellungen endlichen nilpotenter Gruppen, Arch. Math, 9 (1958), 241-250.
- 10. A. Weir, Sylow p-subgroups of the classical groups over finite fields with characteristic prime to p, Proc. Amer. Math. Soc. 6 (1955), 529-533.
- 11. H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
- 12. H. Zassenhaus, Kennzeichnung endlichen linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg 11 (1936), 17-40.

Received January 23, 1968. This research partially supported by Army Contract SAR/DA-31-124-ARO (D) 336.

YALE UNIVERSITY