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IDEALS IN ADMISSIBLE ALGEBRAS

EARL J. TAFT

The notion of admissible algebra has been introduced by
Koecher. They are commutative algebras whose enveloping
Lie algebra (of multiplications) splits into the direct sum of
an even and an odd part. It will be shown here that the
class of admissible algebras cannot be defined by (nonassociative)
polynomial identities. This is done by exhibiting an admissible
algebra which possesses a homomorphic image which is not
admissible. The main tool is the relationship between the
admissibility of a homomorphic image of an admissible algebra
A, a symmetry property of a certain ideal of the enveloping
Lie algebra of A formed from the kernel of the homomorphism,
and the ideal structure of an algebra constructed by Koecher
from A.

Let A be a commutative algebra over a field F of characteristic
not two. We do not assume that A is associative, nor that A has a
unit element 1. For α i n i , let L(a) denote multiplication by a in
Ay i.e., L(a)x — ax for x in A. Let L(A) denote the vector space of
linear mappings I/(α), a in A. Let H(A) be the Lie algebra generated
by L(A). H(A) = H~(A) + H+(A), where H~(A) is the space spanned
by commutator products of an odd number of elements of L(A), and
H+(A) is the space spanned by commutator products of an even number
of elements of L(A). The commutator [T, U] of T and U is TU - UT.
If 1 e A, then the sum L(A) + [L(A), L(A)] is direct, since commutators
vanish on 1. We call A admissible, [1], if the identity mapping of
L(A) extends to an antiautomorphism T-+T* of H(A). This means
that T* = T for TeH~(A), and T* = - T for TeH+(A), so that
H~(A) Π H+(A) = 0. Conversely, if H~(A) n H+(A) = 0, then the map
(Γ + UT = T - U for TeH~(A), He H+(A) shows that A is admissible.

Let A be admissible. We may then form the algebra 2(A) =
H(A) φ 4 0 l , where A is a vector space copy of A. The multiplication
in 2(A) is given by [(Tlfalfb1)f(T2fa2fbs)} = (Tfa9b)f where Γ =
[T19 T2] + a,Δb2 - a2Ablf a= Tλa2- T2 aίy b = T2* bx - ϊ\* b2, and the
pairing A of A and A into H(A) is given by aΔb = L(ab) + [L(a),
L(b)] (see [1]).

Now let M be an ideal of A. Let jλ(M) = {TeH(A)\ TA^M}.
j\(M) is an ideal in H(A). j^M) contains the ideal ί(M) of H(A)
generated by the mappings L(m), meM. If we let I(M) = ί (M)0Mφiί?
and J^M) =j\(M)®MφM9 and note that i(M)*^i(M), then we
see that I(M) is an ideal in 2(A). In this note, we shall give an
•example to show that J^M) need not be an ideal in 2(A). We first
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note some equivalent conditions for J^M) to be an ideal of 2(A).

THEOREM. Let A be a commutative admissible algebra, M an
ideal of A. Then the following three conditions are equivalent:

( 1 ) A/M is admissible
( 2 ) J^M) is an ideal of 2(A)
( 3 ) j\(M)*S3\(M).

Proof. (1) => (2). The natural homomorphism of A onto A/M
induces a homomorphism of 2(A) onto $>(A/M), by replacing all variables
from A which appear by their cosets modulo M. The kernel of this
homomorphism has M and M in the second and third components,
respectively, and the first component is ^(M), i.e., the kernel is JL(M)f

an ideal of S(A).

(2)=>(3). Let Tej1(M)faeA. Then [0, 0, α), (Γ, 0, 0)] = (0, 0,
b) e JX(M), where b = T* aeM. Hence T* e j\(M).

(3) => (1). We wish to show H~(A/M) Π H+(A/M) = 0. Let
a—* a' be the natural homomorphism of A onto AIM, Let V —
L{a') + Σ [[L(bd, L(cl)l L(dd] + ••• - Σ [L(e',)9 Lit))] + be in
H-(A/M) n H+(A/M). Then W = L(a') - Σ [£(*;), L(f3)] + Σ [[L(b[)t

L(cl)h L(d[)] = 0, so U= L(a) - Σ [L{es), L(f5)\ + Σ [[Πb^
L(c,)], L(^)] is in jL(M). If we write U = U~ + U+, U~ e H~(A)y

U+ G U+(A), then 17* - U~ - C/+ ej\(M), so ί7~, U+eo\(M). But ίJ- =
^(«) + Σ [[Mb), L(Ci)], L(di)] + , so T = 0. This proves the theorem.
We remark that (1) ==> (2) follows from (2.8) of [1].

If A is a commutative associative algebra, then H(A) = L(A), so
A is admissible. Hence the conditions of the theorem hold for any
ideal in a commutative associative algebra. If A is a commutative
Jordan algebra, then L(A) is a Lie triple system, and H{A) —
L(A) + [L(A), L(A)]. If, in addition, A has a unit element 1, then
H(A) = L(A) 0 [L(A), L(A)]9 so A is admissible. Hence the conditions
of the theorem hold for any ideal in a commutative Jordan algebra
with unit element.

We now present an example of a commutative Jordan algebra
without unit element, which is admissible, but which has an ideal M
which does not satisfy the conditions of the theorem. We consider
three-by-three matrices over F, with ei3 denoting the usual matrix
units. Consider the four-dimensional Jordan algebra A with basis
e = eL1 + β33, x — e12, y = β23, z = e13, and multiplication ab + ba for a,
be A. L{A) is four-dimensional, with basis L(e), L(x), L(y), L(z). Let
ϊ\ = [L(e), L(x)], T2 = [L(β), L(y)]. T, and T2 form a basis for [L(A),
L(A)]. Let aL(e) + βL(x) + yL(y) + δL(z) = pT, + τT2. Applying to
e yields a = δ = 0, p = — /3, τ — — 7. Applying to x yields 7 = 0,
and applying to y yields β = 0. Hence L(A) f] [L(A), L{A)\ = 0. Since
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A is a Jordan algebra, H{A) = L(A) © [L(A), L(A)]y and A is admissible.
Let M = Fz, an ideal of A. Set Γ - L(x) + Tx in H(A). Tej\(M)

but T* = L(x) - Ύx satisfies T*(e) = 2x$M, so j\(M)* £j\(M). Noting
the other conditions of the theorem, Ar = A/Jkf is not admissible as
L(x') = [L(α'), L(β')] ^ 0, and J£M) is not an ideal in S(A), as [(0, 0,
€),(T,0,0)] = (0,0,2a5)

COROLLARY. TΛe cϋαss of admissible algebras is not definable by
polynomial identities.

This follows since our example shows that the class of admissible
algebras is not closed under homomorphic images.

The algebra A/M of the example is a commutative Jordan algebra
which is not admissible. Another example would be the algebra with
basis e = en + e22J x — e21, y = e31, z = β32, and multiplication ab + ba.
Then L(y) - [L(y)L(e)] Φ 0.

In [1], an ideal j(M) of iϊ(A) is introduced, j(M) = {Te H(A) \TA^M,
T*A S M}. Then j(M)* Qj(M) and J(Jlf) = j(M) 0 M 0 M will be an
ideal in 2(A). For commutative Jordan algebras with unit element,
j{M) = JAM), but our example shows that in general j(M)Qj1(M),
even for admissible Jordan algebras A. For an admissible commutative
Jordan algebra A, 2(A) is a Lie algebra. This is proved in [1] for
Jordan algebras with unit element. If A does not have a unit element,
adjoin 1 to get the Jordan algebra Ax. The Lie algebra 8(AL) has a
subalgebra HAl(A) 0 i 0 Ϊ , where HAl(A) is the enveloping Lie algebra
of the multiplications in A1 by elements of A. This subalgebra has
a homomorphic image obtained by restricting the elements of HAl(A)
to A. But this image is &(A), so 2(A) is a Lie algebra.

In conclusion, it might be interesting to find an example of a
commutative admissible algebra A with unit element with an ideal
M which fails to satisfy the conditions of the theorem. Such an A
eould not be a Jordan algebra or an associative algebra.
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