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ELLIPTIC DIFFERENTIAL EQUATIONS WITH
DISCONTINUOUS COEFFICIENTS

D. P. SQUIER

The purpose of this paper is to furnish a proof of the
following theorem:

THEOREM. A and A are two disjoint open sets in the xy-
plane having the open arc a as a common boundary. L% in
A, i — 1, 2, are defined as

Liiφ) = diφxx + 2bτφxy + Ciφyy + diφx

+ βiφy + giφ, aτcι — bi > 0 .

Functions uι satisfy Li(v,i) = fi in A, with UiβC2 in A and
eC1 in AC/tf; on σ, Ui = u2 and duJdNi = k(sβu2/dN2, where

s is arc length on <r, &(s) > 0, and dUi/dNi denotes the conormal
derivative of ut. If, on DiUo,cbi,bi, d£CZ+2', difeif gif fi£Cΐ',
k e Ca+2 and a e C«+3; then m e O+2 on ΏiXJa for n ^ 0. If all
indicated quantities are analytic functions of their arguments
and 6 is an analytic arc, then u% is analytic on Ώiϋa.

Here ueC% on G means the n th order derivatives of n satisfy a
uniform Holder condition with exponent a on every compact subset of
G. The conormal derivative

(ap + M)ifτ + (64r + ĉ s)?̂ ^ r2 + s2 = 1 ,

uses the same unit normal (r, s) to σ for i = 1 or 2; this normal may
point into A or it may point into A

Such elliptic equations occur in physical problems involving con-
tinuous media of different properties. Smoothness of solutions plays
an important role in the numerical analysis of such problems [7], [6].

Oleinik [5] has investigated the smoothness of solutions to such
problems in several dimensions starting with weaker differentiability
hypotheses on the ut. This work differs from hers in that here
analyticity is proved, and no restriction on & is required for uniqueness
of solutions is not required in the proof. The proof here is also along
different lines since the restriction to two dimensions allows the use of
conformal mapping and the Beltrami differential equation to bring L{ to
normal form, allowing previous results of the author [8] to be applied.

2. Since the proof of the theorem is based on coordinate transfor-
mations it is essential to examine how the various coefficients and the
problem as a whole are altered under point transformations. With
the symbolism
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( 1 )
V., =

\
dx

3
J =

'φ.

Φy

\ °y /
Fxy = JFξη , J nonsingular , Aτ = transpose of A ,

the second-order terms (principal part) in

{VlyHVxy)u

give auxx + 2buxy + cuyy. Under the transformation ξ = φ(x, y), η =

Ψ (x, v),

( 2 ) nyHFxy = (JFζη)
τHJFξη.

Thus the principal part of the right side in ξ — η coordinates is as-
sociated with the matrix JTHJ. An arc σ in the ίπ/-plane h(x, y) = 0
become fc*(ε, rj) = 0 and the normals Fxyh and Fξηh* satisfy

Fxyh = JFξvh* .

Thus the conormal direction in the x?/-plane

( 3 )

becomes in the ξη plane

And the conormal derivative NτVxyu becomes (N*)τF$r)u with

{N*)τViηu = }

\\J-ψh\\

where || || is the usual Euclidean length of a vector.
Under a transformation of class Cl with nonvanishing Jacobian

an arc of class Cl is transformed into an arc of class Cl and corre-
sponding arc length parameters are connected by an invertible transfor-
mation of class C;, if n ^ 1.

Thus in the theorem, if DJJDJJσ is subjected to a (nonsingular)
transformation of class C2+3, the problem transforms into a problem
of the same type. A similar statement holds in the analytic case if
the transformation is analytic.

The plan of proof is to map σ into the #-axis and the principal
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parts of Li into Laplacian operators, then apply the results of [8].
In [8], the theorem has been proved for Laplacian principal parts for
k constant, but the proof carries through for k variable, though the
second derivatives of k will appear in the coefficients of first order
derivative terms of the modified equations.

The theorem is proved for a neighborhood of a point on σ; then
a Heine-Borel argument extends the result to a neighborhood of σ.

3* If σ is analytic and p0 is a point on σ, there is a conformal
map (nonsingular) taking p0 into the origin and a neighborhood of p0

onto a neighborhood of the origin in such a way that the points on
σ are mapped onto the a -axis. Since the mapping is one to one and
analytic both ways, the problem becomes one of proving the analytic
case of the theorem when σ is the x-axis and D1 is the region y > 0, D2

the region y < 0.
As is known, L(u) = auxx + 2buxy + cuyy may be brought to a

form with Laplacian principal part by a transformation ξ — φ(x, y)
η = ψ(x, y) if φ, ψ satisfy the Beltrami system

= bψχ + Cψy

( 5 ) δ2 = ac - b2 > 0
ψ + bf

and are at least twice continuously differentiable. Indeed

(6) L(u) = (αψi + 2bψxψy + cfy){V)nu) + lower terms ,

where the lower terms involve the second derivatives of ψ and first
derivatives of u.

With δl = diCi — b\ > 0 and the notation of the theorem, we solve
the initial value problems

d ί bjψix(
dx V δt ) dy\

( 7 ) U
with ^(α, 0) = 0, ψiy(x, 0) - -2L , i = 1, 2 .

Since a{1 6ί5 ci9 ^ are all analytic, (7) is an elliptic second order linear
equation with analytic coefficients with prescribed analytic initial data.
By the Cauchy-Kowaleski theorem there exists in a neighborhood of
the £-axis a unique analytic ψt satisfying the initial value problem.
Both ψx and ψ2 are two-sided solutions since the aίy etc., are analytic
in a two-sided neighborhood of σ. From (7) it follows that the right-
hand side of (5) are components of the gradient of a scalar φ, which
may be constructed from the gradient by a line integral
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( 8 ) Φi(X,V) =

φix

"¥ix

Φiy

Ψiv

i
0

Φiy

Since by (7) the integral is independent of path, the path for computing
Φi(x, 0) is the x-axis. Since ψix(x, 0) = 0 from the initial values,
Φ&, 0) = x,i = l, 2.

The transformation ξ = φi(x, y), Ύ) = ψi(x, y), x, y in DiUσ maps a
neighborhood of the origin in the a^-plane onto a neighborhood of the
origin in the f^-plane with the a -axis mapped onto the f-axis. The
portion y > 0 is mapped onto ΎJ > 0; and y < 0 onto η < 0.
The Jacobian

Oi

on y — 0 and, therefore, the mapping in each region, analytically
continuable into the other, is invertible, the inverse being analytic.
The problem in the theorem is now reduced to one in which the
equations have Laplacian principal parts (after division by (a^2

ix +
Zbtψixψiy + Ciψly) as indicated in (6) with ί = 1 for η > 0, i = 2 for
η < 0) and σ is the f-axis. By [8], the solutions have the analyticity
property on the £-axis, i.e., the solution in the region η > 0 is analyti-
cally continuable into the lower region rj < 0 and conversely. Since
every mapping from the original problem to this canonical problem
has nonvanishing Jacobian on σ, the inverses are also analytic in a
neighborhood of p0 on σ and, therefore, the solutions of the equations
have the analyticity property on σ.

Since with each point on σ there is a neighborhood of the point
in which the solutions are analytic, it is possible to cover any closed
subarc of σ with a finite number of such neighborhoods which overlap.
The solutions are analytic in the union of these neighborhoods.

4. In the nonanalytic case of the theorem, there is a mapping
of class Cj+3 with nonvanishing Jacobian taking p0 on σ into the
origin and a neighborhood of p0 into a neighborhood of the origin in
such a way that σ maps onto the a -axis with D, mapped into y > 0
and D2 into y > 0. This is by definition of σ e Cl^. Thus, as before,
we may assume in the theorem that σ is the α -axis. Again we use
the Beltrami system to bring L{{u) into Laplacian principal part by
solving (7). (7) is a linear second order elliptic equation with coef-
ficients in Cl+1. However, the Cauchy-Kowaleski theorem cannot be
used to establish the existence of the desired mapping because the
data is not analytic. Instead, the Schauder theory gives the existence.
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We let Kγ be a curve in DJJσ of class C2+3 coinciding with a
segment of the x-axis containing the origin in the middle of the
segment. From the Schauder theory there exists φ^x, y) of class C«+3

in the closed region bounded by Kλ satisfying (7) and assuming on Kx

the boundary values ψ1 = y. By Hopf's theorem [2], ψιy(x, 0) > 0.
The ό in (5) is again reconstructed from its gradient by a line integral
as in (8), the curve being confined to the closure of the region bounded
by Kx. The Jacobian of the transformation ζ = φt(x, y), η — φ^x, y) at
x = 0, y = 0 is

Φlx Φly

fix ψly

The function pair φu ψλ can be extended into D2 as class C^+3 functions
[1]. (This can easily be done for xeK^σ. If

h(χ, y) = Σ d 3 r ψ l } x ; 0 ) Xr

then v(x, y) = ψ^x, y) — h(x, y) vanishes with its y derivatives of
order g n + 3 for y = 0. Thus v defined in A is easily extended into D2

by ^(x, -2/) = ^(x, y). If F(tf, T/) is the extended v,Ve C:+3 in D.UσUD,.
ψ(x, y) = F(.τ, i/) + A(#, i/) is therefore the desired extension of ψlm)
Therefore, there is a class Cn

a

+Z transformation mapping a neighborhood
of the origin in such a way that the x-axis goes into the f-axis, Lx

transforms into an operator which has principal part equal to a
(nonvanishing) scalar times the Laplacian, as in (6), and the Jacobian
does not vanish in the neighborhood. L2 is also transformed into a
linear second order elliptic operator. Both new equations are now
divided by the coefficient of the Laplacian. Thus the theorem is now
reduced to the case in which L1 is the Laplacian and σ is the x-axis.

We now use the Beltrami system to bring the current L2 to
Laplacian principal part, proceeding initially as above to obtain φ2(x, y)
and ψ2(xyy) in DJJσ such that ψ\>(x, 0) = 0. Then the following
transformation is applied to a neighborhood of the origin:

v = ψ&> V)J v =

The mapping of D1 has a C^3 extension into D2 and the mapping of
D2 has a Cϊ+ 3 extension into A Both mappings agree on y = 0 and
have nonvanishing Jacobian at (0, 0).

= [c2(x, 0)ir2y(c, 0)/δ2(x, 0)]2ulξξ + uιvrj

+ derivatives of u, of lower order



252 D. P. SQUIER

L2(u2) = (a2ψ\x + 2b2ψZxψ2y + c2ψ\y){V2

ξnu2)

+ derivatives of u2 of lower order

Thus

£ ( ) h\ξ) + Uιηη + •
L2(u2) = g(ξ, η)V\ηu2 + . .

where h and g are positive andeC2+p. On account of (9) and (4), the
k(ζ) for (10) is still of class CT\ (It is at this point that C2+3

transformations are required, rather than Cl+2 because of the degrading
of the differentiability of k at this step by introducing factors depending
on the first derivatives of the transformation.) Division of the upper
equation in (10) by h2(ξ) and the lower one by g(ξ, rj) yields

n I Ί ( M I ) = Mi« + q2(ξ)uιηη + •

L2(u2) = V2

ηu2 +

the dots indicating terms involving u derivatives of order less than
two. The k(ζ) for (11) is just the k for (10) multiplied by g(ξ, 0)/h2(ξ).
Thus the theorem has been reduced to the case (11) with σ the f-axis.

Returning to x — y variables to avoid excessive notation we make
the variable change x = ξ, y = ηlq{ξ) for η :> 0, x = ξ, y = η for η <: 0.
This leaves L2 unchanged, and brings L^ into

(12) LάuJ = ulxx + 2r(x)yulxy + (rψ + l)ulyy + .

where r(x) = —q'lq. Thus the coefficients in the principal part of L1

meet with those of L2 to make them Lipschitz continuous throughout
C(0, α), a circle in D1UσUD2 centered at (0,0) with radius a.

As in [8] we write ut = u + kw, u2 — n + w where u is even, w
odd, and botheC 1 in C(0, a). This leads to an elliptic system as in
[8], but somewhat more complicated. However, the coefficients of
second order derivative terms are Lipschitz continuous, and as in (12),
the ^-derivative of those coefficients are Lipschitz in C(0, a). By
Theorem 4.3 in [3], u, wed in C(0, a). Now the proof of Theorem
4.5 in [3] can be applied, modified to use only derivatives and difference
quotients in the ^-direction, noting that the v in that proof is of class
Ca with one even component, one odd, but that in any case vxeCa.
That proof puts ux, wx in Ca in C(0, a). uyy and wyy, for y >̂ 0, are
expressed in terms of quantities which are of class Ca from the
differential equations. Thus, for y ^> 0,u and w are of class C«.

The further differentiability properties on u and w are obtained
by differentiating the equations with respect to x (using always the
known interior differentiability properties) and observing that ux, wx

satisfy an elliptic system like u and w with the same boundary con-
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ditions on y = 0. Thus ux,wxe Cl for y ^ 0. The equations for y ^ 0
are then differentiated with respect to y and solved for uyyy and wyyy

in terms of quantities which are class Ca. The process may be repeated
as often as is possible to differentiate the coefficients. The differenti-
ability properties of u{ then follow.

This result gives three orders of differentiability more than the
results in [5].

5* The theorem is valid if the solution pair ulfu2 are initially
known only to be in H2\ (Classes H™ are defined in [4], pp. 62-63.)
By this, here, is meant that for any closed subset S* of S = D1UσUD2

there is a sequence of function pairs (u(, u(), u{ eC1 in DiUσ, satisfying
the conormal derivative condition of the theorem, such that u{ con-
verges in the mean of order two to u{ on S* Π Dt while the first order
derivatives form a Cauchy sequence in mean of order two on S* Π -D*.

The proof will be merely sketched for the analytic case. The
nonanalytic case is similar. Clearly the HI hypotheses hold for the
transformed problem, so it is sufficient to prove the result for the
canonical form above, as in [8]. As there, u2 = u + v, ux = u + kv
where u is even, v is odd; and u, v satisfy in S, which may be taken
as the open circle C(0, a) centered at (0, 0) with radius α,

ί ^Lds = ( F.dxdy , ( ^-ds - ί F2dxdy
jR* dn JR JR* on JR

for almost all closed cells R in C(0, a) [3]. Here F1 and F2 are linear
combinations of v,,v,fltf2, and the first order derivatives of u and v
as in [8] with bounded coefficients. By Theorem 4.3 in [3], u and v
are of class Cl in C(0, a). Thus u{ is of class Cl on DiUσ. The
further results then follow.
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