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MAXIMUM TERM OF A POWER SERIES IN ONE
AND SEVERAL COMPLEX VARIABLES

J. GOPALA KRISHNA

In this paper we discuss results leading to a description
of an algebraic structure constituted by power series with the
same maximum term in several complex variables, and use the
description to estimate the maximum modulus of any of the
series in terms of its maximum term and its central index,
and obtain some useful asymptotic relations. We observe that
certain crucial Valiron-type theorems, in the case of several
variables, are by no easy or routine means reached through
Valiron-type techniques.

The relations among the maximum term, the central index and
the maximum modulus of a power series are extensively studied in the
case of a single complex variable (see, e.g., [7]-[9]). While a number
of Wiman-type theorems are extended to the case of several complex
variables (see [1], [4] and their bibliographies) we find only some unsat-
isfactory attempts made to extend the Valiron-type results to the case
of entire power series in two complex variables (see § 6). Analogous
to the case of one variable the Valiron-Wiman-type results contribute
in their own way to the study of partial differential equations, and
to obtain some such analogues (e.g., of [5], [6]) we need relations
between the growths of the maximum term and the central index of
a multiple power series along with certain Wiman-type theorems
stronger than the ones available at present. In this paper, however,
we limit ourselves to some Valiron-type results and attempt a systematic
presentation, which in particular enables us to indicate certain open
questions.

1* Notation* We write cέ?k for the cartesian product of the
field of complex numbers with itself k times and indicate its elements
(points): (z19 z2, , zk), (| zγ |, , | zk |), (r19 , rk), (n19 •••,%) etc. by
their corresponding unsuffixed symbols z,\z\,r,n, etc., when it is easy
to understand from the context. Throughout Ω — Ωk stands for a
nonempty open complete fc-circular region in <g*k (see § 3,3 of [3]) with
centre at 0 = (0, 0, , 0), the zero element of <§f*. We write

I Q I — [r: r = | z | for some ze Ω]

and

Q+ = [ r : r G | i 2 | , no rs = 0] ,
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and regard these as subsets of the λ -dimensional euclidean space g7*.
In connection with any r, se &k we say (i) that r ^ s or s ^ r, if and
only if r5 ^ s3- for 1 ^ j ^ k, (ii) that r < s or s > r, if and only if
r ^ s but r is not = s, and (iii) that r « s or s » r, if and only if
Tj < Sj for 1 <̂  j <̂  k.

Throughout ^~ = ^~{Ω) stands for the family of all power series
with centre at 0 and absolutely convergent in Ω. Under conventions
similar to those for indicating the elements of <r^?k we indicate A e ^ by

A(z) = Σ^anz
n ,

where (always)

— [n: ne | ^ k |, each Uj is a rational integer] ,

zn = zpzp •••*£* (z°j = 1 even if zs = 0) .

Corresponding to an A e ^ we define the functions (mappings):
the maximum term μ — μ{A), the central index v — v{A} — (v19 , vk)
and the maximum modulus ^// — ^/έ{A\ on \Ω\ by

μ(τ) = μ(r, A) = max (| an \ τn) ,

(max [n,: \ an\ rn = ^(r)], if ^(r) > 0 ,
j

r, A) = max
\z\=r

We say that a mapping / with domain D in a euclidean space and
also with range in a euclidean space is increasing (in D), if and only
if f(r) ^ f(s) for any r, seD such that r ^ s.

2. Fundamental properties of ^ and y* Throughout this section
we work with the same power series A e J^~'. We start with

THEOREM 2.1. Let p,re\Ω\ and let μ(p) and μ(r) be both positive.
Then the line integral,

1 =

taken over any connected polygon in \Ω\ with sides parallel to the
axes and from p to r, (i) exists, (ii) is independent of the polygon
and (iii) is such that

log μ(r) = log μ(p) + I .

We need three lemmas.
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LEMMA 2.2. Let k > 1. Corresponding to any re\^k\, let
r — r{j) denote the formal expression (ru , rά-γ, , rj+l1 , rk) and
let \Ω\i denote the section of \Ω\ corresponding r,i.e., the set [rά:
re \Ω\], Let \Ω\ r be nonempty. Let μ-r and Vfr be respectively the
sections of μ and v5 corresponding to r, defined on \Ω\-r by μ r{rό) =
μ(r) and vό r(rό) = vό{r).

Then μ-r and vά-r are respectively the maximum term and the
central index of the power series in one variable (zό) converging in
I Ω \ r viz.,

(2.3) Σ μnjzp ,
n e ̂ r\

where

μn, = μ'mό = max (I an \rp r^r^t1 . . . rj*) .
(n1, .,ny_1,nJ + 1 , . ,ΛA.)6^ f e_ 1

Proof of 2.2. After a complete statement the lemma is a straight
forward verification. To see the idea of the lemma more quickly one
might consider the special case where k = 2 and look upon 4 as a
double series arranged in rows and columns in a "natural manner".

The following two lemmas are well-known (see, e.g. [7]). They
however admit simple proofs (with no appeal to geometric intution),
which we briefly indicate.

LEMMA 2.4. Let k = 1. Then (i) v is increasing and right
continuous and its discontinuities form a set discrete in \Ω\; (ii) μ
is increasing and continuous in \Ω\.

Proof of 2A. (ii) is a simple consequence of (i), which is easily
proved (see also (2.6), (2.10), (2.14)).

LEMMA 2.5. Let k = 1. Then Theorem (2.1) holds in this case.

Proof of (2.5). It is sufficient to consider the case p < r, which
we do. By (2.4) (i) there exists a finite dissection of the closed interval
[p, r] specified by p — dQ < d1 < < dm = r such that v is continuous
in each of the open intervals (dj9 dj+ί). Now by (2.4), μ does not
vanish in [p, r] and for j = 0,1, , m — 1,

μ(dj+1) = μ(di+1 - 0) = I au{dj) \ dffi ,

which proves the result with dj9 dj+1 respectively instead of p, r and
hence proves (2.5) itself.
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Proof of 2.1. By (2.2) and (2.5), (i) and (iii) hold in case the
polygon under consideration is a straight line segment parallel to one
of the axes (say to the i th) . The proof of (i) and (iii) may now be
completed by using induction on the number of the sides of the
polygon, (ii) is implied by the rest of the theorem.

We also require some extensions of (2.4) for k > 1, with which
we shall be concerned in the rest of this section. These extensions
need a different approach and in particular we start making use of
the openness of Ω (see (2.14)).

T H E O R E M 2 .6. μ is (i) increasing and (ii) continuous in \Ω\.

(i) of (2.6) is obvious. Before considering (ii) it is convenient to
prove a lemma, which is required a few more times later.

LEMMA 2.7. Let re\Ω\ and μ(r) > 0. Then there exists a
neighbourhood V of r w.r.t. | Ω \ and a finite subset £^ of ^/Kl such
that for teV,

μ(t) = max (| an\ tn) > max (\an \ t
n) .

ne

Proof of 2.7. Since Ω is open in c^?k there exists an se\Ω\ such
that s > r. It is easily seen that μ(r/2) = μ(rJ2, , rk/2) is also
positive and hence there exists a finite set £f S <yl/~ such that
an\sn < μ(r/2) for n e Λ^ — &, which by virtue of the obvious (i)

of (2.6) implies the lemma, when we take V = [t: r/2 ^ t ^ s].

Proof of 2.6. By virtue of (2.7) we need only prove the continuity
of μ at points r e | Ω |, where μ(r) = 0. Let re\Ω\, μ(r) = 0 and δ
be a positive real number. As in the proof of (2.7), there exists an
s e I Ω I and a finite subset ^f = J*f(δ) of ^ such that r < s and
I an I sn < δ for ne Λ" - £?. This together with the fact that
max [\an \ tn: ne £^\ defines a function continuous and vanishing at
t — r, completes the proof.

It is not true that v is increasing for k > 1, as is shown by

EXAMPLE 2.8. Let k > 1, Ω = ^ k and A be the power series of
Then

, 1) =

_^ r, which

according

(1, ••-,!),

converges

as r3- = or
while y(l,5

at

<
1

each ze (

Vj(r) = [i

max {r1?

55 1 555,

*& to

^] or

• , rk}
...) =

1 -

0

In

(0,

- k + ΣJU e x P «i-

particular
0, - - ^ O , ! ) .
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However one might consider different extensions of the fact that
v is increasing for k = 1. We state, mainly for later use, the following
obvious consequence of (2.2) and (2.4).

COROLLARY 2.9. vό is increasing and right continuous in the
jth variable (i.e., the v^ of (2.2) is increasing and right continuous
in its domain), for 1 ίg j <^ k.

We next prove

THEOREM 2.10. Let A be not identically zero and let D denote
the set of all discontinuities of v in \Ω\. Then there exists a finite
or countable family of sets Dά, j e some index set J such that

( i ) D = \J, βJDif

(ii) each Dό is closed w.r.t. \Ω\,
(iii) each D5 is a subset of a hyper-surface of the form [r:re\Ω\,

rm — a\, where my, , mk are rational integers and a is a real
number >̂ 0 (and hence each Dά is of at most real dimension k — 1),

(iv) any compact subset of \Ω\ in which μ does not vanish has
a nonempty intersection with at most a finite number of the sets Do;
further

( v ) D itself is a nowhere dense closed set w.r.t. | Ω | and
(vi) I au{r) I rHr) = μ(r) for re\Ω\ - D.

We need two lemmas.

LEMMA 2.11. Let A be not identically zero. Let S denote the
set of all re\Ω\ at which μ(r) is attained by more than one term
of the series Σ n e ^ I α» I rn and let

S(m, n) = [r:re\Ω\,\am\rm = \an\rn = μ(r)) .

Then (i) through (vi) of (2.10) hold with S instead of D and
{S(m, n)(m Φ n)} instead of {Dά, j e J}.

Proof of 2.11. The analogues of (i), (ii), (iii) and (vi) of (2.10)
are obvious.

By Lemma 2.7, to each r e\Ω\ at which μ(r) > 0, there corre-
sponds a neighbourhood V of r suet that only a finite number of the
sets S(m, n)(m Φ n) have a nonempty intersection with V. The Heine-
Borel property of a compact set now implies the analogue of (iv) of
(2.10).

The foregone discussion enable us to conclude that S ί Ί Ω + is
nowhere dense in | Ω \ and hence so is S. To complete the proof at
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this s tage we need only show t h a t S is closed w.r . t . \Ω\. Let re\Ω\
and be a limit point of S. reS obviously, if μ(r) = 0. Let μ(r) > 0.
By the continuity of μ there exists a compact neighbourhood P of r
w.r . t . IΩI in which μ does not vanish. Hence by the analogues of
(ii) and (iv) of (2.10), it follows t h a t P f] S is closed w.r . t . \Ω\, which
in particular implies t h a t reS.

LEMMA 2.12. Let A be not identically zero. Then the sets D
and S introduced respectively in (2.10) and (2.11) are identical.

Proof of 2.12. Let r e \ Ω |. We first consider the case: μ(r) > 0.
Let us assume that reS — D. Now there exists a neighbourhood V
of r in I Ω | in which μ does not vanish and v is a constant, say = m.
Hence by (2.6) and (2.11), μ(t) = \am\tm for all t e V. But since r e S,
there exists a n t t ^ m such that \an\rn = μ(r). This implies that for
some t e F, | an \ tn > | am \ tm — μ(t), which is impossible. Thus r does
not e S — D. Using Lemma (2.7) we easily see that r does no eD — S.
Thus reS, if and only if reDf in case μ(r) > 0.

Let us finally consider the case when μ(r) = 0. Now already
r € S, and to complete the proof we need only show that r e D. Since
μ{r) — 0, we also have v{r) = 0 and a-Q = 0. We now assert that reD,
for otherwise μ(t) — 0 for t in a neighbourhood of r w.r.t. \Ω\, which
is impossible since μ does not vanish in Ω+.

Proof of 2.10. (2.11) and (2.12) imply (2.10).

REMARK 2.13. Example (2.8) shows that for k > 1, (vi) of (2.10)
is not the best of its kind, although it is not true with | Ω | instead
of I ΩI - D.

REMARK 2.14. It is not clear whether we have obtained a rich
collection of the properties of v adequate enough to characterize it
as a mapping when k > 1. Further the techniques of this section
have their own limitations, if one chooses to drop the openness of Ω.
For example, in such a general case, we would only be in a position
to say, instead of Theorem (2.6) (ii), that μ is continuous w.r.t. any
interval set [t: r ^ t ^ s], where r,se\Ω\. However our results may
be easily generalized to the useful case in which Ω is a complete k-
circular region and is a finite union of sets of which is open in cέ?h

or some one of its axial subspaces (cf. § 3,3 of [3]).

3* Algebraic structure of power series with the same maximum
term* Throughout this section μ stands for the maximum term
(function) of some power series of ^ and 3$^ = SΓ{μ) stands for
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the partially ordered family of all series of ^ with maximum term
μ, where the strict partial order Ά less than B' {'B greater than Af)
for two elements A, Be SίΓ is specified by A < B(B > A), if and only
if I an I ̂  I bn I for all n e ^4^y with strict inequality for some n. We
first prove the important

THEOREM 3.1. J%Γ admits maximal elements and admits only
one such element G = G{^Γ) with nonnegative real coefficients, given by

G(z) = G(z,

where

gn = inf [μ(a)/an] = inf [μ(a)/an] , for n e ^V .
aeΩ+ «€[α:αe |β|,αί*>o]

Proof of 3.1. The equivalence of the two alternative expressions
for each of the gn's is implied by (2.6).

Let zeΩ. There exists an a e Ω+ such that | z \ < α. Now

(3.2) I gnz* I ̂  μ(a)(\ z \n/an) , for n e ^K .

Hence G is absolutely convergent in Ω.
(3.2) also shows that | gnz

n \ <Z μ(\z |) for n e J ^ ("by making
a-+\z\ + 0"), so that

(3.3) μ(\z\,G)^μ(\z\).

Now let 4 e X . For any neίyK and any αei2 + we have:
I an I <xn ^ /i(α) or | αw | ^ μ(a)/an, which implies that

(3.4) I αΛ I <: 0Λ , for π e

Hence

which together with (3.3) implies that G e X . Also the proof is
complete since (3.4) holds for all i e J Γ .

We now turn to the minimal elements of J%^, which signify the
possible gaps in a power series with an assigned maximum term. We
need

THEOREM 3.5. Let A,Be^T. Then v(r, A) = v(r, B) for all
re\Ω\.

Proof of 3.5. By Theorem (2.1) and Corollary (2.9) the directional
derivative of log μ(r) in the direction of the positive j th axis exists
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at all re\Ω\, where μ(r) > 0, r, > 0, and is equal to vά(r,A)\r5 =
Vj(r, B)/rjy which by Corollary (2.9) implies that vd(r, A) — vά(r, B) for
all re\Ω\ (the case when μ(r) — 0 being trivial).

CONVENTION 3.6. Here after we write v = v{μ] for the common
central index of the series of J%Γ(μ). We now proceed to

THEOREM 3.7. 3ίf admits minimal elements and admits only
one minimal element with nonnegative real coefficients.

Proof of 3.7. Let E be the set of all points of continuity of v
in \Ω\. Let

\gn (of (3.1)), if n = v{r) for some reE,
g — j

(0 for all other w e ^ .

Since G is absolutely convergent in \Ω\, so does the series S given

by

S(z) = Σ β.z .

Now for any reE and any Ae J>t~, by Theorem (2.10) (vi), v(r) —
v(r, A) = y(r, G) = v(r, S) and

(3.8) j£(r, S) - s^^r^^ = μ(r, G) = μ{r) = \ α v ( r ) | r^(^ ,

which by virtue of (2.6) and (2.10) (v) imply that μ(r, S) = μ{r) for
all re\Ω\, which means that S e 3ίΓ.

Finally (3.8) together with the fact that v(E) = v(E Π Ω+) implies
that

Sn ^ I an\ for neΛ^AeSr

which completes the proof.

REMARK 3.9. Our discussions of Theorems (3.1) and (3.7) further
lead to the fact that the partially ordered subfamily of J3?~ consisting
of all its series with nonnegative real coefficients is a distributive
lattice closed for arbitrary unions and arbitrary intersections.

REMARK 3.10. In the case where k = 1, Valiron [7] carried out
his estimations using a characterization of the maximal element G of
j%^ in terms of v, which is not available when k > 1 (see § 6). Also
when k = 1 we can say that A itself is a maximal element of the
^Γ{μ) determined by it, if and only if | an+2an | ^ | an+11

2 for n e *yV[.
We have no analogue of this for k > 1, although Theorem (3.1) readily
implies
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COROLLARY 3.11, // A is the maximal element of the
determined by it, then

for n e ^4^f 1 ^ j <£ k, where t(j)(t = 1,2) stands for the element of
Λ" with t at the jth place and zeros at others.

4* Estimates for ^/Z in terms of μ and 2Λ Throughout this
section A e ^ and G is the maximal element, with nonnegative real
coefficients (see Theorem (3.1)), of SΓ{A} = Sέ^(μ), where μ is the
maximum term of A.

T H E O R E M 4.1. Let re\Ω\. Let p e \ c^k \ and be such that p > 1,

while pr — ( p ^ , , pkrk) still e\Ω\. Let

Nj — max vά(t) , for 1 ^ j <Ξ k .

Then

( i ) μ{r) £ ^//(r) £ G(r) £ μ{r) ΠίU [Ns + Pj/iPj - 1]
(ii) μ(r) = ^£(r), if and only if the series ^neN^n^n has at

most one nonvanishing term;
(iii) the last relation in (i) is an equality, if and only if μ(r) — 0.

REMARK 4.2. Theorem (4.1) simultaneously extends two crucial
results of Valiron for the cases (i) when Ω — ̂ l (see Theorem 11,
(2.10), Ch. II of [7]), and (ii) when Ω is bounded in ^ (see (9), (10),
§ 70, Ch. IX of [8]). For example to get the result in case (i), we are
only to choose r such that v(r) > 0 and p = 1 + l/v(r). In fact Theorem
(3.1) provides the best upper estimate for ^/t(r) in terms of μ.

Proof of 4.1 ( i ). That μ(r) <; ̂ £(r) follows easily from Taylor's
Theorem and Cauchy's inequality (see [3]). That ^€{r) ^ G(r) is
obvious from Theorem (3.1). We thus need only consider the last
relation.

Let JF be the class of all subsets of the set K of all positive
integers fg k. Corresponding to each J e ^J?, let us write

= [n: n e ^K, % ^ N3-, if and only if j e J]

,- if j e J ,
p(J) = (au , ak) , where aό =

(1 otherwise ,
p(j)r = ( α . n , ->-,akrk) .

We shall also suppose that μ(r) > 0, as otherwise the theorem is
trivial. By Theorem (3.1),
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(4.3) fir. ^ μ(p(J)r)l(p(J)rr

for n e ^V, Je ^f, if r" > 0 (even if r £ £?+), and hence

Σ Σ

(4.4) = Σ \μ(p(J)r) Π ^ - V Π JV«1

Since μ{r) > 0, by (2.6), μ(p(J)r) > 0, and hence by Theorem (2.1),

log μ(p(J)r) ^ log μ(r) + Σ - ^ i l o £ Pi »
j e j

which together with (4.4) implies the last relation of (4.1)_(i).

Proof of 4.2 ( i i) . The result is essentially discussed when k = 1
(see §2, Ch. I of [7]) and the technique of the proof may easily be
extended to the case when k > 1 (even if re\Ω\ — Ω+).

Proof of 4.2 (iii). The proof consists in observing that the first
relation in (4.4) is not an equality when μ(r) > 0. Suppose this is not
so. Then would follow (because of (4.3)) that rn > 0 for all n e %Ar

and that (4.3) reduces to an equality, which implies (because of (2.6))
in particular that the series

Σ T
ne^r [K)

is divergent, which contradicts (because of (3.1)) the fact that pre\Ω\.

5* Asymptotic relations among μ, v and ^+ In this section
we throughout take Ω — cέ?k and write A to denote a nonconstant
entire series of ^ . We say that a real valued function / defined
outside a compact set in 142 | is of finite order, if and only if there
exist an a e Ω+ and a positive real number K such that f+(r) ^ Kra

asymptotically as r—>5δ = + δs = ( + o o , . , +<*>), and we say that
A is of finite order, if and only if so is \og+^f{A}. Following Ronkin-
Fuks-ideas (cf. § 26, 2, Ch. V of [3]) we also talk of the hypersurface
of systems of conjugate orders in the case of a function / (or A) of
finite order considered above. However it may be noted that our
growth-indicators are rather associated wit GoΓdberg-order than with
the growth-indicators introduced by Ronkin and Fuks (see Remarks
(5.6), (5.7))

THEOREM 5.1. ( i ). The following three statements are equivalent:
( a ) A is of finite order;
( b) log+ μ{A) is of finite order;
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( c ) each Vj{A}(l rg j fg k) is of finite order.
(ii) If A is of finite order, the hyper surfaces of systems of

conjugate orders of A, log+ μ{A) and Θ{A) = max^-^ Vj{A} coincide.

Proof of 5.1 ( i ). For any r,pe\Ω\ such that μ(r) > 0 and p >
(1, ., 1), we get by (2.9) that for 1 ^ j ^ k,

1 f pϊri dx •
\) ίr\ <~^- 1 \) • (' Ύ* . . . Ύ* Ύ . Ύ* . . . Ύ* \ 3

~ lOgPj )rά

 3 ^ ' *~ly ^ 3+ly ' ft.

which by (2.1) and (2.6)

^ [logμ(pr) - log μ{r)]pόl{pό - 1) ,

which shows that (b) implies (c).
It is easy to prove using (2.1), (2.6) and (2.9) that for a deΩ+

and any re\Ω\ such that μ(r) > 0,

log μ(r) ^ log μ(d)

! , - - . , rd, dj+1, •••,•••, dk) log+ (rj/dj) ,l :

which (with the components of d "fixed but chosen sufficiently large")
shows that (c) implies (b).

By Theorem (4.1), (a) implies (b), and (b) and (c) together imply (a).

Proofs of 5.1 (i i). The proof involves no difficulties in the
presence of our discussion for proving (5.1) (i).

THEOREM 5.2. Let A be of finite order. Then log+ μ(r) ~
log+ ^ ^ ( r ) , as r —> + 53.

It is convenient to prove first

LEMMA 5.3. Let A be of finite order and be purely transcendental,
i.e., there exists no me^yf^ such that a% — 0 for all n^m. Then
log+ μ(r) — log+ ^/f (r), as r -* + oδ.

Proof of 5.3. The hypothesis that A is purely transcendental
implies that

[log μ(r)]βog(ra) —> + £S , as r —» + ss ,

for any ae\c^7k\, while Theorems (4.1) and (5.1) imply the existence
of an a e \ ctfh \ such that

log ^£{r) <: log μ(r) + log (ra)
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holds asymptotically as r —> -f-ss. Hence the lemma.

Proof of 5.2. We prove using induction on k, the number of
variables. (5.3) implies the theorem when k = 1 (see also Ch. II of [7]).
Let us assume that k > 1 and that the theorem holds in the case of
k — 1 instead of k variables. By virtue of (5.3) it is sufficient to
obtain the conclusion of the theorem for k variables when there exists
an me^y such that an = 0 for all n ^ m, and this we do. Now
for r e I Ω ,

(5.4)

J - l L ί = 0 J

where r — r!j> = (rly , r3_lf r3+1 rk) and Hjt represents an entire
power series with centre at 0 in k — 1 variables such that H3t{τ{τ))r)
represents a sub-series of ^n£ , \ an \ rn, for 0 ^ t < m i } 1 ^ i ^ fc. In
particular we have

(5.5) μ j t ( r { j ) ) r l ^ μ(r) , f o r r e \ Ω \ ,

where μjt is the maximum term of H3t, for 0 ^ ί < m3 , 1 ^ j>* ̂  &. By
our induction hypothesis (and trivially if i ί ^ reduces to a constant)
it follows that

Hjt(r{3)) g μ)¥(rι5)), for 0 ^ ί < m, , 1 ^ i ^ A, δ > 0, asymptotical-
ly as f(0) —> + so in | ^ f c ~ l | . Hence by virtue of (5.4) and (5.5) we
get that

asymptotically as r — > + ^ , for any positive real number S, which
together with (4.1) and the fact that μ(r) —* + co as r —> + 55 completes
the proof.

REMARK 5.6. For k > 1, Theorem (5.2) would be false, if one
chooses to interpret "of finite order" following Ronkin and Fuks (see
§26,2, Ch. V of [3]), although the analogue of Theorem (5.1) would
still be true. To disprove the analogue of (5.2) one may consider A
such that A(z) = e x p ^ for all ze {^k(k > 1).

REMARK 5.7. In the presence of the discussions of this section it
is easy to state and prove the analogues of (5.1) and (5.2) keeping
GoPdberg- order of A in mind, which does not really depend on the
fundamental domain used for defining it (see §26,1, Ch. V of [3]).
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Also one might try to generalise our considerations of this section to
the case where Ω is not necessarily the whole of <^Pk, so as to be able
to present in particular a unified picture of the unbounded and the
bounded cases of Ω § ^ (see Ch. II of [7] and the indications of
§ 70, Ch. IX of [8]).

6* Appendix* An extension of Valiron's theory to the case of
entire power series in two complex variables is attempted by S. K.
Bose and Devendra Sharma [2]. They start with a series C e^(^-72)
and state to have constructed using Valiron-type geometrical consider-
ations, a maximal element W of the Sf{C} determined by C, in the
notation of our § 3, whose coefficients admit a specific pattern (see
(4.1)-(4.2) of [2], cf. Ch. II of [7]). They take w-Q = 1 and using the
special forms of the coefficients of W obtain their basic formulae
connecting the μ and v of C ((4.3), (4.4) of [2]).

Apart from the fact that the treatment of Bose and sharma (§ 4
and §5 of [2]) needs cautious handling, their basic formulae under
reference, in particular, are incorrect. We give one example ((6.1)) of
transcendental C in the case of which the series W (of the sort they
need) does not exist and their basic formulae fail. We give another
example ((6.2)) of C, which for itself has all coefficients positive and
real but in the case of which again their basic formulae fail. However
it may be noted that some of the asymptotic relations considered by
them turn out to be correct (being included in our Theorems (5.1), (5.2)).

EXAMPLE 6.1. Let C e ^ ( ΐ f 2 ) and be such that its sum C(z) =
(^ 2), for ze^2. For this series (4.3) or (4.4) of [2] imply that

μ(r) = + co particularly whenever r ^ (1.1), which is obviously false.
This itself also shows that the type of W, Bose and Sharma require,
does not exist in the present content. Obviously the "Hadamard
Polyhedron" of C [2] degenerates virtually to a space polygon. We
would further assert that there can be no series (of ,_^r(^2)) with
the same maximum term as C, whose coefficients are all nonvanishing.

Let 4 € ^ ( ^ 2 ) and let μ{A} = μ{C}. Now for any ne^Γ2,

\an\£ inf [μ(r)/r*]
r1r2=n1

= inf [r?*-nV(Wi!)]
r1r2 = n1

= 0, if n2< nx .

Hence and by symmetry an — 0, whenever nL Φ n2, which establishes
our assertion. With the help of the discussions of § 3, it is also easily
seen that C is both a maximal and a minimal element of the S
determined by it.
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EXAMPLE 6.2. Let C e J^^tf2) and be such that its sum C(z) =
exp (zλ + z2) — zJ2 — z2/2, for z e <^?z. Now all the coefficients of C are
real and positive, so that its "Hadamard Polyhedron" suffers no
degeneracy. Still one might observe that the formulae (4.3) and (4.4)
of [2] do not hold, in particular when r1 = r2 = 1. In fact one
encounters some defective notation in [2] such as writing vό(Tj) instead
of our Vj(r) (j = 1, 2), which may however be understood from the
context.
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