## ALGEBRAS FORMED BY THE ZORN VECTOR MATRIX

TAE-IL Suh


#### Abstract

In the Zorn vector matrix algebra the three dimensional vector algebra is replaced by a finite dimensional Lie algebra $L$ over a field of characteristic not 2 equipped with an associative symmetric bilinear form $(a, b)$ and having the property: $[a[b c]]=(a, c) b-(a, b) c, a, b, c \in L$. We determine all the alternative algebras $\mathfrak{U}$ obtained in this way: If the bilinear form $(a, b)$ on $L$ is nondegenerate then $\mathfrak{d}$ is the split Cayley algebra or a quaternion algebra. For a degenerate form $(a, b)$, $\mathscr{U}$ is a direct sum of its radical and a subalgebra which is either a quaternion or two dimensional separable algebra. As an immediate consequence of the first result we have shown that if the bilinear form on the Lie algebra $L$ is nondegenerate then $L$ is simple with dimension three or one.


Let $\Phi$ be a field of characteristic not two throughout this paper. Let $A$ be an anti-commutative algebra over $\Phi$ with a symmetric bilinear form $(a, b)$ which is associative, i.e., $(a c, b)=(a, c b), a, b, c \in A$, and we consider the set $\mathfrak{N}$ of $2 \times 2$ vector matrices of the form:

$$
\left(\begin{array}{ll}
\alpha & a \\
b & \beta
\end{array}\right), \alpha, \beta \in \Phi ; a, b \in A
$$

$\mathfrak{A}$ is a vector space $\Phi$ under the usual addition, + , and multiplication by scalars. A multiplication in $\mathfrak{A}$ ([5] and [2]) is defined to be:

$$
\left(\begin{array}{ll}
\alpha & a  \tag{1}\\
b & \beta
\end{array}\right)\left(\begin{array}{ll}
\gamma & c \\
d & \delta
\end{array}\right)=\binom{\alpha \gamma-(a, d), \alpha c+\delta \alpha+b d}{\gamma b+\beta d+a c, \beta \delta-(b, c)}
$$

Then $\mathfrak{A}$ is a flexible algebra over $\Phi$ in the sense that

$$
(x y) x=x(y x), x, y \in \mathfrak{A}
$$

Furthermore $\mathfrak{X}$ is an alternative algebra over $\Phi$, i.e., $x^{2} y=x(x y)$ and $(y x) x=y x^{2}, x, y \in \mathfrak{Z}$ if and only if the anti-commutative algebra $A$ has the following property:

$$
\begin{equation*}
a(b c)=(a, c) b-(a, b) c, a, b, c \in A \tag{2}
\end{equation*}
$$

This is checked easily by a comparison of entries of vector matrices $x^{2} y$ and $x(x y)$. We note that this property implies the Jacobi identity: $a(b c)+b(c a)+c(a b)=0$ and $A$ is a Lie algebra over the field $\Phi$.

We shall determine all the alternative algebras over $\Phi$ which are constructed from the Lie algebras with (2) by the Zorn vector matrices. First we determine all the Lie algebras with (2) and let $L$ be a finite
dimensional Lie algebra over $\Phi$ equipped with an associative symmetric bilinear form ( $a, b$ ) and having the property (2). We return to writing [ $a b$ ] in place of $a b$. Set $L^{\perp}=\{a \in L \mid(a, b)=0, b \in L\}$ the radical of the bilinear form. If the bilinear form $(a, b)$ is nondegenerate, i.e., $L^{\perp}=0$, it follows from (2) that $L$ is a simple Lie algebra. On the other hand, if $(a, b)$ is degenerate we have the following.

Lemma. If the bilinear form $(a, b)$ is degenerate, then the Lie algebra $L$ is nilpotent with $L^{3}=0$ or $L=\Phi u+L^{\perp}$ where $L^{\perp}$ is a nonzero abelian ideal and (ad $u)\left.^{2}\right|_{L^{\perp}}=\rho I, \rho=-(u, u) \neq 0$ in $\Phi$.

Proof. If $L^{\perp}=L$, the condition (2) implies $L^{3}=0$. In the rest of the proof we assume that $L^{\perp} \neq L$, and $L^{\perp}$ is a nonzero proper ideal of $L$. There exists an element $u \neq 0$ in $L$ which is not in $L^{\perp}$ and satisfies $(u, u) \neq 0$. Let $\left(y_{1}, y_{2}, \cdots, y_{m}\right)$ be a basis for $L^{\perp}$.

$$
\left.(a d u)^{2}\right|_{L^{\perp}}=-(u, u) I
$$

because we have $(a d u)^{2} y_{i}=\left[u\left[u, y_{i}\right]\right]=-(u, u) y_{i}$ for all $y_{i}$. Since

$$
\rho=-(u, u) \neq 0
$$

in $\Phi$, the mapping ad $u$ is nonsingular on $L^{\perp}$.

$$
(a d u)\left[y_{i}, y_{j}\right]=\left(u, y_{j}\right) y_{i}-\left(u, y_{i}\right) y_{j}=0
$$

for all $i, j$ imply $\left[y_{i}, y_{j}\right]=0$ which means $L^{\perp}$ abelian. Finally we show that $L$ is the direct sum of two subspaces $\Phi u$ and $L^{\perp}$. Let $x$ be any element of $L$, not in $L^{\perp} . \quad(a d u)\left[x, y_{i}\right]=-(u, x) y_{i}$ and set $\tau=-(u, x)$. Then $\left.(a d u) a d(\tau u-\rho x)\right|_{L^{\perp}}=0$. Since $a d u$ is nonsingular on $L^{\perp}$, $\left.a d(\tau u-\rho x)\right|_{L^{\perp}}=0$. We wish to show that $(y, \tau u-\rho x)=0$ for any $y$ of $L$, which is equivalent to saying that $x \in \Phi u+L^{\perp}$. Since $\left[\tau u-\rho x, y_{i}\right]=0$ for all $y_{i}$ of the basis for $L^{\perp}, 0=\left[y\left[\tau u-\rho x, y_{i}\right]\right]=$ $-(y, \tau u-\rho x) y_{i}$. This has completed our proof.

Now we first take up the case the bilinear form $(a, b)$ on the Lie algebra $L$ is nondegenerate. It is known ([2]) that ( $a, b$ ) on $L$ is nondegenerate if and only if the algebra $\mathfrak{A}$ constructed from $L$ is simple. Since the alternative algebra $\mathfrak{A}$ is simple, $\mathfrak{A}$ is the split Cayley algebra or an associative algebra ([1]). We consider the latter case and follow Sagle's argument in [3]. Let

$$
x=\left(\begin{array}{ll}
\alpha & a \\
b & \beta
\end{array}\right), y=\left(\begin{array}{ll}
\gamma & c \\
d & \delta
\end{array}\right), z=\left(\begin{array}{ll}
\lambda & g \\
h & \mu
\end{array}\right)
$$

be any elements of $\mathfrak{A}$. By a comparison of (1,1)-entries of $(x y) z=$
$x(y z)$ we have $([b d], h)=(a,[c g])$. Without loss of generality we may take $a=0$ and we have $([b d], h)=0$ for all $h \in L$. It follows from the nondegeneracy that $[b d]=0$ for all $\mathrm{b}, d$ of $L$, i.e., $L^{2}=0$. From $0=[a[b c]]=(a, c) b-(a, b) c$, we have $\operatorname{dim} L=1$ and therefore $\mathfrak{H}$ is a quaternion algebra. Hence we have the following

Theorem 1. Let L be a finite dimensional Lie algebra over a field $\Phi$ of characteristic $\neq 2$ equipped with an associative symmetric bilinear form $(a, b)$ and having the property (2). If $(a, b)$ is nondegenerate, then $\mathfrak{A}$ is the split Cayley algebra or a quaternion algebra.

A similar consideration to this theorem is given in [3]. As an immediate consequence of the theorem we have

Corollary. Let $L$ be as in Theorem 1. If the bilinear form $(a, b)$ is nondegenerate $L$ is simple with dimensionality three or one.

Next we consider the remaining case, that is, $(a, b)$ on $L$ is degenerate. Let $\left(u_{1}, u_{2}, \cdots, u_{n}\right)$ be a basis for $L$ over $\Phi$ and we set

$$
\begin{gathered}
e_{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad e_{2}=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right), \\
e_{12}^{(s)}=\left(\begin{array}{cc}
0 & u_{s} \\
0 & 0
\end{array}\right), \quad e_{21}^{(s)}=\left(\begin{array}{ll}
0 & 0 \\
u_{s} & 0
\end{array}\right), \quad s=1,2, \cdots, n .
\end{gathered}
$$

These form a basis for the algebra $\mathfrak{A}$ over $\Phi$. Let $L=\Phi u+L^{\perp}$ be as in lemma and take the basis for $L$ to be $u_{1}=u$ and $\left(u_{2}, \cdots, u_{n}\right)$ a basis for the abelian ideal $L^{\perp}$. We have the following multiplication table for $\mathfrak{N}$ :

$$
\begin{aligned}
& e_{i} e_{j}=\delta_{i j} e_{i}, \\
& e_{i} e_{i k}^{(s)}=e_{i k}^{(s)} e_{k}=e_{i k k}^{(s)}, \\
& e_{k} e_{i k}^{(s)} e_{i}=e_{i k}^{(s)} e_{i}=0, \\
& e_{i k}^{(s)} e_{k i}^{(t)}=\left\{\begin{array}{l}
\rho e_{i} \text { if }(s, t)=(1,1), \\
0 \text { otherwise }
\end{array}\right. \\
& e_{i k}^{(s)} e_{i k}^{(t)}=-e_{i k}^{(t)} e_{i k}^{(s)}=\left\{\begin{array}{l}
0 \text { if } s, t=2,3, \cdots, n \\
x_{k i} \text { otherwise }
\end{array}\right.
\end{aligned}
$$

where $i, j, k=1,2 ; i \neq k ; s, t=1,2, \cdots, n$ and $x_{k i}$ is a $2 \times 2$ vector matrix with 0 for all entries except for $(k, i)$-entry $\left[\begin{array}{ll}u_{s} & u_{t}\end{array}\right]$. The $e_{12}^{(s)}$ and $e_{21}^{(s)}, s=2,3, \cdots, n$ are all properly nilpotent and therefore generate the radical $\mathfrak{R}$ of $\mathfrak{A}$ (Zorn Theorem 3.7 in [4]). It follows that $\mathfrak{X}=$ $\mathfrak{S}+\mathfrak{R}$ (direct sum) where $\mathfrak{S}$ is a quaternion subalgebra with basis
$\left(e_{1}, e_{2}, e_{12}^{(1)}, e_{21}^{(1)}\right)$. We note that this quaternion subalgebra $\mathcal{S}$ is the same as one given in Theorem 1. Now we consider the remaining case: $L^{\perp}=L$ and $L$ is nilpotent with $L^{3}=0$. Take a basis

$$
\left(u_{1}, \cdots, u_{m}, \cdots, u_{n}\right)
$$

for $L$ such that $\left(u_{m+1}, \cdots, u_{n}\right)$ is a basis for the abelian ideal $L^{2}$ of $L$. We have

$$
\left.\begin{array}{l}
{\left[\begin{array}{ll}
u_{i} & u_{j}
\end{array}\right] \in L^{2}, 1 \leqq i, j \leqq m \text { and }} \\
{\left[u_{i}\right.} \\
u_{j}
\end{array}\right]=0 \text { otherwise } . ~ \$
$$

The multiplication table for $\mathfrak{A}$ is as follows:

$$
\begin{aligned}
& e_{i} e_{j}=\delta_{i j} e_{i}, \\
& e_{i} e_{i k}^{(s)}=e_{i k}^{(s)} e_{k}=e_{i k}^{(s)}, \\
& e_{k} e_{i k}^{(s)}=e_{i k}^{(s)} e_{i}=0, \\
& e_{i k}^{(s)} e_{k i}^{(t)}=-\left(u_{s}, u_{t}\right) e_{i}=0, \\
& e_{i k}^{(s)} e_{i k}^{(t)}=x_{k i}
\end{aligned}
$$

where $i, j, k=1,2 ; i \neq k ; s, t=1,2, \cdots, n$ and $x_{k i}$ is as before. The $e_{i k}^{(s)}, i \neq k, s=1,2, \cdots, n$ are all properly nilpotent and generate the radical $\mathfrak{R}$ of $\mathfrak{N}$. Hence $\mathfrak{N}$ is a direct sum of $\mathfrak{R}$ and a separable subalgebra $\Phi e_{1}+\Phi e_{2}$. We have proved the following

Theorem 2. Let $L$ be as in Theorem 1. If the bilinear form $(a, b)$ is degenerate, then the algebra $\mathfrak{A}$ constructed from $L$ is a direct sum of its radical $\mathfrak{R}$ and a subalgebra $\mathfrak{S}$ where $\mathfrak{S}$ is either a quaternion or 2-dimensional separable algebra.

## Bibliography

1. E. Kleinfeld, Simple alternative rings, Ann. of Math. 58 (1953), 544-547.
2. L. J. Paige, A note on noncommutative Jordan algebras, Portugaliae Math. 16 (1957), 15-18.
3. A. A. Sagle, Simple algebras that generalize the Jordan algebra $M_{3}{ }^{8}$, Canad. J. Math. 18 (1966) 282-290.
4. R. D. Schafer, An introduction to nonassociative algebras, New York, Academic Press, 1966.
5. M. Zorn, Theorie der alternativen Ringe, Abh. Math. Seit. Hamb. Univ. 8 (1930), 123-147.

Received November 1, 1968. This research was supported in part by the National Science Foundation under the grant AYE GY 3900.

East Tennessee State University
Johnson City, Tennessee

