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ALGEBRAS FORMED BY THE ZORN VECTOR MATRIX

TAE-IL SUH

In the Zorn vector matrix algebra the three dimensional
vector algebra is replaced by a finite dimensional Lie algebra
L over a field of characteristic not 2 equipped with an as-
sociative symmetric bilinear form (a, b) and having the pro-
perty: [α[6c]] = (α, c)b — (α, b)c, a,b, ce L. We determine all
the alternative algebras 21 obtained in this way: If the bilinear
form (a, b) on L is nondegenerate then % is the split Cayley
algebra or a quaternion algebra. For a degenerate form (a, b),
2ί is a direct sum of its radical and a subalgebra which is
either a quaternion or two dimensional separable algebra. As
an immediate consequence of the first result we have shown
that if the bilinear form on the Lie algebra L is nondegenerate
then L is simple with dimension three or one.

Let Φ be a field of characteristic not two throughout this paper.
Let A be an anti-commutative algebra over Φ with a symmetric
bilinear form (α, h) which is associative, i.e., (αc, 6) = (a, cb), a,b, ce A,
and we consider the set 2ί of 2 x 2 vector matrices of the form:

a a

21 is a vector space Φ under the usual addition, +, and multiplication
by scalars. A multiplication in 2ί ([5] and [2]) is defined to be:

la a\

[b β)

la a\h c\ lay — (α, d), ac + δa + bd

[b β)\d δ) ~~ 176 + βd + αc, βδ - (6, c)

Then 21 is a flexible algebra over Φ in the sense that

(xy)x = x(yx), x,ye$ί .

Furthermore 2ί is an alternative algebra over Φ, i.e., x2y — x(xy) and
(yx)x = yx2, x, y e 21 if and only if the anti-commutative algebra A has
the following property:

(2) a(bc) = (a, c)b — (a, b)c, a, δ, c e A .

This is checked easily by a comparison of entries of vector matrices
x2y and x(xy). We note that this property implies the Jacobi identity:
a(bc) + b(ca) + c(ab) = 0 and A is a Lie algebra over the field Φ.

We shall determine all the alternative algebras over Φ which are
constructed from the Lie algebras with (2) by the Zorn vector matrices.
First we determine all the Lie algebras with (2) and let L be a finite
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dimensional Lie algebra over Φ equipped with an associative symmetric
bilinear form (a, 6) and having the property (2). We return to writ-
ing [a b] in place of ab. Set LL — {a e L | (a, b) = 0, b e L} the radical
of the bilinear form. If the bilinear form (a, b) is nondegenerate,
i.e., LL = 0, it follows from (2) that L is a simple Lie algebra. On
the other hand, if (a, b) is degenerate we have the following.

LEMMA. // the bilinear form (a, b) is degenerate, then the Lie
algebra L is nilpotent with If = 0 or L = Φu + L1 where L1 is a
nonzero abelian ideal and (ad u)2\L± = pi, p = — (u,u)Φθ in Φ.

Proof. If I/1 = L, the condition (2) implies If = 0. In the rest
of the proof we assume that L 1 Φ L, and L1 is a nonzero proper
ideal of L. There exists an element u Φ 0 in L which is not in L 1 and
satisfies (u, u) φ 0. Let (yί9 y2, , ym) be a basis for LL.

(ad uf |Λi = —(u, u)I

because we have (ad ufyi = [u[u, y{]] = —(u1u)yi for all yi9 Since

p = —(u,u)Φθ

in Φ, the mapping ad u is nonsingular on L1.

(ad u)[yif yά\ = (u, y ^ - (u, y>ιyά = 0

for all i,j imply [yif yά] = 0 which means L1 abelian. Finally we show
that L is the direct sum of two subspaces Φu and L1. Let x be any
element of L, not in L1. (ad u)[x, y^\ = —(u, x)y{ and set τ = —(u, x).
Then (ad n)ad(τu — px) \LL = 0. Since ad u is nonsingular on L 1,
ad(τu — px) \L± = 0. We wish to show that (y, τu — px) = 0 for any
y of L, which is equivalent to saying that xeΦu + LL. Since
[τu — px, y{] = 0 for all yt of the basis for L 1, 0 = [y[τu — px, y^] —
— (y, τu — px)y{. This has completed our proof.

Now we first take up the case the bilinear form (a, b) on the
Lie algebra L is nondegenerate. It is known ([2]) that (a, b) on L
is nondegenerate if and only if the algebra 3ί constructed from L is
simple. Since the alternative algebra 2ί is simple, §1 is the split
Cayley algebra or an associative algebra ([1]). We consider the latter
case and follow Sagle's argument in [3]. Let

(a a\ h c\ (X g\

be any elements of St. By a comparison of (l,l)-entries of (xy)z =
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x(yz) we have ([δ d], h) = (a, [c g]). Without loss of generality we
may take a = 0 and we have ([δ d], h) = 0 for all heL. It follows
from the nondegeneracy that [b d] — 0 for all b, d of L, i.e., U = 0.
From 0 = [α[δ c]] = (α, c)δ — (α, δ)c, we have dim L = 1 and therefore
2ί is a quaternion algebra. Hence we have the following

THEOREM 1. Let L be a finite dimensional Lie algebra over a
field Φ of characteristic Φ2 equipped with an associative symmetric
bilinear form (α, δ) and having the property (2). // (α, δ) is non-
degenerate, then 21 is the split Cayley algebra or a quaternion
algebra.

A similar consideration to this theorem is given in [3]. As an
immediate consequence of the theorem we have

COROLLARY. Let L be as in Theorem 1. If the bilinear form
(a, b) is nondegenerate L is simple with dimensionality three or one.

Next we consider the remaining case, that is, (α, δ) on L is de-
generate. Let (ulf u2, , un) be a basis for L over Φ and we set

ί

0

0

1

3 ]

o

1

lo
1 >

°)
oj '

e,l =
1°U

ί

°̂
I

0
1

s = 1, 2, , n .

These form a basis for the algebra 5ί over Φ. Let L = Φu + L1 be
as in lemma and take the basis for L to be uγ — u and (u21 , wΛ)
a basis for the abelian ideal LL. We have the following multiplica-
tion table for SI:

eϊίβt = 0 ,

pet if (s, ί) = (1,1) ,
0 otherwise,

0 if s, t = 2, 3, . . . , n,

otherwise-i
where i, j , k = 1, 2; i it k; s, t = 1, 2, * , n and »Aί is a 2 x 2 vector
matrix with 0 for all entries except for (&, i)-entry [us ut]. The e\l]

and e{

2\\ s = 2, 3, , n are all properly nilpotent and therefore generate
the radical 9Ϊ of 21 (Zorn Theorem 3.7 in [4]). It follows that 21 =
@ + 9̂  (direct sum) where @ is a quaternion subalgebra with basis
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(e19 e2, eίl\ e(

2\
]). We note that this quaternion subalgebra @ is the

same as one given in Theorem 1. Now we consider the remaining
case: L1 = L and L is nilpotent with U = 0. Take a basis

(u19 * - - , u m , •••, w Λ )

for L such that (um+1, — ,un) is a basis for the abelian ideal L2 of
L. We have

[^ Uj] e 17,1 ^ i, j ^ m and

[^ ^.] = 0 otherwise.

The multiplication table for St is as follows:

ί = 0 ,

(^ s,^)β, - 0 ,

where i, j , k = 1, 2; i Φ k; s, t = 1, 2, , n and xM is as before. The
e[s

k\ i Φ k, s = 1,2, * ,n are all properly nilpotent and generate the
radical 9i of St. Hence SI is a direct sum of $β and a separable sub-
algebra Φβi + Φe2. We have proved the following

THEOREM 2. Let L be as in Theorem 1. // the bilinear form
(a, b) is degenerate, then the algebra SI constructed from L is a direct
sum of its radical ΐfl and a subalgebra @ where @ is either a qu-
aternion or ^-dimensional separable algebra.

BIBLIOGRAPHY

1. E. Kleinfeld, Simple alternative rings, Ann. of Math. 58 (1953), 544-547.
2. L. J. Paige, A note on noncommutative Jordan algebras, Portugaliae Math. 16
(1957), 15-18.
3. A. A. Sagle, Simple algebras that generalize the Jordan algebra Mz%, Canad. J.
Math. 18 (1966) 282-290.
4. R. D. Schafer, An introduction to nonassociative algebras, New York, Academic
Press, 1966.
5. M. Zorn, Theorie der alternativen Ringe, Abh. Math. Seit. Hamb. Univ. 8 (1930),
123-147.

Received November 1, 1968. This research was supported in part by the National
Science Foundation under the grant AYE GY 3900.

EAST TENNESSEE STATE UNIVERSITY

JOHNSON CITY, TENNESSEE




