ELLIPTIC DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

D. P. Squier

$$
\begin{aligned}
& \text { The purpose of this paper is to furnish a proof of the } \\
& \text { following theorem: } \\
& \text { Theorem. } D_{1} \text { and } D_{2} \text { are two disjoint open sets in the } x y \text { - } \\
& \text { plane having the open arc } \sigma \text { as a common boundary. } L_{\imath} \text { in } \\
& \begin{array}{c}
D_{i}, i=1,2, \text { are defined as }
\end{array} \qquad \begin{array}{r}
L_{i}(\phi) \equiv a_{i} \phi_{x x}+2 b_{i} \phi_{x y}+c_{i} \phi_{y y}+d_{i} \phi_{x} \\
\quad+e_{i} \phi_{y}+g_{i} \phi, a_{\imath} c_{i}-b_{i}^{2}>0
\end{array}
\end{aligned}
$$

Functions u_{i} satisfy $L_{i}\left(u_{i}\right)=f_{i}$ in D_{i}, with $u_{i} \in C^{2}$ in D_{\imath} and $\in C^{1}$ in $D_{\imath} U_{\sigma}$; on $\sigma, u_{1}=u_{2}$ and $\partial u_{1} / \partial N_{1}=k(s) \partial u_{2} / \partial N_{2}$, where s is arc length on $\sigma, k(s)>0$, and $\partial u_{i} / \partial N_{i}$ denotes the conormal derivative of u_{\imath}. If, on $D_{i} U \sigma, a_{i}, b_{i}, c_{i} \in C_{\alpha}^{n+2} ; d_{i}, e_{i}, g_{i}, f_{i} \in C_{\alpha}^{n}$; $k \in C_{\alpha}^{n+2}$ and $\sigma \in C_{\alpha}^{n+3}$; then $u_{i} \in C^{n+2}$ on $D_{i} U \sigma$ for $n \geqq 0$. If all indicated quantities are analytic functions of their arguments and σ is an analytic arc, then u_{i} is analytic on $D_{i} U \sigma$.

Here $u \in C_{\alpha}^{n}$ on G means the nth order derivatives of u satisfy a uniform Hölder condition with exponent α on every compact subset of G. The conormal derivative

$$
\partial u_{i} / \partial N_{i}=\left(\alpha_{i} r+b_{i} s\right) u_{x}+\left(b_{i} r+c_{i} s\right) u_{y}, r^{2}+s^{2}=1,
$$

uses the same unit normal (r, s) to σ for $i=1$ or 2 ; this normal may point into D_{1} or it may point into D_{2}.

Such elliptic equations occur in physical problems involving continuous media of different properties. Smoothness of solutions plays an important role in the numerical analysis of such problems [7], [6].

Oleinik [5] has investigated the smoothness of solutions to such problems in several dimensions starting with weaker differentiability hypotheses on the u_{i}. This work differs from hers in that here analyticity is proved, and no restriction on g_{i} is required for uniqueness of solutions is not required in the proof. The proof here is also along different lines since the restriction to two dimensions allows the use of conformal mapping and the Beltrami differential equation to bring L_{i} to normal form, allowing previous results of the author [8] to be applied.
2. Since the proof of the theorem is based on coordinate transformations it is essential to examine how the various coefficients and the problem as a whole are altered under point transformations. With the symbolism
(1) $\quad \nabla_{x y}=\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}, \quad J=\left(\begin{array}{cc}\phi_{x} & \psi_{x} \\ \phi_{y} & \psi_{y}\end{array}\right), \quad H=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$,

$$
\nabla_{x y}=J \nabla_{\xi \eta}, \quad J \text { nonsingular }, \quad A^{T} \equiv \text { transpose of } A,
$$

the second-order terms (principal part) in

$$
\left(\nabla_{x y}^{T} H \nabla_{x y}\right) u
$$

give $a u_{x x}+2 b u_{x y}+c u_{y y}$. Under the transformation $\xi=\phi(x, y), \eta=$ $\psi(x, y)$,

$$
\begin{equation*}
\nabla_{x y}^{T} H \nabla_{x y}=\left(J \nabla_{\xi \eta}\right)^{T} H J \nabla_{\xi \eta} . \tag{2}
\end{equation*}
$$

Thus the principal part of the right side in $\xi-\eta$ coordinates is associated with the matrix $J^{T} H J$. An arc σ in the $x y$-plane $h(x, y)=0$ become $h^{*}(\varepsilon, \eta)=0$ and the normals $\nabla_{x y} h$ and $\nabla_{\xi \eta} h^{*}$ satisfy

$$
\nabla_{x y} h=J \nabla_{\xi \eta} h^{*}
$$

Thus the conormal direction in the $x y$-plane

$$
\begin{equation*}
\frac{1}{\|\nabla h\|} H \nabla h=N \tag{3}
\end{equation*}
$$

becomes in the $\xi \eta$ plane

$$
N^{*}=\frac{1}{\left\|\nabla h^{*}\right\|} J^{T} H J \nabla h^{*}=\frac{1}{\left\|J^{-1} \nabla h\right\|} J^{r} H \nabla h
$$

And the conormal derivative $N^{T} \nabla_{x y} u$ becomes $\left(N^{*}\right)^{T} \nabla_{\xi \eta} u$ with

$$
\begin{align*}
\left(N^{*}\right)^{T} \nabla_{\xi \eta} u & =\frac{1}{\left\|J^{-1} \nabla h\right\|}(\nabla h)^{T} H^{T} J J^{-1} \nabla_{x y} u \tag{4}\\
& =\frac{\|\nabla h\|}{\left\|J^{-1} \nabla h\right\|} N^{T} \nabla_{x y} u
\end{align*}
$$

where || || is the usual Euclidean length of a vector.
Under a transformation of class C_{α}^{n} with nonvanishing Jacobian an arc of class C_{α}^{n} is transformed into an arc of class C_{α}^{n} and corresponding arc length parameters are connected by an invertible transformation of class C_{α}^{n}, if $n \geqq 1$.

Thus in the theorem, if $D_{1} U D_{2} U \sigma$ is subjected to a (nonsingular) transformation of class C_{α}^{n+3}, the problem transforms into a problem of the same type. A similar statement holds in the analytic case if the transformation is analytic.

The plan of proof is to map σ into the x-axis and the principal
parts of L_{i} into Laplacian operators, then apply the results of [8]. In [8], the theorem has been proved for Laplacian principal parts for k constant, but the proof carries through for k variable, though the second derivatives of k will appear in the coefficients of first order derivative terms of the modified equations.

The theorem is proved for a neighborhood of a point on σ; then a Heine-Borel argument extends the result to a neighborhood of σ.
3. If σ is analytic and p_{0} is a point on σ, there is a conformal map (nonsingular) taking p_{0} into the origin and a neighborhood of p_{0} onto a neighborhood of the origin in such a way that the points on σ are mapped onto the x-axis. Since the mapping is one to one and analytic both ways, the problem becomes one of proving the analytic case of the theorem when σ is the x-axis and D_{1} is the region $y>0, D_{2}$ the region $y<0$.

As is known, $L(u)=a u_{x x}+2 b u_{x y}+c u_{y y}$ may be brought to a form with Laplacian principal part by a transformation $\xi=\phi(x, y)$ $\eta=\psi(x, y)$ if ϕ, ψ satisfy the Beltrami system

$$
\phi_{x}=\frac{b \psi_{x}+c \psi_{y}}{\delta}
$$

$$
\begin{equation*}
\delta^{2}=a c-b^{2}>0 \tag{5}
\end{equation*}
$$

and are at least twice continuously differentiable. Indeed

$$
\begin{equation*}
L(u)=\left(a \psi_{x}^{2}+2 b \psi_{x} \psi_{y}+c \psi_{y}^{2}\right)\left(V_{\xi n}^{2} u\right)+\text { lower terms } \tag{6}
\end{equation*}
$$

where the lower terms involve the second derivatives of ψ and first derivatives of u.

With $\delta_{i}^{2}=a_{i} c_{i}-b_{i}^{2}>0$ and the notation of the theorem, we solve the initial value problems

$$
\begin{align*}
& \frac{\partial}{\partial x}\left(\frac{a_{i} \psi_{i x}+b_{i} \psi_{i y}}{\delta_{i}}\right)+\frac{\partial}{\partial y}\left(\frac{b_{i} \psi_{i x}+c_{i} \psi_{i y}}{\delta_{i}}\right)=0 \\
& \text { with } \psi_{i}(x, 0)=0, \psi_{i y}(x, 0)=\frac{\delta i}{c_{i}}, i=1,2 \tag{7}
\end{align*}
$$

Since $a_{i}, b_{i}, c_{i}, \delta_{i}$ are all analytic, (7) is an elliptic second order linear equation with analytic coefficients with prescribed analytic initial data. By the Cauchy-Kowaleski theorem there exists in a neighborhood of the x-axis a unique analytic ψ_{i} satisfying the initial value problem. Both ψ_{1} and ψ_{2} are two-sided solutions since the a_{i}, etc., are analytic in a two-sided neighborhood of σ. From (7) it follows that the righthand side of (5) are components of the gradient of a scalar ϕ, which may be constructed from the gradient by a line integral

$$
\begin{equation*}
\phi_{i}(x, y)=\int_{(0,0)}^{(x, y)} \frac{b_{i} \psi_{i x}+c_{i} \psi_{i y}}{\delta_{i}} d x-\frac{a_{i} \psi_{i x}+b_{i} \psi_{i y}}{\delta_{i}} d y . \tag{8}
\end{equation*}
$$

Since by (7) the integral is independent of path, the path for computing $\phi_{i}(x, 0)$ is the x-axis. Since $\psi_{i x}(x, 0)=0$ from the initial values, $\phi_{i}(x, 0)=x, i=1,2$.

The transformation $\xi=\dot{\phi}_{i}(x, y), \eta=\dot{\psi}_{i}(x, y), x, y$ in $D_{i} U \sigma$ maps a neighborhood of the origin in the $x y$-plane onto a neighborhood of the origin in the $\xi \eta$-plane with the x-axis mapped onto the ξ-axis. The portion $y>0$ is mapped onto $\eta>0$; and $y<0$ onto $\eta<0$.
The Jacobian

$$
\left|\begin{array}{cc}
\phi_{i x} & \phi_{i y} \\
\psi_{i x} & \psi_{i y}
\end{array}\right|=\left|\begin{array}{cc}
\frac{c_{i}}{\delta_{i}} \psi_{i y} & \dot{\phi}_{i y} \\
0 & \psi_{i y}^{\prime}
\end{array}\right|=\frac{\delta_{i}}{c_{i}}>0
$$

on $y=0$ and, therefore, the mapping in each region, analytically continuable into the other, is invertible, the inverse being analytic. The problem in the theorem is now reduced to one in which the equations have Laplacian principal parts (after division by ($a_{i} \psi_{i x}^{2}+$ $2 b_{i} \psi_{i x} \psi_{i y}+c_{i} \psi_{i y}^{2}$) as indicated in (6) with $i=1$ for $\eta>0, i=2$ for $\eta<0$) and σ is the ξ-axis. By [8], the solutions have the analyticity property on the ξ-axis, i.e., the solution in the region $\eta>0$ is analytically continuable into the lower region $\eta<0$ and conversely. Since every mapping from the original problem to this canonical problem has nonvanishing Jacobian on σ, the inverses are also analytic in a neighborhood of p_{0} on σ and, therefore, the solutions of the equations have the analyticity property on σ.

Since with each point on σ there is a neighborhood of the point in which the solutions are analytic, it is possible to cover any closed subarc of σ with a finite number of such neighborhoods which overlap. The solutions are analytic in the union of these neighborhoods.
4. In the nonanalytic case of the theorem, there is a mapping of class C_{α}^{n+3} with nonvanishing Jacobian taking p_{0} on σ into the origin and a neighborhood of p_{0} into a neighborhood of the origin in such a way that σ maps onto the x-axis with D_{1} mapped into $y>0$ and D_{2} into $y>0$. This is by definition of $\sigma \in C_{\alpha}^{n+3}$. Thus, as before, we may assume in the theorem that σ is the x-axis. Again we use the Beltrami system to bring $L_{i}(u)$ into Laplacian principal part by solving (7). (7) is a linear second order elliptic equation with coefficients in C_{α}^{n+1}. However, the Cauchy-Kowaleski theorem cannot be used to establish the existence of the desired mapping because the data is not analytic. Instead, the Schauder theory gives the existence.

We let K_{1} be a curve in $D_{1} U \sigma$ of class C_{α}^{n+3} coinciding with a segment of the x-axis containing the origin in the middle of the segment. From the Schauder theory there exists $\psi_{1}(x, y)$ of class C_{α}^{n+3} in the closed region bounded by K_{1} satisfying (7) and assuming on K_{1} the boundary values $\psi_{1}=y$. By Hopf's theorem [2], $\psi_{1 y}(x, 0)>0$. The ϕ in (5) is again reconstructed from its gradient by a line integral as in (8), the curve being confined to the closure of the region bounded by K_{1}. The Jacobian of the transformation $\xi=\phi_{1}(x, y), \eta=\psi_{1}(x, y)$ at $x=0, y=0$ is

$$
\left|\begin{array}{cc}
\dot{\phi}_{1 x} & \dot{\phi}_{1 y} \\
\dot{\psi}_{1 x} & \dot{\psi}_{1 y}
\end{array}\right|=\dot{\phi}_{1 x} \dot{\psi}_{1 y}=\frac{c_{1}}{\delta_{1}} \psi_{1 y}^{2}>0 .
$$

The function pair $\dot{\phi}_{1}, \psi_{1}$ can be extended into D_{2} as class C_{α}^{n+3} functions [1]. (This can easily be done for $x \in K_{1} \cap \sigma$. If

$$
h(x, y)=\sum_{j=0}^{n+3} \frac{\partial^{j} \psi_{1}(x, 0)}{\partial y^{j}} \frac{y^{j}}{j!}
$$

then $v(x, y)=\psi_{1}(x, y)-h(x, y)$ vanishes with its y derivatives of order $\leqq n+3$ for $y=0$. Thus v defined in D_{1} is easily extended into D_{2} by $v(x,-y)=v(x, y)$. If $V(x, y)$ is the extended $v, V \in C_{c x}^{n+3}$ in $D_{1} U \sigma U D_{2}$. $\psi(x, y)=V(x, y)+h(x, y)$ is therefore the desired extension of ψ_{1}.) Therefore, there is a class C_{α}^{n+3} transformation mapping a neighborhood of the origin in such a way that the x-axis goes into the ξ-axis, L_{1} transforms into an operator which has principal part equal to a (nonvanishing) scalar times the Laplacian, as in (6), and the Jacobian does not vanish in the neighborhood. L_{2} is also transformed into a linear second order elliptic operator. Both new equations are now divided by the coefficient of the Laplacian. Thus the theorem is now reduced to the case in which L_{1} is the Laplacian and σ is the x-axis.

We now use the Beltrami system to bring the current L_{2} to Laplacian principal part, proceeding initially as above to obtain $\phi_{2}(x, y)$ and $\psi_{2}(x, y)$ in $D_{2} U \sigma$ such that $\psi_{2}(x, 0)=0$. Then the following transformation is applied to a neighborhood of the origin:

$$
\left.\left.\begin{array}{cl}
\xi=\phi_{2}(x, y) \tag{9}\\
\eta=\psi_{2}(x, y)
\end{array}\right\} y \leqq 0 ; \quad \begin{array}{l}
\xi=\dot{\phi}_{2}(x, 0) \\
\eta=y
\end{array}\right\} y \geqq 0
$$

The mapping of D_{1} has a C_{α}^{n+3} extension into D_{2} and the mapping of D_{2} has a C_{α}^{n+3} extension into D_{1}. Both mappings agree on $y=0$ and have nonvanishing Jacobian at $(0,0)$.

$$
\begin{aligned}
L_{1}\left(u_{1}\right)= & {\left[c_{2}(x, 0) \dot{\psi}_{2 y}(c, 0) / \delta_{2}(x, 0)\right]^{2} u_{1 \xi \xi}+u_{1 \eta \eta} } \\
& + \text { derivatives of } u_{1} \text { of lower order }
\end{aligned}
$$

$$
\begin{aligned}
L_{2}\left(u_{2}\right)= & \left(a_{2} \psi_{2 x}^{2}+2 b_{2} \psi_{2 x} \psi_{2 y}+c_{2} \psi_{2 y}^{2}\right)\left(V_{\xi n}^{2} u_{2}\right) \\
& + \text { derivatives of } u_{2} \text { of lower order } .
\end{aligned}
$$

Thus

$$
\begin{align*}
& L_{1}\left(u_{1}\right) \equiv h^{2}(\xi) u_{1 \xi \xi}+u_{1 \eta \eta}+\cdots \tag{10}\\
& L_{2}\left(u_{2}\right) \equiv g(\xi, \eta) \nabla_{\xi \eta}^{2} u_{2}+\cdots
\end{align*}
$$

where h and g are positive and $\in C_{\alpha}^{n+2}$. On account of (9) and (4), the $k(\xi)$ for (10) is still of class C_{α}^{n+2}. (It is at this point that C_{α}^{n+3} transformations are required, rather than C_{α}^{n+2} because of the degrading of the differentiability of k at this step by introducing factors depending on the first derivatives of the transformation.) Division of the upper equation in (10) by $h^{2}(\xi)$ and the lower one by $g(\xi, \eta)$ yields

$$
\begin{align*}
& L_{1}\left(u_{1}\right)=u_{1 \xi \xi}+q^{2}(\xi) u_{1 \eta \eta}+\cdots \\
& L_{2}\left(u_{2}\right)=V_{\xi \eta}^{2} u_{2}+\cdots \tag{11}
\end{align*}
$$

the dots indicating terms involving u derivatives of order less than two. The $k(\xi)$ for (11) is just the k for (10) multiplied by $g(\xi, 0) / h^{2}(\xi)$. Thus the theorem has been reduced to the case (11) with σ the ξ-axis.

Returning to $x-y$ variables to avoid excessive notation we make the variable change $x=\xi, y=\eta / q(\xi)$ for $\eta \geqq 0, x=\xi, y=\eta$ for $\eta \leqq 0$. This leaves L_{2} unchanged, and brings L_{1} into

$$
\begin{equation*}
L_{1}\left(u_{1}\right)=u_{1 x x}+2 r(x) y u_{1 x y}+\left(r^{2} y^{2}+1\right) u_{1 y y}+\cdots \tag{12}
\end{equation*}
$$

where $r(x)=-q^{\prime} / q$. Thus the coefficients in the principal part of L_{1} meet with those of L_{2} to make them Lipschitz continuous throughout $C(0, \alpha)$, a circle in $D_{1} U \sigma U D_{2}$ centered at $(0,0)$ with radius a.

As in [8] we write $u_{1}=u+k w, u_{2}=u+w$ where u is even, w odd, and both $\in C^{1}$ in $C(0, a)$. This leads to an elliptic system as in [8], but somewhat more complicated. However, the coefficients of second order derivative terms are Lipschitz continuous, and as in (12), the x-derivative of those coefficients are Lipschitz in $C(0, a)$. By Theorem 4.3 in [3], $u, w \in C_{\alpha}^{1}$ in $C(0, a)$. Now the proof of Theorem 4.5 in [3] can be applied, modified to use only derivatives and difference quotients in the x-direction, noting that the v in that proof is of class C_{α}^{1} with one even component, one odd, but that in any case $v_{x} \in C_{\alpha}^{1}$. That proof puts u_{x}, w_{x} in C_{α}^{1} in $C(0, a)$. $u_{y y}$ and $w_{y y}$, for $y \geqq 0$, are expressed in terms of quantities which are of class C_{α} from the differential equations. Thus, for $y \geqq 0, u$ and w are of class C_{α}^{2}.

The further differentiability properties on u and w are obtained by differentiating the equations with respect to x (using always the known interior differentiability properties) and observing that u_{x}, w_{x} satisfy an elliptic system like u and w with the same boundary con-
ditions on $y=0$. Thus $u_{x}, w_{x} \in C_{\alpha}^{2}$ for $y \geqq 0$. The equations for $y \geqq 0$ are then differentiated with respect to y and solved for $u_{y y y}$ and $w_{y y y}$ in terms of quantities which are class C_{α}. The process may be repeated as often as is possible to differentiate the coefficients. The differentiability properties of u_{i} then follow.

This result gives three orders of differentiability more than the results in [5].
5. The theorem is valid if the solution pair u_{1}, u_{2} are initially known only to be in H_{2}^{1}. (Classes H_{p}^{m} are defined in [4], pp. 62-63.) By this, here, is meant that for any closed subset S^{*} of $S=D_{1} U \sigma U D_{2}$ there is a sequence of function pairs $\left(u_{i}^{j}, u_{2}^{j}\right), u_{i}^{j} \in C^{1}$ in $D_{i} U \sigma$, satisfying the conormal derivative condition of the theorem, such that u_{i}^{j} converges in the mean of order two to u_{i} on $S^{*} \cap D_{i}$ while the first order derivatives form a Cauchy sequence in mean of order two on $S^{*} \cap D_{i}$.

The proof will be merely sketched for the analytic case. The nonanalytic case is similar. Clearly the H_{2}^{2} hypotheses hold for the transformed problem, so it is sufficient to prove the result for the canonical form above, as in [8]. As there, $u_{2}=u+v, u_{1}=u+k v$ where u is even, v is odd; and u, v satisfy in S, which may be taken as the open circle $C(0, a)$ centered at $(0,0)$ with radius a,

$$
\int_{R^{*}} \frac{\partial u}{\partial n} d s=\int_{R} F_{1} d x d y, \quad \int_{R^{*}} \frac{\partial v}{\partial n} d s=\int_{R} F_{2} d x d y
$$

for almost all closed cells R in $C(0, a)$ [3]. Here F_{1} and F_{2} are linear combinations of u, v, f_{1}, f_{2}, and the first order derivatives of u and v as in [8] with bounded coefficients. By Theorem 4.3 in [3], u and v are of class C_{α}^{1} in $C(0, \alpha)$. Thus u_{i} is of class C_{α}^{1} on $D_{i} U \sigma$. The further results then follow.

References

1. M. R. Hestenes, Extension of the range of a differentiable function, Duke Math. J. 8 (1941), 183-192.
2. E. Hopf, A remark on linear elliptic differential equations of second order, Proc. Amer. Math. Soc. 3 (1952), 791-793.
3. C. B. Morrey, Second order elliptic systems of differential equations, Ann. of Math. Studies 33, Princeton Univ., 1954, 101-159.
4. C. B. Morrey, Multiple Integrals in the Calcuius of Variations, Springer-Verlag, New York, 1966.
5. O. A. Oleinik, Boundary value problems for linear equations of elliptic parabolic type with discontinuous coefficients, Amer. Math. Soc. Translations (2) 42, 175-194.
6. J. W. Sheldon, Algebraic approximations for Laplace's equation, MTAC, 12 (1958), 174-186.
7. J. Sheldon and D. Squier, Remarks on the order of convergence of discrete analogs for second-order elliptic equations, SIAM Review 4 (1962), 366-378.
8. D. P. Squier, Regularity properties at interfaces of solutions of elliptic equations, Contributions to Differential Equations 1 (1963), 453-459.

Received August 19, 1968.
Colorado State University

